From 839f5253f5c77a1c021e06441619b39a8f3e7537 Mon Sep 17 00:00:00 2001 From: Lauchmelder Date: Wed, 22 Dec 2021 16:26:42 +0100 Subject: [PATCH] refactoring --- src/Plot3D.cpp | 303 ++++++++++++++++++++++++++++--------------------- src/Plot3D.hpp | 3 - 2 files changed, 173 insertions(+), 133 deletions(-) diff --git a/src/Plot3D.cpp b/src/Plot3D.cpp index 71d3380..125a4eb 100644 --- a/src/Plot3D.cpp +++ b/src/Plot3D.cpp @@ -13,6 +13,29 @@ inline float Map(const glm::vec2& from, const glm::vec2& to, float val) return (val - from.x) * (to.y - to.x) / (from.y - from.x) + to.x; } +/** + * Creates the list of vertices for this plot. + * + * @param[in] domainAndRange The domain in which to plot the function and the maximum allowed range (values outside are clipped) + * @param[in] scale Scale of the plot + * @param[in] resolution Step size in which to scan over the function + * @param[in] func Function to plot + * @param[out] functionValues Values of the function at each point (if any) + * @param[out] vertices Vertices of the function + * + * @return Number of vertices per slice in the plot + */ +unsigned int CreateVertexList(const BBox& domainAndRange, float scale, float resolution, PlottableFunction func, std::vector>& functionValues, std::vector& vertices); + +/** + * Triangulate the set of vertices to create the plot + * + * @param[in] functionValues Values of the function at each point (if any) + * @param[in] sliceLength Number of vertices per slice in the plot + * @param[out] indices The indices for the mesh + */ +void Triangulate(const std::vector>& functionValues, unsigned int sliceLength, std::vector& indices); + Plot3D::Plot3D(const BBox& domainAndRange, float scale, float resolution, PlottableFunction func) { // magic epsilon @@ -22,137 +45,9 @@ Plot3D::Plot3D(const BBox& domainAndRange, float scale, float resolution, Plotta std::vector indices; std::vector> functionValues; - unsigned int sliceLength = 0; - unsigned int slices = 0; - // Intervals of the domain and (desired) range - glm::vec2 xInterval(domainAndRange.x, domainAndRange.w); - glm::vec2 yInterval(domainAndRange.y, domainAndRange.h); - glm::vec2 zInterval(domainAndRange.z, domainAndRange.d); - - // Bounding box of the graph in 3D space (centered at (0, 0, 0) - glm::vec2 xBounds = glm::vec2(-0.5f, 0.5f) * ((xInterval.y - xInterval.x) * scale); - glm::vec2 yBounds = glm::vec2(-0.5f, 0.5f) * ((yInterval.y - yInterval.x) * scale); - - // Calculate function values - unsigned int index = 0; - float minFunctionValue = std::numeric_limits::max(); - float maxFunctionValue = std::numeric_limits::min(); - - for (float y = yInterval.x; y <= yInterval.y; y += resolution) - { - sliceLength = 0; - - for (float x = xInterval.x; x <= xInterval.y; x += resolution) - { - if (std::abs(x) < 0.05f && std::abs(y) < 0.05f) - volatile int sjdks = 3; - - float val = func(x, y); - std::optional pointIndex; - - // If function value is in bbox - if (val >= zInterval.x && val <= zInterval.y) - { - vertices.push_back(Map(xInterval, xBounds, x)); - vertices.push_back(val); // Will be corrected later! - vertices.push_back(Map(yInterval, yBounds, y)); - vertices.push_back(0.0f); - - minFunctionValue = std::min(minFunctionValue, val); - maxFunctionValue = std::max(maxFunctionValue, val); - - pointIndex = index; - index++; - } - - functionValues.push_back(pointIndex); - sliceLength++; - } - - slices++; - } - - zInterval = glm::vec2(minFunctionValue, maxFunctionValue); - glm::vec2 zBounds = glm::vec2(-0.5f, 0.5f) * ((zInterval.y - zInterval.x) * scale); - - for (unsigned int i = 3; i < vertices.size(); i += 4) - { - vertices[i] = Map(zInterval, glm::vec2(0.0f, 1.0f), vertices[i - 2]); - vertices[i - 2] = Map(zInterval, zBounds, vertices[i - 2]); - } - - /* - * This is what the desired meshing should look like - * +y - * CurrentSlice o---o---o---o---o---o---o---o x o ^ - * | / \ | / | / | / \ | \ / | | - * PreviousSlice o x o---o---o x x o---o---o +---> +x - * - * - * Possible fragment constellations - * +---------+---------+---------+---------+---------+---------+ - * | 2---1 | o---o | o---o | x o | o---o | o x | - * | | | | | / | | | / | / | | \ | | | \ | - * | 3---4 | o---o | o x | o---o | x o | o---o | - * +---------+---------+---------+---------+---------+---------+ - * - * 123, 134, 124, 234 - * - * o = Function value inside bbox - * x = Function value outside bbox - * - * By default OpenGL treats triangles defined in couter-clockwise order as "front facing". So the algorithm - * should construct the triangles in that way (even if we're not culling faces, just to not have any funny bugs in the future) - * - * The algorithm works as follows: - * 1. Pick a patch of 4 points from the value list, and label them like in the diagram above - * 2. Attempt to connect the 123 constellation. - * 3. Attempt to connect the next constellation, until none are left - * -> Success: Go to 1 - * -> Failure: Go to 3 - */ - - struct Constellation { - unsigned int i, j, k; - }; - - std::array constellations = { - Constellation {0, 1, 2}, - Constellation {0, 2, 3}, - Constellation {0, 1, 3}, - Constellation {1, 2, 3} - }; - std::array*, 4> points; - - for (unsigned int y = 1; y < slices; y++) - { - for (unsigned int x = 1; x < sliceLength; x++) - { - points = { - &functionValues[y * sliceLength + x], - &functionValues[y * sliceLength + (x - 1)], - &functionValues[(y - 1) * sliceLength + (x - 1)], - &functionValues[(y - 1) * sliceLength + x], - }; - - int matches = 0; - for (Constellation& constellation : constellations) - { - // This constellation doesnt match - if (!(points[constellation.i]->has_value() && points[constellation.j]->has_value() && points[constellation.k]->has_value())) - continue; - - indices.push_back(points[constellation.i]->value()); - indices.push_back(points[constellation.j]->value()); - indices.push_back(points[constellation.k]->value()); - - matches++; - if (matches == 2) - break; - } - } - } + unsigned int sliceLength = CreateVertexList(domainAndRange, scale, resolution, func, functionValues, vertices); + Triangulate(functionValues, sliceLength, indices); vao = VAOFactory::Produce(vertices, indices, { @@ -207,3 +102,151 @@ void Plot3D::PreRender(const CameraBase& camera) const shader->SetUniform("view", camera.GetView()); shader->SetUniform("projection", camera.GetProjection()); } + +unsigned int CreateVertexList(const BBox& domainAndRange, float scale, float resolution, PlottableFunction func, std::vector>& functionValues, std::vector& vertices) +{ + unsigned int sliceLength = 0; + + // Intervals of the domain and (desired) range + glm::vec2 xInterval(domainAndRange.x, domainAndRange.w); + glm::vec2 yInterval(domainAndRange.y, domainAndRange.h); + glm::vec2 zInterval(domainAndRange.z, domainAndRange.d); + + // Bounding box of the graph in 3D space (centered at (0, 0, 0) + glm::vec2 xBounds = glm::vec2(-0.5f, 0.5f) * ((xInterval.y - xInterval.x) * scale); + glm::vec2 yBounds = glm::vec2(-0.5f, 0.5f) * ((yInterval.y - yInterval.x) * scale); + + // Calculate function values + unsigned int index = 0; + float minFunctionValue = std::numeric_limits::max(); + float maxFunctionValue = std::numeric_limits::min(); + + // Loop over the function and query function values at each point + for (float y = yInterval.x; y <= yInterval.y; y += resolution) + { + sliceLength = 0; // Length of the current slice + + for (float x = xInterval.x; x <= xInterval.y; x += resolution) + { + float val = func(x, y); + std::optional pointIndex; + + // If function value is in bbox + if (val >= zInterval.x && val <= zInterval.y) + { + // Set vertex x and y coordinate + // z is still left in "function space" + // The fourth value is later gonna be the "normalized z", it is set to 0.0 here to avoid resizing and