Added higher derivs
This commit is contained in:
parent
51147664dd
commit
cbfc62efd6
|
@ -5,4 +5,5 @@
|
|||
\chapter{Multivariable Calculus}
|
||||
|
||||
\subfile{sections/partial_total_diff.tex}
|
||||
\subfile{sections/higher_derivs.tex}
|
||||
\end{document}
|
271
chapters/sections/higher_derivs.tex
Normal file
271
chapters/sections/higher_derivs.tex
Normal file
|
@ -0,0 +1,271 @@
|
|||
\documentclass[../../script.tex]{subfiles}
|
||||
% !TEX root = ../../script.tex
|
||||
|
||||
\begin{document}
|
||||
\section{Higher Derivatives}
|
||||
|
||||
\begin{defi}
|
||||
Let $U \subset \realn^ n$ and let $f$ be (the only) partial derivative of order $0$.
|
||||
Now define recursively
|
||||
\begin{enumerate}[(i)]
|
||||
\item $f$ is said to be $(k + 1)$-times partially differentiable if all partial derivatives of order $k$ are partially differentiable.
|
||||
\item The partial derivatives of order $(k + 1)$ are the functions $\partial_i g ~~i \in \set{1, \cdots, n}$ where $g$ is the partial derivative of order $k$ of $f$.
|
||||
\end{enumerate}
|
||||
The $k$-th partial derivative in terms of $i$ of $f$ is denoted as
|
||||
\[
|
||||
\partial_i^k f
|
||||
\]
|
||||
$f$ is said to be $k$-times continuously differentiable if all partial derivatives of order $k$ are continuous.
|
||||
$C^k(U, \realn^m)$ is the vector space of all $k$-times continuously differentiable functions.
|
||||
|
||||
$f$ is said to be infinitely differentiable (or smooth) is it is $k$-times differentiable $\forall k \in \natn$, and the vector space
|
||||
of all infinitely differentiable functions is denoted as $C^{\infty}(U, \realn^m)$.
|
||||
|
||||
For total differentiability we have
|
||||
\begin{align*}
|
||||
f: \realn^n \longrightarrow \realn^m && Df: \realn^m \longrightarrow \realn^{m \times n}
|
||||
\end{align*}
|
||||
\end{defi}
|
||||
|
||||
\begin{rem}
|
||||
Let $f: \realn^n \rightarrow \realn^m$ be sufficiently often differentiable. Consider for $u \in \realn^n$
|
||||
\[
|
||||
x \longmapsto Df(x) u = \underbrace{\limes{k}{0} \frac{f(x + hu) - f(x)}{h}}_{\substack{\text{Directional derivative along } u}}
|
||||
\]
|
||||
Now consider for fixed $x$
|
||||
\begin{align*}
|
||||
D^2 f(x) : \realn^n \times \realn^n &\longrightarrow \realn^m \\
|
||||
(u ,v) &\longmapsto D(Df(\cdot)u)(x)v
|
||||
\end{align*}
|
||||
$D^2f(x)$ is linear in $v$ and $u$, and
|
||||
\begin{align*}
|
||||
D^2 f(x) (u_1 + \lambda u_2, v) &= D(Df(\cdot)(u_1 + \lambda u_2))(x) v \\
|
||||
&= D(Df(\cdot)u_1 + \lambda Df(\cdot)u_2)(x) v \\
|
||||
&= D(Df(\cdot)u_1)(x) v + \lambda D(Df(\cdot)u_2)(x) v \\
|
||||
&= D^2f(x)(u_1, v) + \lambda D^2f(x)(u_2, v)
|
||||
\end{align*}
|
||||
$D^2f(x)$ is a bi-linear mapping.
|
||||
\end{rem}
|
||||
|
||||
\begin{defi}
|
||||
Let $U \subset \realn^n$ and $f: U \rightarrow \realn^m$. Define recursively for $k \ge 1$:
|
||||
\begin{enumerate}[(i)]
|
||||
\item $f$ is said to be $(k+1)$ times (totally) differentiable on $U$, if the term $D^k(\cdot)(u_1, \cdots, u_k)$ is differentiable on $U \forall u_1, \cdots, u_k \in \realn^n$.
|
||||
\item The $(k+1)$-th derivative of $f$ in $x \in U$ is the multi-linear mapping
|
||||
\begin{align*}
|
||||
D^{k+1} f(x): (\realn^n)^{k+1} &\longrightarrow \realn^m \\
|
||||
(u_1, \cdots, u_k, v) &\longmapsto D(D^kf(\cdot)(u_1, \cdots, u_k))(x) v
|
||||
\end{align*}
|
||||
\end{enumerate}
|
||||
\end{defi}
|
||||
|
||||
\begin{rem}
|
||||
Let $f_1, \cdots, f_m: U \rightarrow \realn$, then the function
|
||||
\begin{align*}
|
||||
f: U &\longrightarrow \realn^m \\
|
||||
x &\longmapsto (f_1(x), \cdots, f_m(x))
|
||||
\end{align*}
|
||||
is $k$-times totally differentiable if and only if the $f_1, \cdots, f_n$ are totally differentiable.
