refactoring
This commit is contained in:
parent
918f51dc14
commit
839f5253f5
303
src/Plot3D.cpp
303
src/Plot3D.cpp
|
@ -13,6 +13,29 @@ inline float Map(const glm::vec2& from, const glm::vec2& to, float val)
|
|||
return (val - from.x) * (to.y - to.x) / (from.y - from.x) + to.x;
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates the list of vertices for this plot.
|
||||
*
|
||||
* @param[in] domainAndRange The domain in which to plot the function and the maximum allowed range (values outside are clipped)
|
||||
* @param[in] scale Scale of the plot
|
||||
* @param[in] resolution Step size in which to scan over the function
|
||||
* @param[in] func Function to plot
|
||||
* @param[out] functionValues Values of the function at each point (if any)
|
||||
* @param[out] vertices Vertices of the function
|
||||
*
|
||||
* @return Number of vertices per slice in the plot
|
||||
*/
|
||||
unsigned int CreateVertexList(const BBox& domainAndRange, float scale, float resolution, PlottableFunction func, std::vector<std::optional<unsigned int>>& functionValues, std::vector<float>& vertices);
|
||||
|
||||
/**
|
||||
* Triangulate the set of vertices to create the plot
|
||||
*
|
||||
* @param[in] functionValues Values of the function at each point (if any)
|
||||
* @param[in] sliceLength Number of vertices per slice in the plot
|
||||
* @param[out] indices The indices for the mesh
|
||||
*/
|
||||
void Triangulate(const std::vector<std::optional<unsigned int>>& functionValues, unsigned int sliceLength, std::vector<unsigned int>& indices);
|
||||
|
||||
Plot3D::Plot3D(const BBox& domainAndRange, float scale, float resolution, PlottableFunction func)
|
||||
{
|
||||
// magic epsilon
|
||||
|
@ -22,137 +45,9 @@ Plot3D::Plot3D(const BBox& domainAndRange, float scale, float resolution, Plotta
|
|||
std::vector<unsigned int> indices;
|
||||
|
||||
std::vector<std::optional<unsigned int>> functionValues;
|
||||
unsigned int sliceLength = 0;
|
||||
unsigned int slices = 0;
|
||||
|
||||
// Intervals of the domain and (desired) range
|
||||
glm::vec2 xInterval(domainAndRange.x, domainAndRange.w);
|
||||
glm::vec2 yInterval(domainAndRange.y, domainAndRange.h);
|
||||
glm::vec2 zInterval(domainAndRange.z, domainAndRange.d);
|
||||
|
||||
// Bounding box of the graph in 3D space (centered at (0, 0, 0)
|
||||
glm::vec2 xBounds = glm::vec2(-0.5f, 0.5f) * ((xInterval.y - xInterval.x) * scale);
|
||||
glm::vec2 yBounds = glm::vec2(-0.5f, 0.5f) * ((yInterval.y - yInterval.x) * scale);
|
||||
|
||||
// Calculate function values
|
||||
unsigned int index = 0;
|
||||
float minFunctionValue = std::numeric_limits<float>::max();
|
||||
float maxFunctionValue = std::numeric_limits<float>::min();
|
||||
|
||||
for (float y = yInterval.x; y <= yInterval.y; y += resolution)
|
||||
{
|
||||
sliceLength = 0;
|
||||
|
||||
for (float x = xInterval.x; x <= xInterval.y; x += resolution)
|
||||
{
|
||||
if (std::abs(x) < 0.05f && std::abs(y) < 0.05f)
|
||||
volatile int sjdks = 3;
|
||||
|
||||
float val = func(x, y);
|
||||
std::optional<unsigned int> pointIndex;
|
||||
|
||||
// If function value is in bbox
|
||||
if (val >= zInterval.x && val <= zInterval.y)
|
||||
{
|
||||
vertices.push_back(Map(xInterval, xBounds, x));
|
||||
vertices.push_back(val); // Will be corrected later!
