Added Problem 12

This commit is contained in:
Lauchmelder23 2018-10-10 17:05:37 +02:00
parent 86b650d29a
commit 5959bedaa6

35
Problem_12.py Normal file
View file

@ -0,0 +1,35 @@
######################################################################
# The sequence of triangle numbers is generated by adding the natural numbers.
# So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
#
# 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
#
# Let us list the factors of the first seven triangle numbers:
#
# 1: 1
# 3: 1,3
# 6: 1,2,3,6
# 10: 1,2,5,10
# 15: 1,3,5,15
# 21: 1,3,7,21
# 28: 1,2,4,7,14,28
# We can see that 28 is the first triangle number to have over five divisors.
#
# What is the value of the first triangle number to have over five hundred divisors?
######################################################################
triangleNumber = 1
index = 2
divisors = 0
while divisors <= 500:
divisors = 0
triangleNumber += index
index += 1
for i in range(1, int(pow(triangleNumber, 0.5) + 1)):
if triangleNumber % i == 0:
divisors += 2
print(triangleNumber)
# Solution: 76576500