2021-03-28 00:33:45 +00:00
\documentclass [../../script.tex] { subfiles}
%! TEX root = ../../script.tex
\begin { document}
\section { Partial and Total Differentiability}
\begin { defi}
2021-03-28 20:31:30 +00:00
Let $ U \subset \realn ^ n $ be open, $ x \in ( x _ 1 , \cdots , x _ n ) \in U $ and define the function $ f: U \rightarrow \realn ^ m $ .
The mapping $ f $ is said to be partially differentiable in $ x $ in terms of $ x _ i $ if
\[
t \longmapsto f(x_ 1, \cdots , x_ { i-1} , t, x_ { i+1} , \cdots , x_ n)
\]
is differentiable in $ x _ i $ , i.e.
\[
\partial _ i f(x) = \limes { h} { 0} \frac { f(x_ 1, \cdots , x_ { i-1} , x_ i + h, x_ { i+1} , \cdots , x_ n) - f(x_ 1, \cdots , x_ n)} { h}
\]
exists. $ \partial _ i f ( x ) $ is said to be the partial derivative of $ f $ in $ x $ in terms of $ x _ i $ . Another notation is
\[
\pdv { f} { x_ i}
\]
This mapping is said to be partially differentiable in $ x $ if it is partially differentiable in terms of $ x _ i ~~ \forall i \in \set { 1 , \cdots , n } $ .
\end { defi}
\begin { eg}
Consider
\begin { align*}
f: \realn ^ 2 & \longrightarrow \realn \\
(x, y) & \longmapsto \begin { cases}
1, & x = 0 \vee y = 0 \\
0, & \text { else}
\end { cases}
\end { align*}
$ f $ is partially differentiable in $ ( 0 , 0 ) $ , but not continuous.
\end { eg}
\begin { thm}
Let $ U \subset \realn $ be open, $ x \in U $ and $ f: U \rightarrow \field $ .
\begin { gather*}
f \text { is differentiable in } x \\
\iff \\
\exists a \in \field , \phi : U \rightarrow \field : ~~f(y) = f(x) + a(y - x) + \phi (y) ~~\forall y \in U
\end { gather*}
and
\[
\limes { y} { x} \frac { \phi (x)} { \abs { y - x} } = 0
\]
\end { thm}
\begin { proof}
We will first prove the "$ \impliedby $ " direction. So let $ a, \phi $ be as demanded in the theorem. Then
\begin { equation}
\frac { f(y) - f(x)} { y - x} = a + \frac { \phi (y)} { \abs { y - x} } \cdot \frac { \abs { y - x} } { y - x} \conv { y \rightarrow x} a
\end { equation}
which means $ f $ is differentiable in $ x $ and $ f' ( x ) = a $ . Now let $ f $ be differentiable, and set
\begin { equation}
\phi (y) = f(y) - f(x) - f'(x)(y - x)
\end { equation}
Which is equivalent to the equation in the theorem, with $ a = f' ( x ) $ . Then
\begin { equation}
\limes { y} { x} \frac { \phi (x)} { \abs { y - x} } = \left ( \frac { f(y) - f(x)} { y - x} - f'(x) \right ) \cdot \frac { y - x} { \abs { y - x} } = 0
\end { equation}
\end { proof}
\begin { defi}
Let $ U \subset \realn ^ n $ , $ x \in U $ and $ f: U \rightarrow \realn ^ m $ .
$ f $ is said to be (totally) differentiable in $ x $ if a matrix $ A \in \realn ^ { m \times n } $ and a mapping $ \phi : U \rightarrow \realn ^ m $ exist, such that
\[
f(y) = f(x) + A(y - x) + \phi (x) ~~\forall y \in U
\]
and
\[
\limes { y} { x} \frac { \phi (y)} { \norm { y - x} } = 0
\]
$ f $ is said to be (totally) differentiable if it is (totally) differentiable in every point $ x \in U $ .
\end { defi}
\begin { thm}
Let $ U \subset \realn ^ n $ be open, $ x \in U $ and $ f: U \rightarrow \realn ^ m $ with
\[
f = (f_ 1, \cdots , f_ m), ~~f_ 1, \cdots , f_ m: U \longrightarrow \realn
\]
If $ f $ is totally differentiable in $ x $ , then it is partially differentiable as well, and the matrix $ A $ is given by
\[
a_ { ji} = \partial _ i f_ j(x)
\]
\end { thm}
\begin { proof}
Let $ A, \phi $ be as demanded above. Let $ e _ 1 , \cdots , e _ n $ be the canonical basis for $ \realn ^ n $ .