|
||||
\[
|
||||
(D^kf(x)(u_1, \cdots, U_k))_j = D^k f_j(x)(u_1, \cdots, u_k)
|
||||
\]
|
||||
\end{rem}
|
||||
|
||||
\begin{rem}
|
||||
$D^k f(x)$ really is multi-linear (linear in every point) $\forall k \in \natn$.
|
||||
Other multi-linear mappings are
|
||||
\begin{enumerate}[(i)]
|
||||
\item The scalar product on $\realn^n$
|
||||
\[
|
||||
\realn^n \times \realn^n \longrightarrow \realn
|
||||
\]
|
||||
\item The determinant
|
||||
\[
|
||||
\realn^{n \times n} \longrightarrow \realn
|
||||
\]
|
||||
\end{enumerate}
|
||||
\end{rem}
|
||||
|
||||
\begin{rem}
|
||||
A matrix $A \in \realn^{m \times n}$ is uniquely determined by its effect on the canonical basis $e_1, \cdots, e_n$.
|
||||
This means if $v \in \realn$, then $\exists \alpha_1, \cdots, a_n \in \realn$ that are uniquely determined such that
|
||||
\[
|
||||
v = \alpha_1, e_1 + \cdots + \alpha_n e_n
|
||||
\]
|
||||
Then
|
||||
\[
|
||||
Av = \alpha_1 Ae_1 + \cdots + \alpha_n Ae_n
|
||||
\]
|
||||
$Ae_i$ is the $i$-th column of $A$.
|
||||
An analogous statement for multi-linear mappings would be, that
|
||||
\[
|
||||
A: \realn^{n \times k} \longrightarrow \realn^m
|
||||
\]
|
||||
is uniquely determined if $A(e_{i_1}, e_{i_2}, \cdots, e_{i_k})$ known $\forall i_1, \cdots, i_k \in \set{1, \cdots, n}$.
|
||||
\end{rem}
|
||||
|
||||
\begin{thm}
|
||||
Let $U \subset \realn^n$ be open, $f: U \rightarrow \realn^m$ $k$-times differentiable in $x$ and
|
||||
let $e_1, \cdots, e_n$ be the canonical basis of $\realn^n$. Then
|
||||
\[
|
||||
D^k f(x) (e_{i_1}, \cdots, e_{i_k}) = \partial_{i_k} \cdots \partial_{i_1} f(x)
|
||||
\]
|
||||
$\forall i_i, \cdots, i_k \in \set{1, \cdots, n}$.
|
||||
\end{thm}
|
||||
\begin{proof}
|
||||
For $k = 1$ this is already proven. So we can use proof by induction;
|
||||
assume the statement holds for a $k$, i.e. $\forall i_1, \cdots, i_k \in \set{1, \cdots, k}$
|
||||
\[
|
||||
D^k f(x) (e_{i_1}, \cdots, e_{i_k}) = \partial_{i_k} \cdots \partial_{i_1} f(x)
|
||||
\]
|
||||
Then for $i_1, \cdots, i_k, i_{k+1} \in \set{1, \cdots, n}$
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
D^{k+1} f(x) (e_{i_1, \cdots, e_{i_k}}) &= D(D^k f(\cdots)(e_{i_1}, \cdots, e_{i_k}))(x) \cdot e_{i_{k+1}} \\
|
||||
&= D(\partial_{i_k}, \cdots \partial_{i_1} f(\cdot))(x) e_{i_{k+1}} \\
|
||||
&= \partial_{i_{k+1}}\partial_{i_k} \cdots \partial_{i_1} f(x)
|
||||
\end{split}
|
||||
\end{equation}
|
||||
The order in which partial derivatives are applied is important!
