Added higher derivs

This commit is contained in:
Robert 2021-03-29 15:10:46 +02:00
parent 51147664dd
commit cbfc62efd6
5 changed files with 276 additions and 1 deletions

View file

@ -5,4 +5,5 @@
\chapter{Multivariable Calculus}
\subfile{sections/partial_total_diff.tex}
\subfile{sections/higher_derivs.tex}
\end{document}

View file

@ -0,0 +1,271 @@
\documentclass[../../script.tex]{subfiles}
% !TEX root = ../../script.tex
\begin{document}
\section{Higher Derivatives}
\begin{defi}
Let $U \subset \realn^ n$ and let $f$ be (the only) partial derivative of order $0$.
Now define recursively
\begin{enumerate}[(i)]
\item $f$ is said to be $(k + 1)$-times partially differentiable if all partial derivatives of order $k$ are partially differentiable.
\item The partial derivatives of order $(k + 1)$ are the functions $\partial_i g ~~i \in \set{1, \cdots, n}$ where $g$ is the partial derivative of order $k$ of $f$.
\end{enumerate}
The $k$-th partial derivative in terms of $i$ of $f$ is denoted as
\[
\partial_i^k f
\]
$f$ is said to be $k$-times continuously differentiable if all partial derivatives of order $k$ are continuous.
$C^k(U, \realn^m)$ is the vector space of all $k$-times continuously differentiable functions.
$f$ is said to be infinitely differentiable (or smooth) is it is $k$-times differentiable $\forall k \in \natn$, and the vector space
of all infinitely differentiable functions is denoted as $C^{\infty}(U, \realn^m)$.
For total differentiability we have
\begin{align*}
f: \realn^n \longrightarrow \realn^m && Df: \realn^m \longrightarrow \realn^{m \times n}
\end{align*}
\end{defi}
\begin{rem}
Let $f: \realn^n \rightarrow \realn^m$ be sufficiently often differentiable. Consider for $u \in \realn^n$
\[
x \longmapsto Df(x) u = \underbrace{\limes{k}{0} \frac{f(x + hu) - f(x)}{h}}_{\substack{\text{Directional derivative along } u}}
\]
Now consider for fixed $x$
\begin{align*}
D^2 f(x) : \realn^n \times \realn^n &\longrightarrow \realn^m \\
(u ,v) &\longmapsto D(Df(\cdot)u)(x)v
\end{align*}
$D^2f(x)$ is linear in $v$ and $u$, and
\begin{align*}
D^2 f(x) (u_1 + \lambda u_2, v) &= D(Df(\cdot)(u_1 + \lambda u_2))(x) v \\
&= D(Df(\cdot)u_1 + \lambda Df(\cdot)u_2)(x) v \\
&= D(Df(\cdot)u_1)(x) v + \lambda D(Df(\cdot)u_2)(x) v \\
&= D^2f(x)(u_1, v) + \lambda D^2f(x)(u_2, v)
\end{align*}
$D^2f(x)$ is a bi-linear mapping.
\end{rem}
\begin{defi}
Let $U \subset \realn^n$ and $f: U \rightarrow \realn^m$. Define recursively for $k \ge 1$:
\begin{enumerate}[(i)]
\item $f$ is said to be $(k+1)$ times (totally) differentiable on $U$, if the term $D^k(\cdot)(u_1, \cdots, u_k)$ is differentiable on $U \forall u_1, \cdots, u_k \in \realn^n$.
\item The $(k+1)$-th derivative of $f$ in $x \in U$ is the multi-linear mapping
\begin{align*}