|
||||
vertices.push_back(Map(yInterval, yBounds, y));
|
||||
vertices.push_back(0.0f);
|
||||
|
||||
minFunctionValue = std::min(minFunctionValue, val);
|
||||
maxFunctionValue = std::max(maxFunctionValue, val);
|
||||
|
||||
pointIndex = index;
|
||||
index++;
|
||||
}
|
||||
|
||||
functionValues.push_back(pointIndex);
|
||||
sliceLength++;
|
||||
}
|
||||
|
||||
slices++;
|
||||
}
|
||||
|
||||
zInterval = glm::vec2(minFunctionValue, maxFunctionValue);
|
||||
glm::vec2 zBounds = glm::vec2(-0.5f, 0.5f) * ((zInterval.y - zInterval.x) * scale);
|
||||
|
||||
for (unsigned int i = 3; i < vertices.size(); i += 4)
|
||||
{
|
||||
vertices[i] = Map(zInterval, glm::vec2(0.0f, 1.0f), vertices[i - 2]);
|
||||
vertices[i - 2] = Map(zInterval, zBounds, vertices[i - 2]);
|
||||
}
|
||||
|
||||
/*
|
||||
* This is what the desired meshing should look like
|
||||
* +y
|
||||
* CurrentSlice o---o---o---o---o---o---o---o x o ^
|
||||
* | / \ | / | / | / \ | \ / | |
|
||||
* PreviousSlice o x o---o---o x x o---o---o +---> +x
|
||||
*
|
||||
*
|
||||
* Possible fragment constellations
|
||||
* +---------+---------+---------+---------+---------+---------+
|
||||
* | 2---1 | o---o | o---o | x o | o---o | o x |
|
||||
* | | | | | / | | | / | / | | \ | | | \ |
|
||||
* | 3---4 | o---o | o x | o---o | x o | o---o |
|
||||
* +---------+---------+---------+---------+---------+---------+
|
||||
*
|
||||
* 123, 134, 124, 234
|
||||
*
|
||||
* o = Function value inside bbox
|
||||
* x = Function value outside bbox
|
||||
*
|
||||
* By default OpenGL treats triangles defined in couter-clockwise order as "front facing". So the algorithm
|
||||
* should construct the triangles in that way (even if we're not culling faces, just to not have any funny bugs in the future)
|
||||
*
|
||||
* The algorithm works as follows:
|
||||
* 1. Pick a patch of 4 points from the value list, and label them like in the diagram above
|
||||
* 2. Attempt to connect the 123 constellation.
|
||||
* 3. Attempt to connect the next constellation, until none are left
|
||||
* -> Success: Go to 1
|
||||
* -> Failure: Go to 3
|
||||
*/
|
||||
|
||||
struct Constellation {
|
||||
unsigned int i, j, k;
|
||||
};
|
||||
|
||||
std::array<Constellation, 4> constellations = {
|
||||
Constellation {0, 1, 2},
|
||||
Constellation {0, 2, 3},
|
||||
Constellation {0, 1, 3},
|
||||
Constellation {1, 2, 3}
|
||||
};
|
||||
std::array<std::optional<unsigned int>*, 4> points;
|
||||
|
||||
for (unsigned int y = 1; y < slices; y++)
|
||||
{
|
||||
for (unsigned int x = 1; x < sliceLength; x++)
|
||||
{
|
||||
points = {
|
||||
&functionValues[y * sliceLength + x],
|
||||
&functionValues[y * sliceLength + (x - 1)],
|
||||
&functionValues[(y - 1) * sliceLength + (x - 1)],
|
||||
&functionValues[(y - 1) * sliceLength + x],
|
||||
};
|
||||
|
||||
