diff --git a/Problem_12.py b/Problem_12.py new file mode 100644 index 0000000..d673013 --- /dev/null +++ b/Problem_12.py @@ -0,0 +1,35 @@ +###################################################################### +# The sequence of triangle numbers is generated by adding the natural numbers. +# So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be: +# +# 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... +# +# Let us list the factors of the first seven triangle numbers: +# +# 1: 1 +# 3: 1,3 +# 6: 1,2,3,6 +# 10: 1,2,5,10 +# 15: 1,3,5,15 +# 21: 1,3,7,21 +# 28: 1,2,4,7,14,28 +# We can see that 28 is the first triangle number to have over five divisors. +# +# What is the value of the first triangle number to have over five hundred divisors? +###################################################################### + +triangleNumber = 1 +index = 2 +divisors = 0 + +while divisors <= 500: + divisors = 0 + triangleNumber += index + index += 1 + + for i in range(1, int(pow(triangleNumber, 0.5) + 1)): + if triangleNumber % i == 0: + divisors += 2 + +print(triangleNumber) +# Solution: 76576500