D^{k+1} f(x): (\realn^n)^{k+1} &\longrightarrow \realn^m \\
(u_1, \cdots, u_k, v) &\longmapsto D(D^kf(\cdot)(u_1, \cdots, u_k))(x) v
\end{align*}
\end{enumerate}
\end{defi}
\begin{rem}
Let $f_1, \cdots, f_m: U \rightarrow \realn$, then the function
\begin{align*}
f: U &\longrightarrow \realn^m \\
x &\longmapsto (f_1(x), \cdots, f_m(x))
\end{align*}
is $k$-times totally differentiable if and only if the $f_1, \cdots, f_n$ are totally differentiable.
\[
(D^kf(x)(u_1, \cdots, U_k))_j = D^k f_j(x)(u_1, \cdots, u_k)
\]
\end{rem}
\begin{rem}
$D^k f(x)$ really is multi-linear (linear in every point) $\forall k \in \natn$.
Other multi-linear mappings are
\begin{enumerate}[(i)]
\item The scalar product on $\realn^n$
\[
\realn^n \times \realn^n \longrightarrow \realn
\]
\item The determinant
\[
\realn^{n \times n} \longrightarrow \realn
\]
\end{enumerate}
\end{rem}
\begin{rem}
A matrix $A \in \realn^{m \times n}$ is uniquely determined by its effect on the canonical basis $e_1, \cdots, e_n$.
This means if $v \in \realn$, then $\exists \alpha_1, \cdots, a_n \in \realn$ that are uniquely determined such that
\[
v = \alpha_1, e_1 + \cdots + \alpha_n e_n
\]
Then
\[
Av = \alpha_1 Ae_1 + \cdots + \alpha_n Ae_n
\]
$Ae_i$ is the $i$-th column of $A$.
An analogous statement for multi-linear mappings would be, that
\[
A: \realn^{n \times k} \longrightarrow \realn^m
\]
is uniquely determined if $A(e_{i_1}, e_{i_2}, \cdots, e_{i_k})$ known $\forall i_1, \cdots, i_k \in \set{1, \cdots, n}$.
\end{rem}
\begin{thm}
Let $U \subset \realn^n$ be open, $f: U \rightarrow \realn^m$ $k$-times differentiable in $x$ and
let $e_1, \cdots, e_n$ be the canonical basis of $\realn^n$. Then
\[
D^k f(x) (e_{i_1}, \cdots, e_{i_k}) = \partial_{i_k} \cdots \partial_{i_1} f(x)
\]
$\forall i_i, \cdots, i_k \in \set{1, \cdots, n}$.
\end{thm}
\begin{proof}
For $k = 1$ this is already proven. So we can use proof by induction;
assume the statement holds for a $k$, i.e. $\forall i_1, \cdots, i_k \in \set{1, \cdots, k}$
\[
D^k f(x) (e_{i_1}, \cdots, e_{i_k}) = \partial_{i_k} \cdots \partial_{i_1} f(x)
\]
Then for $i_1, \cdots, i_k, i_{k+1} \in \set{1, \cdots, n}$
\begin{equation}
\begin{split}
D^{k+1} f(x) (e_{i_1, \cdots, e_{i_k}}) &= D(D^k f(\cdots)(e_{i_1}, \cdots, e_{i_k}))(x) \cdot e_{i_{k+1}} \\
&= D(\partial_{i_k}, \cdots \partial_{i_1} f(\cdot))(x) e_{i_{k+1}} \\
&= \partial_{i_{k+1}}\partial_{i_k} \cdots \partial_{i_1} f(x)
\end{split}
\end{equation}
The order in which partial derivatives are applied is important!
\end{proof}
\begin{eg}
Consider
\begin{align*}
f: \realn^2 &\longrightarrow \realn \\
(x_1, x_2) &\longmapsto x_1^2 \cos(x_2)
\end{align*}
Then we can calculate
\begin{align*}
D^2 f(x) (u, v) ~~ u = u_1e_1 + u_2e_2, v = v_1e_1 + v_2e_2
\end{align*}
As follows
\begin{align*}