int matches = 0;
|
||||
for (Constellation& constellation : constellations)
|
||||
{
|
||||
// This constellation doesnt match
|
||||
if (!(points[constellation.i]->has_value() && points[constellation.j]->has_value() && points[constellation.k]->has_value()))
|
||||
continue;
|
||||
|
||||
indices.push_back(points[constellation.i]->value());
|
||||
indices.push_back(points[constellation.j]->value());
|
||||
indices.push_back(points[constellation.k]->value());
|
||||
|
||||
matches++;
|
||||
if (matches == 2)
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
unsigned int sliceLength = CreateVertexList(domainAndRange, scale, resolution, func, functionValues, vertices);
|
||||
Triangulate(functionValues, sliceLength, indices);
|
||||
|
||||
vao = VAOFactory::Produce(vertices, indices,
|
||||
{
|
||||
|
@ -207,3 +102,151 @@ void Plot3D::PreRender(const CameraBase& camera) const
|
|||
shader->SetUniform("view", camera.GetView());
|
||||
shader->SetUniform("projection", camera.GetProjection());
|
||||
}
|
||||
|
||||
unsigned int CreateVertexList(const BBox& domainAndRange, float scale, float resolution, PlottableFunction func, std::vector<std::optional<unsigned int>>& functionValues, std::vector<float>& vertices)
|
||||
{
|
||||
unsigned int sliceLength = 0;
|
||||
|
||||
// Intervals of the domain and (desired) range
|
||||
glm::vec2 xInterval(domainAndRange.x, domainAndRange.w);
|
||||
glm::vec2 yInterval(domainAndRange.y, domainAndRange.h);
|
||||
glm::vec2 zInterval(domainAndRange.z, domainAndRange.d);
|
||||
|
||||
// Bounding box of the graph in 3D space (centered at (0, 0, 0)
|
||||
glm::vec2 xBounds = glm::vec2(-0.5f, 0.5f) * ((xInterval.y - xInterval.x) * scale);
|
||||
glm::vec2 yBounds = glm::vec2(-0.5f, 0.5f) * ((yInterval.y - yInterval.x) * scale);
|
||||
|
||||
// Calculate function values
|
||||
unsigned int index = 0;
|
||||
float minFunctionValue = std::numeric_limits<float>::max();
|
||||
float maxFunctionValue = std::numeric_limits<float>::min();
|
||||
|
||||
// Loop over the function and query function values at each point
|
||||
for (float y = yInterval.x; y <= yInterval.y; y += resolution)
|
||||
{
|
||||
sliceLength = 0; // Length of the current slice
|
||||
|
||||
for (float x = xInterval.x; x <= xInterval.y; x += resolution)
|
||||
{
|
||||
float val = func(x, y);
|
||||
std::optional<unsigned int> pointIndex;
|
||||
|
||||
// If function value is in bbox
|
||||
if (val >= zInterval.x && val <= zInterval.y)
|
||||
{
|
||||
// Set vertex x and y coordinate
|
||||
// z is still left in "function space"
|
||||
// The fourth value is later gonna be the "normalized z", it is set to 0.0 here to avoid resizing and inserting into the vector later
|
||||
vertices.push_back(Map(xInterval, xBounds, x));
|
||||
vertices.push_back(val); // Will be corrected later!
