\documentclass[../../script.tex]{subfiles} %! TEX root = ../../script.tex \begin{document} \section{Partial and Total Differentiability} \begin{defi} Let $U \subset \realn^n$ be open, $x \in (x_1, \cdots, x_n) \in U$ and define the function $f: U \rightarrow \realn^m$. The mapping $f$ is said to be partially differentiable in $x$ in terms of $x_i$ if \[ t \longmapsto f(x_1, \cdots, x_{i-1}, t, x_{i+1}, \cdots, x_n) \] is differentiable in $x_i$, i.e. \[ \partial_i f(x) = \limes{h}{0} \frac{f(x_1, \cdots, x_{i-1}, x_i + h, x_{i+1}, \cdots, x_n) - f(x_1, \cdots, x_n)}{h} \] exists. $\partial_i f(x)$ is said to be the partial derivative of $f$ in $x$ in terms of $x_i$. Another notation is \[ \pdv{f}{x_i} \] This mapping is said to be partially differentiable in $x$ if it is partially differentiable in terms of $x_i ~~\forall i \in \set{1, \cdots, n}$. \end{defi} \begin{eg} Consider \begin{align*} f: \realn^2 &\longrightarrow \realn \\ (x, y) &\longmapsto \begin{cases} 1, & x = 0 \vee y = 0 \\ 0, & \text{else} \end{cases} \end{align*} $f$ is partially differentiable in $(0, 0)$, but not continuous. \end{eg} \begin{thm} Let $U \subset \realn$ be open, $x \in U$ and $f: U \rightarrow \field$. \begin{gather*} f \text{ is differentiable in } x \\ \iff \\ \exists a \in \field, \phi: U \rightarrow \field: ~~f(y) = f(x) + a(y - x) + \phi(y) ~~\forall y \in U \end{gather*} and \[ \limes{y}{x} \frac{\phi(x)}{\abs{y - x}} = 0 \] \end{thm} \begin{proof} We will first prove the "$\impliedby$" direction. So let $a, \phi$ be as demanded in the theorem. Then \begin{equation} \frac{f(y) - f(x)}{y - x} = a + \frac{\phi(y)}{\abs{y - x}} \cdot \frac{\abs{y - x}}{y - x} \conv{y \rightarrow x} a \end{equation} which means $f$ is differentiable in $x$ and $f'(x) = a$. Now let $f$ be differentiable, and set \begin{equation} \phi(y) = f(y) - f(x) - f'(x)(y - x) \end{equation} Which is equivalent to the equation in the theorem, with $a = f'(x)$. Then \begin{equation} \limes{y}{x} \frac{\phi(x)}{\abs{y - x}} = \left( \frac{f(y) - f(x)}{y - x} - f'(x) \right) \cdot \frac{y - x}{\abs{y - x}} = 0 \end{equation} \end{proof} \begin{defi} Let $U \subset \realn^n$, $x \in U$ and $f: U \rightarrow \realn^m$. $f$ is said to be (totally) differentiable in $x$ if a matrix $A \in \realn^{m \times n}$ and a mapping $\phi: U \rightarrow \realn^m$ exist, such that \[ f(y) = f(x) + A(y - x) + \phi(x) ~~\forall y \in U \] and \[ \limes{y}{x} \frac{\phi(y)}{\norm{y - x}} = 0 \] $f$ is said to be (totally) differentiable if it is (totally) differentiable in every point $x \in U$. \end{defi} \begin{thm} Let $U \subset \realn^n$ be open, $x \in U$ and $f: U \rightarrow \realn^m$ with \[ f = (f_1, \cdots, f_m), ~~f_1, \cdots, f_m: U \longrightarrow \realn \] If $f$ is totally differentiable in $x$, then it is partially differentiable as well, and the matrix $A$ is given by \[ a_{ji} = \partial_i f_j(x) \] \end{thm} \begin{proof} Let $A, \phi$ be as demanded above. Let $e_1, \cdots, e_n$ be the canonical basis for $\realn^n$. We insert $y = x + he_i$ and receive \begin{equation} f(x + he_i) = f(x) + h \cdot Ae_i + \phi(x + he_i) \end{equation} By