D^2f(x)(u, v) &= u_1v_1D^2f(x)(e_1, e_1) + u_1v_2D^2f(x)(e_1, e_2) \\
& ~~+ u_2v_1D^2f(x)(e^2, e^1) + u_2v_2D^2f(x)(e^2, e^2) \\
&= u_1v_1 \cdot 2 \cdot \cos(x_2) - 2x_1\sin(x_2)u_1v_2 \\
& ~~-2x_1\sin(x_2)v_1u_2 - x_1^2 \cos(x_2)u_2v_2
\end{align*}
\end{eg}
\begin{thm}
Let $U \subset \realn^n$ be open, and $f: U \rightarrow \realn^m$ $k$-times continuously differentiable.
Then $f$ is $k$-times totally differentiable.
\end{thm}
\begin{proof}
This is already proveb for $k = 1$. So we can use induction over $k$;
assume the statement is correct for $k \in \natn$. Let $u_1, \cdots, u_k \in \realn^n$, then $D^kf(\cdot)(u_1, \cdots, u_k)$
is a linear combination of the partial derivative of $f$ of order $k$, and is thus continuously differentiable once more.
Therefore $D^2f(\cdot)(u_1, \cdots, u_k)$ is totally differentiable, and thus $f$ is $(k+1)$-times totally differentiable.
\end{proof}
\begin{thm}[Theorem of Schwarz]
Let $U \subset \realn^n$ be open, and also $f \in C^2(U, \realn^m)$. Then
\[
\forall x \in U ~\forall u, v \in \realn^n: ~~D^2f(x)(u, v) = D^2f(x)(v, u)
\]
and
\[
\forall x \in U ~\forall i_1, i_2 \in \set{1, \cdots, n}: ~~\partial_{i_1}\partial_{i_2} f(x) = \partial_{i_2}partial_{i_1} f(x)
\]
\end{thm}
\begin{proof}
Let $m = 1$, $x \in U$, $\epsilon > 0$ such that $\oball(x) \subset U$.
If $u = 0$ or $v = 0$ then both sides of the equation vanish, so let $u, v \in \realn^n \setminus \set{0}$ and
\begin{equation}
0 < t < c := \frac{\epsilon}{2 \cdot \max\set{\norm{u}, \norm{v}}}
\end{equation}
Define the helper function
\begin{equation}
\begin{split}
g_1: [0, t] &\longrightarrow \realn \\
s &\longmapsto f(x + tv + su) - f(x + su)
\end{split}
\end{equation}
And apply the one dimensional intermediate value theorem. $\exists \xi \in (0, t)$ such that
\begin{equation}
g_1(t) - g_1(0) = g_1'(\xi) \cdot t = (Df(x + tv + \xi u) u - Df(x + \xi u)u) \cdot t
\end{equation}
Analogously, define and apply the intermediate value theorem to
\begin{equation}
\begin{split}
g_2: [0, t] &\longrightarrow \realn \\
s &\longmapsto Df(x + sv + \xi u) u
\end{split}
\end{equation}
and get $\eta \in (0, t)$
\begin{equation}
\begin{split}
g_2(t) - g_2(0) = g_2'(\eta) t &= D(Df(\cdot)u)(x + \eta v +\xi u)uvt \\
&= D^2 f(x + \eta v + \xi u)(u, v)t
\end{split}
\end{equation}
using these results, we can get $\xi, \eta \in (0, t)$ for all $t \in (0, c)$ such that
\begin{equation}
\begin{split}
f(x + &tv + tu) - f(x + tv) - f(x + tu) + f(x) \\
&= g_1(t) - g_1(0) = (Df(x + tv + \xi u)u - Df(x + \xi u)u) t \\
&= (g_2(t) - g_2(0))t = D^2 f(x + \eta v + \xi u)(u, v) t^2
\end{split}
\end{equation}
So we can write
\begin{equation}
\begin{split}
\limes{t}{0} &\frac{f(x + tv + tu) - f(x + tv) - f(x + tu) + f(x)}{t^2} \\