|
||||
vertices.push_back(Map(yInterval, yBounds, y));
|
||||
vertices.push_back(0.0f);
|
||||
|
||||
// Update the min/max vals
|
||||
minFunctionValue = std::min(minFunctionValue, val);
|
||||
maxFunctionValue = std::max(maxFunctionValue, val);
|
||||
|
||||
pointIndex = index;
|
||||
index++;
|
||||
}
|
||||
|
||||
// Insert the value of this function into the function value array
|
||||
functionValues.push_back(pointIndex);
|
||||
sliceLength++;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// Update z interval, so the function is scaled properly later
|
||||
zInterval = glm::vec2(minFunctionValue, maxFunctionValue);
|
||||
glm::vec2 zBounds = glm::vec2(-0.5f, 0.5f) * ((zInterval.y - zInterval.x) * scale);
|
||||
|
||||
for (unsigned int i = 3; i < vertices.size(); i += 4)
|
||||
{
|
||||
// Go over array and replace the normalized z with the actual value, and update z
|
||||
vertices[i] = Map(zInterval, glm::vec2(0.0f, 1.0f), vertices[i - 2]);
|
||||
vertices[i - 2] = Map(zInterval, zBounds, vertices[i - 2]);
|
||||
}
|
||||
|
||||
return sliceLength;
|
||||
}
|
||||
|
||||
void Triangulate(const std::vector<std::optional<unsigned int>>& functionValues, unsigned int sliceLength, std::vector<unsigned int>& indices)
|
||||
{
|
||||
|
||||
/*
|
||||
* This is what the desired meshing should look like
|
||||
* +y
|
||||
* CurrentSlice o---o---o---o---o---o---o---o x o ^
|
||||
* | / \ | / | / | / \ | \ / | |
|
||||
* PreviousSlice o x o---o---o x x o---o---o +---> +x
|
||||
*
|
||||
*
|
||||
* Possible fragment constellations
|
||||
* +---------+---------+---------+---------+---------+---------+
|
||||
* | 2---1 | o---o | o---o | x o | o---o | o x |
|
||||
* | | | | | / | | | / | / | | \ | | | \ |
|
||||
* | 3---4 | o---o | o x | o---o | x o | o---o |
|
||||
* +---------+---------+---------+---------+---------+---------+
|
||||
*
|
||||
* 123, 134, 124, 234
|
||||
*
|
||||
* o = Function value inside bbox
|
||||
* x = Function value outside bbox
|
||||
*
|
||||
* By default OpenGL treats triangles defined in couter-clockwise order as "front facing". So the algorithm
|
||||
* should construct the triangles in that way (even if we're not culling faces, just to not have any funny bugs in the future)
|
||||
*
|
||||
* The algorithm works as follows:
|
||||
* 1. Pick a patch of 4 points from the value list, and label them like in the diagram above
|
||||
* 2. Attempt to connect the 123 constellation.
|
||||
* 3. Attempt to connect the next constellation, until none are left
|
||||
* -> Success: Go to 1
|
||||
* -> Failure: Go to 3
|
||||
*/
|
||||
|
||||
struct Constellation {
|
||||
unsigned int i, j, k;
|
||||
};
|
||||
|
||||
// Possible constellations
|
||||
std::array<Constellation, 4> constellations = {
|
||||
Constellation {0, 1, 2},
|
||||
Constellation {0, 2, 3},
|
||||
Constellation {0, 1, 3},
|
||||
Constellation {1, 2, 3}
|
||||
};
|
||||
std::array<const std::optional<unsigned int>*, 4> points;
|
||||
|
||||
// Loop over vertices, starting at (1, 1)
|
||||
for (unsigned int y = 1; y * sliceLength < functionValues.size(); y++)
|
||||
{
|
||||
for (unsigned int x = 1; x < sliceLength; x++)
|
||||
{
|
||||
// "Overlay the square", basically assigns a number to the vertices according to the diagram above
|
||||
points = {
|
||||
&functionValues[y * sliceLength + x],
|
||||
&functionValues[y * sliceLength + (x - 1)],
|
||||
&functionValues[(y - 1) * sliceLength + (x - 1)],
|
||||
&functionValues[(y - 1) * sliceLength + x],
|
||||
};
|
||||
|
||||
// Try and match the first two constellations
|
||||
int matches = 0;
|
||||
for (Constellation& constellation : constellations)
|
||||
{
|
||||
// This constellation doesnt match
|
||||
if (!(points[constellation.i]->has_value() && points[constellation.j]->has_value() && points[constellation.k]->has_value()))
|
||||
continue;
|
||||
|
||||
indices.push_back(points[constellation.i]->value());
|
||||
indices.push_back(points[constellation.j]->value());
|
||||
indices.push_back(points[constellation.k]->value());
|
||||
|
||||
matches++;
|
||||
if (matches == 2)
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -16,7 +16,4 @@ public:
|
|||
|
||||
private:
|
||||
void PreRender(const CameraBase& camera) const override;
|
||||
|
||||
private:
|
||||
glm::vec2 range;
|
||||
};
|
Loading…
Reference in a new issue