rearranging this yields \begin{equation} \frac{f(x + he_i) - f(x)}{h} = Ae_i + \frac{\phi(x + he_i)}{|h|} \cdot \frac{|h|}{h} \conv{h \rightarrow 0} Ae_i \end{equation} Thus, $f$ is partially differentiable in $x$ in terms of $x_i$ with $\partial_i f(x) = Ae_i$. \end{proof} \begin{defi} The matrix $(\partial_i f_j(x))_{ij}$ is called the Jacobian matrix of $f$ in $x$. We write $Df(x)$. If $f$ is totally differentiable, then $Df(x)$ is said to be the (total) derivative of $f$ in $x$. For $m = 1$ (so $f: \realn^n \rightarrow \realn$), the Jacobian matrix has one column, and we call it gradient \[ Df(x) =: \grad f(x) \] Note: I will adhere to the physical notation of the gradient, using the Nabla operator $\nabla$. \end{defi} \begin{eg} Let $A \in \realn^{m \times n}$ and define \begin{align*} f_A: \realn^n &\longrightarrow \realn^m \\ x &\longmapsto Ax \end{align*} Then we have \[ f_A(y) = Ay = Ax + A(y - x) = f_A(x) - f_A(y - x) \] Thus, $f_A$ is differentiable $(\phi = 0)$ and the derivative is \[ Df_A(x) = A ~~\forall x \in \realn^n \] For another example, let \begin{align*} f: (0, \infty) \times (0, 2\pi) &\longrightarrow \realn^2 \\ (r, \phi) &\longmapsto (r \cos \phi, r \sin \phi) \end{align*} Then $f$ is partially differentiable. \[ Df(r, \phi) = \begin{pmatrix} \cos\phi & -r\sin\phi \\ \sin\phi & r\cos\phi \end{pmatrix} \] So $f$ is also totally differentiable (We'll get back to this later). \end{eg} \begin{rem} \begin{enumerate}[(i)] \item Let $U \subset \realn^n$ be open and $f: U \rightarrow \realn^m$ differentiable, then the derivative $Df$ is a function $U \rightarrow \realn^{m \times n}$ \item Total differentiability is also called local linear approximation. Linearity is the property \[ A(x + \lambda y) = Ax + \lambda Ay ~~\forall x, y \in \realn^n ~\lambda \in \realn \] \item For arbitrary vector spaces $V, W$, a mapping $V \rightarrow W$ is said to be linear if \[ A(x + \lambda y) = Ax + \lambda Ay ~~\forall x, y \in \realn^n ~\lambda \in \realn \] So we can analogously define differentiability for mappings $f: V \rightarrow W$ between arbitrary normed vector spaces. \item $f$ is totally differentiable in $x$ if and only if the Jacobian matrix exists and \[ \limes{x}{y} \frac{f(y) - f(x) - Df(x)(y-x)}{\norm{y-x}} = 0 \] \item Let $f = (f_1, \cdots, f_m)$ with $f_1, \cdots, f_m: U \rightarrow \realn$. \[ f \text{ totally differentiable} \iff f_i \text{ totally differentiable } ~\forall i \in \set{1, \cdots, n} \] The Jacobian matrix $Df_i(x)$ is the $i$-th row of $Df(x)$. \item Total differentiability implies continuity. \item Partial and total differentiability are local properties. \item The mapping $h \mapsto Df(x) \cdot h$ is linear. \item The derivative $x \mapsto Df(x)$ is not linear in general. \end{enumerate} \end{rem} \begin{thm}[Chain rule] Let $U \subset \realn^n$ be open, $V \subset \realn^m$ open, $x \in U$, $g: U \rightarrow V$ differentiable in $x$, and $f: V \rightarrow \realn^k$ differentiable in $g(x)$. Then $f \circ g$ is differentiable and \[ D(f \circ g) = Df(g(x)) \cdot Dg(x) \] \end{thm} \begin{proof} Differentiability of $g$ in $x$ means \begin{equation} \exists \phi_g: U \longrightarrow \realn^m: ~~g(y) - g(x) = D_g(x)(y-x) + \phi_g(y) \end{equation} Differentiability of $f$ in $g(x)$ means \begin{equation} \exists \phi_f: V \rightarrow \realn^k:: ~\limes{z}{g(x)} \phi_f(z) \inv{\norm{z - g(x)}} = 0 \end{equation} and \begin{equation} f(z) = f(g(x)) + D_f(g(x))(z - g(x)) + \phi_f(z) \end{equation} Now set $z = g(y)$, then \begin{equation} \begin{split} \underbrace{f(g(y))}_{(f \circ g)(y)} = \underbrace{f(g(x))}_{(f \circ g)(x)} &+ D_f(g(x)) \cdot D_g(x)(y-x) \\ &+ (D_f(g(x)) \phi_g(y) + \phi_f(g(y))) \end{split} \end{equation} And we finally need to show \begin{equation} \frac{D_f(g(x)) \phi_g(y) + \phi_f(g(y))}{\norm{y - x}} \conv{y \rightarrow x} 0 \end{equation} We know that \begin{equation} Df(g(x)) \frac{\phi_g(y)}{\norm{y - x}} \conv{} 0 \end{equation} because \begin{equation} z \longmapsto Df(g(x)) z \text{ linear and thus continuous} \end{equation} We define a new mapping \begin{equation} \begin{split} \psi: U &\longrightarrow \realn \\ z &\longmapsto \begin{cases} \phi_f(z) - \inv{\norm{z - g(x)}}, & z \ne g(x) \\ 0, & z = g(x) \end{cases} \end{split} \end{equation} $\psi$ is continuous in $g(x)$. Then $\forall y \in U$ we have \begin{equation} \frac{\phi_f(g(y))}{\norm{y - x}} = \underbrace{\psi(g(y))}_{\conv{y \rightarrow x} 0} \cdot \frac{\norm{g(y) - g(x)}}{\norm{y - x}} \end{equation} and \begin{equation} \begin{split} \frac{\norm{g(y) - g(x)}}{\norm{y - x}} &= \norm{Dg(x) \frac{y - x}{\norm{y - x}} + \frac{\phi_g(y)}{\norm{y - x}}} \\ &\le \underbrace{\norm{Dg(x) \frac{y - x}{\norm{y - x}}}}_{\le \norm{Dg(x)}} + \underbrace{\norm{\frac{\phi_g(y)}{\norm{y - x}}}}_{\conv{y \rightarrow x} 0} \end{split} \end{equation} thus $\psi$ is bounded. \begin{equation} \implies \psi(g(y)) \cdot \frac{\norm{g(y) - g(x)}}{\norm{y - x}} \conv{} 0 \end{equation} \end{proof} \begin{thm} Let $U \subset \realn^n$ and $f: U \longrightarrow \realn^m$. If $\forall x \in U$ the partial derivatives $\partial_i f(x)$ exist and are continuous $\forall i \in \set{1, \cdots, n}$. then $f$ is totally differentiable. \end{thm} \begin{proof} Without proof. \end{proof} \begin{defi} Let $U \subset \realn^n$ be open. $f: U \rightarrow \realn^m$ is said to be continuously differentiable if all partial derivatives exist and are continuous. The vector space of all such functions is denoted as $C^1(U, \realn^m)$, or in the special case $m=1$ as $C^1(U)$. \end{defi} \begin{eg} \begin{enumerate} \item Coming back to a previous example, we consider \[ Df(r, \phi) = \begin{pmatrix} \cos \phi & -r \sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \] Thus, $f$ is continuously differentiable, and therefore totally differentiable. \item Let $N \in \natn$ and $c_{\eta} \in \field$ for every multiindex $\eta \in \natn_0^n$ with $\abs{\eta} \le N$. Then the polynomial \begin{align*} P: \realn^n &\longrightarrow \field \\ x &\longmapsto \sum_{\substack{\eta \\ \abs{\eta} \le N}} c_{\eta} x^{\eta} \end{align*} is continuously differentiable, and therefore totally differentiable. \begin{align*} \partial_i x^{\eta} &= \partial_i \left( x_1^{\eta_1}, x_2^{\eta_2}, \cdots, x_n^{\eta_n} \right) \\ &= \eta_i x_1^{\eta_1} \cdots x_{i-1}^{\eta_{i-1}} x_i^{\eta_{i-1}} x_{i+1}^{\eta_{i+1}} \cdots x_n^{\eta_n} \end{align*} This is another polynomial, and therefore continuous. \end{enumerate} \end{eg} We introduce the following new notation, for $x, y \in \realn^n$: \begin{align*} \oline &:= \set[t \in (0, 1)]{x + t(y - x)} \\ \cline &:= \set[{t \in [0, 1]}]{x + t(y - x)} \end{align*} They denote the connecting line between $x$ and $y$. \begin{center} \begin{tikzpicture} \draw (0, 0) circle [radius=2pt] node[above left] {$x$}; \draw (3, 1.5) circle [radius=2pt] node[above right] {$y$}; \draw (0, 0) -- node[below right] {$\oline$} (3, 1.5); \end{tikzpicture} \end{center} \begin{thm}[Intermediate value theorem for $\realn$-valued functions] Let $U \subset \realn^n$ be open, $x, y \in U$ and $\cline \subset U$. Now let $f: U \rightarrow \realn$ differentiable on $\oline$ and continuous in $x, y$. Then \[ \exists \xi \in \cline: ~~f(y) - f(x) = Df(\xi) (y-x) \] \end{thm} \begin{proof} Consider \begin{equation} \begin{split} g: [0, 1] &\longrightarrow \realn \\ t &\longmapsto f(x + t(y - x)) \end{split} \end{equation} Apply the one dimensional intermediate value theorem. Due to the chain rule, $g$ fulfils the prerequisites. $\exists \theta \in (0, 1)$ such that \begin{equation} f(y) - f(x) = g(1) - g(0) = g(\theta) = Df(x + \theta(y - x))(y - x) \end{equation} For $\xi = x + \theta(y - x)$ follows the initial statement. \end{proof} \begin{thm}[Intermediate value theorem] Let $U \subset \realn^n$ be open, $\cline \subset U$ and $f: U \rightarrow \realn^m$ differentiable on $\oline$ and continuous in $x, y$. Then \[ \exists \xi \in \oline: ~~\norm{f(y) - f(x)} \le \norm{Df(\xi)(y - x)} \] \end{thm} \begin{proof} For $a \in \realn^m$, consider the (real) helper function \begin{equation} a^Tf(x) = \innerproduct{a}{f(x)} \end{equation} According to the previous theorem \begin{equation} \exists \xi \in \oball: ~~a^T f(y) - a^T f(x) = a^T D f(\xi)(y - x) \end{equation} In this implication the chain rule has been applied. We can rewrite this using the scalar product \begin{equation} \begin{split} \norm{f(y) - f(x)}^2 &= \abs{\innerproduct{f(y) - f(x)}{Df(\xi)(y-x)}} \\ &\le \norm{f(y) - f(x)}\norm{Df(\xi)(y - x)} \end{split} \end{equation} \end{proof} \begin{cor} Let $U \subset \realn^n$ be open and $f: U \rightarrow \realn^m$ a differentiable function. \[ Df = 0 \text{ on } U \implies \exists V \subset U: f \text{ constant on } V \] \end{cor} \begin{proof} Let $x \in U$, choose $\epsilon > 0$ such that $\oball(x) \subset U$. Then \begin{equation} \forall y \in \oball(x) ~\exists \xi \in \oline: ~~\norm{f(y) - f(x)} \le \norm{Df(\xi)(y - x)} = 0 \end{equation} This implies \begin{equation} \norm{f(y) - f(x)} = 0 \implies f(y) = f(x) ~~\forall y \in \oball(x) \end{equation} \end{proof} \begin{rem} Functions with vanishing derivatives must be constant. Consider \begin{align*} f: (-2, -1) \cup (1, 2) &\longrightarrow \\ x &\longmapsto \begin{cases} -1, & x < 0 \\ 1, & x > 0 \end{cases} \end{align*} Local constancy implies constancy on connected sets. \end{rem} \end{document}