We insert $ y = x + he _ i $ and receive
\begin { equation}
f(x + he_ i) = f(x) + h \cdot Ae_ i + \phi (x + he_ i)
\end { equation}
By rearranging this yields
\begin { equation}
\frac { f(x + he_ i) - f(x)} { h} = Ae_ i + \frac { \phi (x + he_ i)} { |h|} \cdot \frac { |h|} { h} \conv { h \rightarrow 0} Ae_ i
\end { equation}
Thus, $ f $ is partially differentiable in $ x $ in terms of $ x _ i $ with $ \partial _ i f ( x ) = Ae _ i $ .
\end { proof}
\begin { defi}
The matrix $ ( \partial _ i f _ j ( x ) ) _ { ij } $ is called the Jacobian matrix of $ f $ in $ x $ .
We write $ Df ( x ) $ . If $ f $ is totally differentiable, then $ Df ( x ) $ is said to be the (total) derivative of $ f $ in $ x $ .
For $ m = 1 $ (so $ f: \realn ^ n \rightarrow \realn $ ), the Jacobian matrix has one column, and we call it gradient
\[
Df(x) =: \grad f(x)
\]
Note: I will adhere to the physical notation of the gradient, using the Nabla operator $ \nabla $ .
\end { defi}
\begin { eg}
Let $ A \in \realn ^ { m \times n } $ and define
\begin { align*}
f_ A: \realn ^ n & \longrightarrow \realn ^ m \\
x & \longmapsto Ax
\end { align*}
Then we have
\[
f_ A(y) = Ay = Ax + A(y - x) = f_ A(x) - f_ A(y - x)
\]
Thus, $ f _ A $ is differentiable $ ( \phi = 0 ) $ and the derivative is
\[
Df_ A(x) = A ~~\forall x \in \realn ^ n
\]
For another example, let
\begin { align*}
f: (0, \infty ) \times (0, 2\pi ) & \longrightarrow \realn ^ 2 \\
(r, \phi ) & \longmapsto (r \cos \phi , r \sin \phi )
\end { align*}
Then $ f $ is partially differentiable.
\[
Df(r, \phi ) = \begin { pmatrix}
\cos \phi & -r\sin \phi \\
\sin \phi & r\cos \phi
\end { pmatrix}
\]
So $ f $ is also totally differentiable (We'll get back to this later).
\end { eg}
\begin { rem}
\begin { enumerate} [(i)]
\item Let $ U \subset \realn ^ n $ be open and $ f: U \rightarrow \realn ^ m $ differentiable,
then the derivative $ Df $ is a function $ U \rightarrow \realn ^ { m \times n } $
\item Total differentiability is also called local linear approximation. Linearity is the property
\[
A(x + \lambda y) = Ax + \lambda Ay ~~\forall x, y \in \realn ^ n ~\lambda \in \realn
\]
\item For arbitrary vector spaces $ V, W $ , a mapping $ V \rightarrow W $ is said to be linear if
\[
A(x + \lambda y) = Ax + \lambda Ay ~~\forall x, y \in \realn ^ n ~\lambda \in \realn
\]
So we can analogously define differentiability for mappings $ f: V \rightarrow W $ between arbitrary normed vector spaces.
2021-03-28 00:33:45 +00:00
2021-03-28 20:31:30 +00:00
\item $ f $ is totally differentiable in $ x $ if and only if the Jacobian matrix exists and
\[
\limes { x} { y} \frac { f(y) - f(x) - Df(x)(y-x)} { \norm { y-x} } = 0
\]
\item Let $ f = ( f _ 1 , \cdots , f _ m ) $ with $ f _ 1 , \cdots , f _ m: U \rightarrow \realn $ .
\[
f \text { totally differentiable} \iff f_ i \text { totally differentiable } ~\forall i \in \set { 1, \cdots , n}
\]
The Jacobian matrix $ Df _ i ( x ) $ is the $ i $ -th row of $ Df ( x ) $ .
\item Total differentiability implies continuity.
\item Partial and total differentiability are local properties.
\item The mapping $ h \mapsto Df ( x ) \cdot h $ is linear.
\item The derivative $ x \mapsto Df ( x ) $ is not linear in general.
\end { enumerate}
\end { rem}
\begin { thm} [Chain rule]
Let $ U \subset \realn ^ n $ be open, $ V \subset \realn ^ m $ open, $ x \in U $ , $ g: U \rightarrow V $ differentiable in $ x $ , and $ f: V \rightarrow \realn ^ k $ differentiable in $ g ( x ) $ .