|
||||
\end{proof}
|
||||
|
||||
\begin{eg}
|
||||
Consider
|
||||
\begin{align*}
|
||||
f: \realn^2 &\longrightarrow \realn \\
|
||||
(x_1, x_2) &\longmapsto x_1^2 \cos(x_2)
|
||||
\end{align*}
|
||||
Then we can calculate
|
||||
\begin{align*}
|
||||
D^2 f(x) (u, v) ~~ u = u_1e_1 + u_2e_2, v = v_1e_1 + v_2e_2
|
||||
\end{align*}
|
||||
As follows
|
||||
\begin{align*}
|
||||
D^2f(x)(u, v) &= u_1v_1D^2f(x)(e_1, e_1) + u_1v_2D^2f(x)(e_1, e_2) \\
|
||||
& ~~+ u_2v_1D^2f(x)(e^2, e^1) + u_2v_2D^2f(x)(e^2, e^2) \\
|
||||
&= u_1v_1 \cdot 2 \cdot \cos(x_2) - 2x_1\sin(x_2)u_1v_2 \\
|
||||
& ~~-2x_1\sin(x_2)v_1u_2 - x_1^2 \cos(x_2)u_2v_2
|
||||
\end{align*}
|
||||
\end{eg}
|
||||
|
||||
\begin{thm}
|
||||
Let $U \subset \realn^n$ be open, and $f: U \rightarrow \realn^m$ $k$-times continuously differentiable.
|
||||
Then $f$ is $k$-times totally differentiable.
|
||||
\end{thm}
|
||||
\begin{proof}
|
||||
This is already proveb for $k = 1$. So we can use induction over $k$;
|
||||
assume the statement is correct for $k \in \natn$. Let $u_1, \cdots, u_k \in \realn^n$, then $D^kf(\cdot)(u_1, \cdots, u_k)$
|
||||
is a linear combination of the partial derivative of $f$ of order $k$, and is thus continuously differentiable once more.
|
||||
Therefore $D^2f(\cdot)(u_1, \cdots, u_k)$ is totally differentiable, and thus $f$ is $(k+1)$-times totally differentiable.
|
||||
\end{proof}
|
||||
|
||||
\begin{thm}[Theorem of Schwarz]
|
||||
Let $U \subset \realn^n$ be open, and also $f \in C^2(U, \realn^m)$. Then
|
||||
\[
|
||||
\forall x \in U ~\forall u, v \in \realn^n: ~~D^2f(x)(u, v) = D^2f(x)(v, u)
|
||||
\]
|
||||
and
|
||||
\[
|
||||
\forall x \in U ~\forall i_1, i_2 \in \set{1, \cdots, n}: ~~\partial_{i_1}\partial_{i_2} f(x) = \partial_{i_2}partial_{i_1} f(x)
|
||||
\]
|
||||
\end{thm}
|
||||
\begin{proof}
|
||||
Let $m = 1$, $x \in U$, $\epsilon > 0$ such that $\oball(x) \subset U$.
|
||||
If $u = 0$ or $v = 0$ then both sides of the equation vanish, so let $u, v \in \realn^n \setminus \set{0}$ and
|
||||
\begin{equation}
|
||||
0 < t < c := \frac{\epsilon}{2 \cdot \max\set{\norm{u}, \norm{v}}}
|
||||
\end{equation}
|
||||
Define the helper function
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
g_1: [0, t] &\longrightarrow \realn \\
|
||||
s &\longmapsto f(x + tv + su) - f(x + su)
|
||||
\end{split}
|
||||
\end{equation}
|
||||
And apply the one dimensional intermediate value theorem. $\exists \xi \in (0, t)$ such that
|
||||
\begin{equation}
|
||||
g_1(t) - g_1(0) = g_1'(\xi) \cdot t = (Df(x + tv + \xi u) u - Df(x + \xi u)u) \cdot t
|
||||
\end{equation}
|
||||
Analogously, define and apply the intermediate value theorem to
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
g_2: [0, t] &\longrightarrow \realn \\
|
||||
s &\longmapsto Df(x + sv + \xi u) u
|
||||
\end{split}
|
||||
\end{equation}
|
||||
and get $\eta \in (0, t)$
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
g_2(t) - g_2(0) = g_2'(\eta) t &= D(Df(\cdot)u)(x + \eta v +\xi u)uvt \\
|
||||
&= D^2 f(x + \eta v + \xi u)(u, v)t
|
||||
\end{split}
|
||||
\end{equation}
|
||||
using these results, we can get $\xi, \eta \in (0, t)$ for all $t \in (0, c)$ such that
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
f(x + &tv + tu) - f(x + tv) - f(x + tu) + f(x) \\
|
||||
&= g_1(t) - g_1(0) = (Df(x + tv + \xi u)u - Df(x + \xi u)u) t \\
|
||||
&= (g_2(t) - g_2(0))t = D^2 f(x + \eta v + \xi u)(u, v) t^2
|
||||
\end{split}
|
||||
\end{equation}
|
||||
So we can write
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
\limes{t}{0} &\frac{f(x + tv + tu) - f(x + tv) - f(x + tu) + f(x)}{t^2} \\
|
||||
&= \limes{t}{0} D^2 f\underbrace{(x + \eta v + \xi u)}_{\conv{} x}(u, v) \\
|
||||
&= D^2 f(x)(u, v)
|
||||
\end{split}
|
||||
\end{equation}
|
||||
The left side is symmetric in terms of swapping $u$ and $v$, so the right side must be as well.
