Added Stieltjes
This commit is contained in:
parent
0bb864442f
commit
9652564344
|
@ -11,4 +11,5 @@
|
|||
\subfile{sections/int_real_nums.tex}
|
||||
\subfile{sections/product_measures.tex}
|
||||
\subfile{sections/trans_thm.tex}
|
||||
\subfile{sections/stieltjes.tex}
|
||||
\end{document}
|
10
chapters/ode.tex
Normal file
10
chapters/ode.tex
Normal file
|
@ -0,0 +1,10 @@
|
|||
% !TeX root = ../script.tex
|
||||
\documentclass[../../script.tex]{subfiles}
|
||||
|
||||
\begin{document}
|
||||
\chapter{Ordinary Differential Equations}
|
||||
\vspace*{\fill}\par
|
||||
\pagebreak
|
||||
|
||||
\subfile{sections/solution_methods.tex}
|
||||
\end{document}
|
137
chapters/sections/solution_methods.tex
Normal file
137
chapters/sections/solution_methods.tex
Normal file
|
@ -0,0 +1,137 @@
|
|||
% !TeX root = ../../script.tex
|
||||
\documentclass[../../script.tex]{subfiles}
|
||||
|
||||
\begin{document}
|
||||
\section{Solution Methods}
|
||||
|
||||
\begin{defi}
|
||||
An ordinary differential equation (ODE) is an equation of the form
|
||||
\[
|
||||
F(x, y, y', \cdots, y^{(n)}) = 0
|
||||
\]
|
||||
with $F: \realn^{n+2} \rightarrow \realn$. $n$ is the order of the ODE.
|
||||
Let $I$ be an open interval. A function $y: I \rightarrow \realn$ is a solution of the ODE if $y \in C^n(\realn)$ and
|
||||
\[
|
||||
F(x, y(x), y'(x), \cdots, y^{(n)}(x)) = 0 ~~\forall x \in I
|
||||
\]
|
||||
\end{defi}
|
||||
|
||||
\begin{eg}
|
||||
\begin{align*}
|
||||
y'' = -\frac{1}{y^2} && \text{Gravitational field} \\
|
||||
y'' = -\sin y && \text{Pendulum}
|
||||
\end{align*}
|
||||
\end{eg}
|
||||
|
||||
\begin{rem}
|
||||
\begin{enumerate}[(i)]
|
||||
\item Often times $F$ is only defined on subsets of $\realn^{n+2}$
|
||||
\item ODEs are not simple to solve
|
||||
\item Even if we can't calculate explicit solutions, we can inspect the following properties
|
||||
\begin{itemize}
|
||||
\item Existence of solutions
|
||||
\item Uniqueness of solutions
|
||||
\item Dependency of solutions from initial conditions
|
||||
\item Sability
|
||||
\end{itemize}
|
||||
\end{enumerate}
|
||||
\end{rem}
|
||||
|
||||
\begin{eg}
|
||||
\begin{enumerate}[(i)]
|
||||
\item Let $I$ be an open interval and $f: I \rightarrow \realn$ continuous. Then the solution of
|
||||
\[
|
||||
y' = f(x)
|
||||
\]
|
||||
is the antiderivative of $f$. Let $x_0 \in I$, then
|
||||
\[
|
||||
y(x) = \int_{x_0}^x f(t) \dd{t} + c ~~c \in \realn
|
||||
\]
|
||||
|
||||
\item Consider the ODE
|
||||
\[
|
||||
y' = y
|
||||
\]
|
||||
The functions $x \mapsto c e^x$ are solutions $\forall c \in \realn$. Are those all the solutions that exist?
|
||||
Let $y: I \rightarrow \realn$ be any solution, and consider
|
||||
\[
|
||||
u(x) = y(x)e^{-x}
|
||||
\]
|
||||
Then
|
||||
\begin{align*}
|
||||
u'(x) &= y'(x) e^{-x} - y(x)e^{-x} \\
|
||||
&= \left(y'(x) - y(x)\right) e^{-x} = 0 ~~\forall x \in I
|
||||
\end{align*}
|
||||
So $u(x) = c$.
|
||||
\end{enumerate}
|
||||
\end{eg}
|
||||
|
||||
\begin{defi}[Initial Value Problem]
|
||||
Let $y_0, \cdots, y_{n-1} \in \realn$ and also $F: \realn^{n+2} \rightarrow \realn$. The system of equations
|
||||
\begin{align*}
|
||||
F(x, y, y', \cdots, y^{(n)}) = 0 && \begin{cases}
|
||||
y(0) = y_0 \\
|
||||
y'(0) = y_1\\
|
||||
\cdots \\
|
||||
y^{(n-1)}(0) = y_{n-1}
|
||||
\end{cases}
|
||||
\end{align*}
|
||||
is said to be an initial value problem (IVP).