Then $ f \circ g $ is differentiable and
\[
D(f \circ g) = Df(g(x)) \cdot Dg(x)
\]
\end { thm}
\begin { proof}
Differentiability of $ g $ in $ x $ means
\begin { equation}
\exists \phi _ g: U \longrightarrow \realn ^ m: ~~g(y) - g(x) = D_ g(x)(y-x) + \phi _ g(y)
\end { equation}
Differentiability of $ f $ in $ g ( x ) $ means
\begin { equation}
\exists \phi _ f: V \rightarrow \realn ^ k:: ~\limes { z} { g(x)} \phi _ f(z) \inv { \norm { z - g(x)} } = 0
\end { equation}
and
\begin { equation}
f(z) = f(g(x)) + D_ f(g(x))(z - g(x)) + \phi _ f(z)
\end { equation}
Now set $ z = g ( y ) $ , then
\begin { equation}
\begin { split}
\underbrace { f(g(y))} _ { (f \circ g)(y)} = \underbrace { f(g(x))} _ { (f \circ g)(x)} & + D_ f(g(x)) \cdot D_ g(x)(y-x) \\
& + (D_ f(g(x)) \phi _ g(y) + \phi _ f(g(y)))
\end { split}
\end { equation}
And we finally need to show
\begin { equation}
\frac { D_ f(g(x)) \phi _ g(y) + \phi _ f(g(y))} { \norm { y - x} } \conv { y \rightarrow x} 0
\end { equation}
We know that
\begin { equation}
Df(g(x)) \frac { \phi _ g(y)} { \norm { y - x} } \conv { } 0
\end { equation}
because
\begin { equation}
z \longmapsto Df(g(x)) z \text { linear and thus continuous}
\end { equation}
We define a new mapping
\begin { equation}
\begin { split}
\psi : U & \longrightarrow \realn \\
z & \longmapsto \begin { cases}
\phi _ f(z) - \inv { \norm { z - g(x)} } , & z \ne g(x) \\
0, & z = g(x)
\end { cases}
\end { split}
\end { equation}
$ \psi $ is continuous in $ g ( x ) $ . Then $ \forall y \in U $ we have
\begin { equation}
\frac { \phi _ f(g(y))} { \norm { y - x} } = \underbrace { \psi (g(y))} _ { \conv { y \rightarrow x} 0} \cdot \frac { \norm { g(y) - g(x)} } { \norm { y - x} }
\end { equation}
and
\begin { equation}
\begin { split}
\frac { \norm { g(y) - g(x)} } { \norm { y - x} } & = \norm { Dg(x) \frac { y - x} { \norm { y - x} } + \frac { \phi _ g(y)} { \norm { y - x} } } \\
& \le \underbrace { \norm { Dg(x) \frac { y - x} { \norm { y - x} } } } _ { \le \norm { Dg(x)} } + \underbrace { \norm { \frac { \phi _ g(y)} { \norm { y - x} } } } _ { \conv { y \rightarrow x} 0}
\end { split}
\end { equation}
thus $ \psi $ is bounded.
\begin { equation}
\implies \psi (g(y)) \cdot \frac { \norm { g(y) - g(x)} } { \norm { y - x} } \conv { } 0
\end { equation}
\end { proof}
\begin { thm}
Let $ U \subset \realn ^ n $ and $ f: U \longrightarrow \realn ^ m $ . If $ \forall x \in U $ the partial derivatives $ \partial _ i f ( x ) $ exist and are continuous $ \forall i \in \set { 1 , \cdots , n } $ .
then $ f $ is totally differentiable.
\end { thm}
\begin { proof}
Without proof.
\end { proof}
\begin { defi}
Let $ U \subset \realn ^ n $ be open. $ f: U \rightarrow \realn ^ m $ is said to be continuously differentiable if all partial derivatives exist and are continuous.
The vector space of all such functions is denoted as $ C ^ 1 ( U, \realn ^ m ) $ , or in the special case $ m = 1 $ as $ C ^ 1 ( U ) $ .
2021-03-28 00:33:45 +00:00
\end { defi}
2021-03-28 20:31:30 +00:00
\begin { eg}
\begin { enumerate}
\item Coming back to a previous example, we consider
\[
Df(r, \phi ) = \begin { pmatrix}
\cos \phi & -r \sin \phi \\
\sin \phi & \cos \phi
\end { pmatrix}
\]
Thus, $ f $ is continuously differentiable, and therefore totally differentiable.
\item Let $ N \in \natn $ and $ c _ { \eta } \in \field $ for every multiindex $ \eta \in \natn _ 0 ^ n $ with $ \abs { \eta } \le N $ .
Then the polynomial
\begin { align*}
P: \realn ^ n & \longrightarrow \field \\
x & \longmapsto \sum _ { \substack { \eta \\ \abs { \eta } \le N} } c_ { \eta } x^ { \eta }
\end { align*}
is continuously differentiable, and therefore totally differentiable.