&= \limes{t}{0} D^2 f\underbrace{(x + \eta v + \xi u)}_{\conv{} x}(u, v) \\
&= D^2 f(x)(u, v)
\end{split}
\end{equation}
The left side is symmetric in terms of swapping $u$ and $v$, so the right side must be as well.
\end{proof}
Note, that
\[
D^2f(x)(e_{i_1}, e_{i_2}) = \partial_{i_2} \partial_{i_1} f(x) = \partial_{i_1} \partial_{i_2} f(x) = D^2f(x)(e_{i_2}, e_{i_1})
\]
\begin{rem}
Via induction:
\begin{enumerate}[(i)]
\item $D^kf(x)(u_1, \cdots, u_k)$ is independent from the order of the $u_i$, if $D^kf$ is continuous.
\item The limit of the second derivaative is useful in the numerical discussion of differential equations.
\end{enumerate}
\end{rem}
\begin{thm}[Taylor's Theorem]
Let $U \subset \realn^n$ be open, $f: U \rightarrow \realn$ be $(l + 1)$-times differentiable and $h \in \realn^n$ such that
$x + th \in U$ $\forall t \in [0, 1]$. Then $\exists \theta \in [0, 1]$ such that
\[
f(x + h) = \series[l]{k} \frac{1}{k!} D^kf(x)(h, \cdots, h) + \frac{1}{(l+1)!}D^{l+1}f(x + \theta h)(h, \cdots, h)
\]
\end{thm}
\begin{hproof}
Apply the one dimensional Taylor theorem with Lagrange error bound onto a helper function
\begin{equation}
\begin{split}
g: [0, 1] &\longrightarrow \realn \\
t &\longmapsto f(x + th)
\end{split}
\end{equation}
\end{hproof}
\begin{rem}
\begin{enumerate}[(i)]
\item Consider $h = \sum_{i=1}^n h_ie_i$. Then
\[
D^2f(x)(h, h) = \sum_{i, j = 1}^n h_i h_j D^2f(x)(e_i, e_j) = \sum_{i, j = 1}^n \partial_i \partial_j f(x) h_i h_j
\]
\item Analogously to one dimension, we can formulate criteria for local extrema:
\[
Df(x) = 0, \cdots, D^{l-1}f(x) = 0 \text{ and } D^lf(x) \ne 0
\]
\begin{itemize}
\item $x$ is a local minimum if $l$ is even and $D^lf(x)$ is positive.
\item $x$ is a local maximum if $l$ is even and $D^lf(x)$ is negative.
\item $x$ is no local extremum of $l$ is odd or if $D^lf(x)$ is undefined.
\end{itemize}
Definedness is complicated to determine for $l > 2$.
\end{enumerate}
\end{rem}
\end{document}

View file

@ -292,7 +292,7 @@ They denote the connecting line between $x$ and $y$.
\end{center}
\begin{thm}[Intermediate value theorem for $\realn$-valued functions]
Let $U \subset \realn^n$ be oppen, $x, y \in U$ and $\cline \subset U$.
Let $U \subset \realn^n$ be open, $x, y \in U$ and $\cline \subset U$.
Now let $f: U \rightarrow \realn$ differentiable on $\oline$ and continuous in $x, y$. Then
\[
\exists \xi \in \cline: ~~f(y) - f(x) = Df(\xi) (y-x)

Binary file not shown.

View file

@ -8,6 +8,7 @@
\usepackage{multicol}
\usepackage{tikz, pgfplots}
\usepackage{kbordermatrix}
\usepackage{fancyhdr}
\usetikzlibrary{calc,trees,positioning,arrows,fit,shapes,angles}
\usepackage{color}
@ -154,6 +155,8 @@
\tableofcontents
\pagestyle{headings}
\subfile{chapters/FaN.tex}
\subfile{chapters/real_analysis_1.tex}
\subfile{chapters/linear_algebra.tex}