|
||||
\end{proof}
|
||||
|
||||
Note, that
|
||||
\[
|
||||
D^2f(x)(e_{i_1}, e_{i_2}) = \partial_{i_2} \partial_{i_1} f(x) = \partial_{i_1} \partial_{i_2} f(x) = D^2f(x)(e_{i_2}, e_{i_1})
|
||||
\]
|
||||
|
||||
\begin{rem}
|
||||
Via induction:
|
||||
\begin{enumerate}[(i)]
|
||||
\item $D^kf(x)(u_1, \cdots, u_k)$ is independent from the order of the $u_i$, if $D^kf$ is continuous.
|
||||
\item The limit of the second derivaative is useful in the numerical discussion of differential equations.
|
||||
\end{enumerate}
|
||||
\end{rem}
|
||||
|
||||
\begin{thm}[Taylor's Theorem]
|
||||
Let $U \subset \realn^n$ be open, $f: U \rightarrow \realn$ be $(l + 1)$-times differentiable and $h \in \realn^n$ such that
|
||||
$x + th \in U$ $\forall t \in [0, 1]$. Then $\exists \theta \in [0, 1]$ such that
|
||||
\[
|
||||
f(x + h) = \series[l]{k} \frac{1}{k!} D^kf(x)(h, \cdots, h) + \frac{1}{(l+1)!}D^{l+1}f(x + \theta h)(h, \cdots, h)
|
||||
\]
|
||||
\end{thm}
|
||||
\begin{hproof}
|
||||
Apply the one dimensional Taylor theorem with Lagrange error bound onto a helper function
|
||||
\begin{equation}
|
||||
\begin{split}
|
||||
g: [0, 1] &\longrightarrow \realn \\
|
||||
t &\longmapsto f(x + th)
|
||||
\end{split}
|
||||
\end{equation}
|
||||
\end{hproof}
|
||||
|
||||
\begin{rem}
|
||||
\begin{enumerate}[(i)]
|
||||
\item Consider $h = \sum_{i=1}^n h_ie_i$. Then
|
||||
\[
|
||||
D^2f(x)(h, h) = \sum_{i, j = 1}^n h_i h_j D^2f(x)(e_i, e_j) = \sum_{i, j = 1}^n \partial_i \partial_j f(x) h_i h_j
|
||||
\]
|
||||
|
||||
\item Analogously to one dimension, we can formulate criteria for local extrema:
|
||||
\[
|
||||
Df(x) = 0, \cdots, D^{l-1}f(x) = 0 \text{ and } D^lf(x) \ne 0
|
||||
\]
|
||||
\begin{itemize}
|
||||
\item $x$ is a local minimum if $l$ is even and $D^lf(x)$ is positive.
|
||||
\item $x$ is a local maximum if $l$ is even and $D^lf(x)$ is negative.
|
||||
\item $x$ is no local extremum of $l$ is odd or if $D^lf(x)$ is undefined.
|
||||
\end{itemize}
|
||||
Definedness is complicated to determine for $l > 2$.
|
||||
\end{enumerate}
|
||||
\end{rem}
|
||||
\end{document}
|
|
@ -292,7 +292,7 @@ They denote the connecting line between $x$ and $y$.
|
|||
\end{center}
|
||||
|
||||
\begin{thm}[Intermediate value theorem for $\realn$-valued functions]
|
||||
Let $U \subset \realn^n$ be oppen, $x, y \in U$ and $\cline \subset U$.
|
||||
Let $U \subset \realn^n$ be open, $x, y \in U$ and $\cline \subset U$.
|
||||
Now let $f: U \rightarrow \realn$ differentiable on $\oline$ and continuous in $x, y$. Then
|
||||
\[
|
||||
\exists \xi \in \cline: ~~f(y) - f(x) = Df(\xi) (y-x)
|
||||
|
|
BIN
script.pdf
BIN
script.pdf
Binary file not shown.
|
@ -8,6 +8,7 @@
|
|||
\usepackage{multicol}
|
||||
\usepackage{tikz, pgfplots}
|
||||
\usepackage{kbordermatrix}
|
||||
\usepackage{fancyhdr}
|
||||
\usetikzlibrary{calc,trees,positioning,arrows,fit,shapes,angles}
|
||||
|
||||
\usepackage{color}
|
||||
|
@ -154,6 +155,8 @@
|
|||
|
||||
\tableofcontents
|
||||
|
||||
\pagestyle{headings}
|
||||
|
||||
\subfile{chapters/FaN.tex}
|
||||
\subfile{chapters/real_analysis_1.tex}
|
||||
\subfile{chapters/linear_algebra.tex}
|
||||
|
|
Loading…
Reference in a new issue