\begin { align*}
\partial _ i x^ { \eta } & = \partial _ i \left ( x_ 1^ { \eta _ 1} , x_ 2^ { \eta _ 2} , \cdots , x_ n^ { \eta _ n} \right ) \\
& = \eta _ i x_ 1^ { \eta _ 1} \cdots x_ { i-1} ^ { \eta _ { i-1} } x_ i^ { \eta _ { i-1} } x_ { i+1} ^ { \eta _ { i+1} } \cdots x_ n^ { \eta _ n}
\end { align*}
This is another polynomial, and therefore continuous.
\end { enumerate}
\end { eg}
We introduce the following new notation, for $ x, y \in \realn ^ n $ :
\begin { align*}
\oline & := \set [t \in (0, 1)] { x + t(y - x)} \\
\cline & := \set [{t \in [0, 1] } ]{ x + t(y - x)}
\end { align*}
They denote the connecting line between $ x $ and $ y $ .
\begin { center}
\begin { tikzpicture}
\draw (0, 0) circle [radius=2pt] node[above left] { $ x $ } ;
\draw (3, 1.5) circle [radius=2pt] node[above right] { $ y $ } ;
\draw (0, 0) -- node[below right] { $ \oline $ } (3, 1.5);
\end { tikzpicture}
\end { center}
\begin { thm} [Intermediate value theorem for $ \realn $ -valued functions]
2021-03-29 13:10:46 +00:00
Let $ U \subset \realn ^ n $ be open, $ x, y \in U $ and $ \cline \subset U $ .
2021-03-28 20:31:30 +00:00
Now let $ f: U \rightarrow \realn $ differentiable on $ \oline $ and continuous in $ x, y $ . Then
\[
\exists \xi \in \cline : ~~f(y) - f(x) = Df(\xi ) (y-x)
\]
\end { thm}
\begin { proof}
Consider
\begin { equation}
\begin { split}
g: [0, 1] & \longrightarrow \realn \\
t & \longmapsto f(x + t(y - x))
\end { split}
\end { equation}
Apply the one dimensional intermediate value theorem. Due to the chain rule, $ g $ fulfils the prerequisites.
$ \exists \theta \in ( 0 , 1 ) $ such that
\begin { equation}
f(y) - f(x) = g(1) - g(0) = g(\theta ) = Df(x + \theta (y - x))(y - x)
\end { equation}
For $ \xi = x + \theta ( y - x ) $ follows the initial statement.
\end { proof}
\begin { thm} [Intermediate value theorem]
Let $ U \subset \realn ^ n $ be open, $ \cline \subset U $ and $ f: U \rightarrow \realn ^ m $ differentiable on $ \oline $ and continuous in $ x, y $ . Then
\[
\exists \xi \in \oline : ~~\norm { f(y) - f(x)} \le \norm { Df(\xi )(y - x)}
\]
\end { thm}
\begin { proof}
For $ a \in \realn ^ m $ , consider the (real) helper function
\begin { equation}
a^ Tf(x) = \innerproduct { a} { f(x)}
\end { equation}
According to the previous theorem
\begin { equation}
\exists \xi \in \oball : ~~a^ T f(y) - a^ T f(x) = a^ T D f(\xi )(y - x)
\end { equation}
In this implication the chain rule has been applied. We can rewrite this using the scalar product
\begin { equation}
\begin { split}
\norm { f(y) - f(x)} ^ 2 & = \abs { \innerproduct { f(y) - f(x)} { Df(\xi )(y-x)} } \\
& \le \norm { f(y) - f(x)} \norm { Df(\xi )(y - x)}
\end { split}
\end { equation}
\end { proof}
\begin { cor}
Let $ U \subset \realn ^ n $ be open and $ f: U \rightarrow \realn ^ m $ a differentiable function.
\[
Df = 0 \text { on } U \implies \exists V \subset U: f \text { constant on } V
\]
\end { cor}
\begin { proof}
Let $ x \in U $ , choose $ \epsilon > 0 $ such that $ \oball ( x ) \subset U $ . Then
\begin { equation}
\forall y \in \oball (x) ~\exists \xi \in \oline : ~~\norm { f(y) - f(x)} \le \norm { Df(\xi )(y - x)} = 0
\end { equation}
This implies
\begin { equation}
\norm { f(y) - f(x)} = 0 \implies f(y) = f(x) ~~\forall y \in \oball (x)
\end { equation}
\end { proof}
\begin { rem}
Functions with vanishing derivatives must be constant. Consider
\begin { align*}
f: (-2, -1) \cup (1, 2) & \longrightarrow \\
x & \longmapsto \begin { cases}
-1, & x < 0 \\
1, & x > 0
\end { cases}
\end { align*}
Local constancy implies constancy on connected sets.
\end { rem}
2021-03-28 00:33:45 +00:00
\end { document}