inserting into the vector later + vertices.push_back(Map(xInterval, xBounds, x)); + vertices.push_back(val); // Will be corrected later! + vertices.push_back(Map(yInterval, yBounds, y)); + vertices.push_back(0.0f); + + // Update the min/max vals + minFunctionValue = std::min(minFunctionValue, val); + maxFunctionValue = std::max(maxFunctionValue, val); + + pointIndex = index; + index++; + } + + // Insert the value of this function into the function value array + functionValues.push_back(pointIndex); + sliceLength++; + } + + } + + // Update z interval, so the function is scaled properly later + zInterval = glm::vec2(minFunctionValue, maxFunctionValue); + glm::vec2 zBounds = glm::vec2(-0.5f, 0.5f) * ((zInterval.y - zInterval.x) * scale); + + for (unsigned int i = 3; i < vertices.size(); i += 4) + { + // Go over array and replace the normalized z with the actual value, and update z + vertices[i] = Map(zInterval, glm::vec2(0.0f, 1.0f), vertices[i - 2]); + vertices[i - 2] = Map(zInterval, zBounds, vertices[i - 2]); + } + + return sliceLength; +} + +void Triangulate(const std::vector>& functionValues, unsigned int sliceLength, std::vector& indices) +{ + + /* + * This is what the desired meshing should look like + * +y + * CurrentSlice o---o---o---o---o---o---o---o x o ^ + * | / \ | / | / | / \ | \ / | | + * PreviousSlice o x o---o---o x x o---o---o +---> +x + * + * + * Possible fragment constellations + * +---------+---------+---------+---------+---------+---------+ + * | 2---1 | o---o | o---o | x o | o---o | o x | + * | | | | | / | | | / | / | | \ | | | \ | + * | 3---4 | o---o | o x | o---o | x o | o---o | + * +---------+---------+---------+---------+---------+---------+ + * + * 123, 134, 124, 234 + * + * o = Function value inside bbox + * x = Function value outside bbox + * + * By default OpenGL treats triangles defined in couter-clockwise order as "front facing". So the algorithm + * should construct the triangles in that way (even if we're not culling faces, just to not have any funny bugs in the future) + * + * The algorithm works as follows: + * 1. Pick a patch of 4 points from the value list, and label them like in the diagram above + * 2. Attempt to connect the 123 constellation. + * 3. Attempt to connect the next constellation, until none are left + * -> Success: Go to 1 + * -> Failure: Go to 3 + */ + + struct Constellation { + unsigned int i, j, k; + }; + + // Possible constellations + std::array constellations = { + Constellation {0, 1, 2}, + Constellation {0, 2, 3}, + Constellation {0, 1, 3}, + Constellation {1, 2, 3} + }; + std::array*, 4> points; + + // Loop over vertices, starting at (1, 1) + for (unsigned int y = 1; y * sliceLength < functionValues.size(); y++) + { + for (unsigned int x = 1; x < sliceLength; x++) + { + // "Overlay the square", basically assigns a number to the vertices according to the diagram above + points = { + &functionValues[y * sliceLength + x], + &functionValues[y * sliceLength + (x - 1)], + &functionValues[(y - 1) * sliceLength + (x - 1)], + &functionValues[(y - 1) * sliceLength + x], + }; + + // Try and match the first two constellations + int matches = 0; + for (Constellation& constellation : constellations) + { + // This constellation doesnt match + if (!(points[constellation.i]->has_value() && points[constellation.j]->has_value() && points[constellation.k]->has_value())) + continue; + + indices.push_back(points[constellation.i]->value()); + indices.push_back(points[constellation.j]->value()); + indices.push_back(points[constellation.k]->value()); + + matches++; + if (matches == 2) + break; + } + } + } +} diff --git a/src/Plot3D.hpp b/src/Plot3D.hpp index 979a6a3..90cb63b 100644 --- a/src/Plot3D.hpp +++ b/src/Plot3D.hpp @@ -16,7 +16,4 @@ public: private: void PreRender(const CameraBase& camera) const override; - -private: - glm::vec2 range; }; \ No newline at end of file