|
||||
\end{defi}
|
||||
|
||||
\begin{eg}
|
||||
Consider the problem
|
||||
\begin{align*}
|
||||
y'' = -\rec{y^2} && \begin{cases}
|
||||
y(0) = y_0 \\
|
||||
y'(0) = y_1
|
||||
\end{cases}
|
||||
\end{align*}
|
||||
This describes the movement of a point mass in the gravitational field of the earth along a straight line
|
||||
through the center of the earth with the initial position $y_0$ and the initial velocity $y_1$.
|
||||
\end{eg}
|
||||
|
||||
\begin{eg}
|
||||
Consider the problem
|
||||
\begin{align*}
|
||||
y' = -y^2 && y(0) = 1
|
||||
\end{align*}
|
||||
Assume $y: I \rightarrow \realn$ is a solution and $y(x) > 0 ~~\forall x \in I$. Then
|
||||
\[
|
||||
1 = -\frac{1}{y(t)^2} ~y'(t) ~~\forall t \in I
|
||||
\]
|
||||
By integrating we get
|
||||
\begin{align*}
|
||||
x = -\int_0^x \frac{1}{y(t)^2} y'(t) \dd{t} &\equalexpl{Substitution} -\int_1^{y(x)} \rec{y^2} \dd{y} \\
|
||||
&= \left. \rec{y} \right\vert_1^{y(x)} = \rec{y(x)} - 1 ~~\forall x \in I
|
||||
\end{align*}
|
||||
So a solution is
|
||||
\[
|
||||
y(x) = \frac{1}{1+x}
|
||||
\]
|
||||
The biggest domain that makes sense is $(-1, \infty)$. Analogously one can approach equations with "separated variables", so of the form
|
||||
\begin{align*}
|
||||
y' = f(y)g(x) && y(x_0) = y_0
|
||||
\end{align*}
|
||||
\end{eg}
|
||||
|
||||
\begin{thm}[Separation of Variables]
|
||||
Let $I, J$ be open intervals, and let
|
||||
\begin{align*}
|
||||
f: I \longrightarrow \realn && g: J \longrightarrow \realn
|
||||
\end{align*}
|
||||
be continuous with $0 \ne f(I)$. Let $x_0 \in J, ~y_0 \in I$.
|
||||
Then there exists an open interval $I_2 \subset J$ and $x_0 \in I_2$ such that the IVP
|
||||
\begin{align*}
|
||||
y' = f(y)g(x) && y(x_0) = y_0
|
||||
\end{align*}
|
||||
has exactly one solution on $I_2$. Set
|
||||
\[
|
||||
F(y) = \int_{y_0}^y \rec{f(t)} \dd{t}
|
||||
\]
|
||||
Then $y: I_2 \rightarrow I$ is uniquely defined by
|
||||
\[
|
||||
F(y(x)) = \int_{x_0}^x g(t) \dd{t}
|
||||
\]
|
||||
\end{thm}
|
||||
\end{document}
|
35
chapters/sections/stieltjes.tex
Normal file
35
chapters/sections/stieltjes.tex
Normal file
|
@ -0,0 +1,35 @@
|
|||
% !TeX root = ../../script.tex
|
||||
\documentclass[../../script.tex]{subfiles}
|
||||
|
||||
\begin{document}
|
||||
\section{Lebesgue-Stieltjes Integral}
|
||||
|
||||
\begin{defi}
|
||||
Let $F: \realn \rightarrow \realn$ be a monotonically increasing, continuous function. Then we set
|
||||
\begin{align*}
|
||||
\lambda_F(\varnothing) := 0 && \lambda_F((a, b]) = F(b) - F(a), ~~(a, b] \in \intervals
|
||||
\end{align*}
|
||||
\end{defi}
|
||||
|
||||
\begin{thm}
|
||||
$\lambda_F$ is a measure on $H$.
|
||||
\end{thm}
|
||||
\begin{proof}
|
||||
Without proof.
|
||||
\end{proof}
|
||||
|
||||
\begin{defi}
|
||||
The integral
|
||||
\[
|
||||
\int_A f \dd{\lambda_F}
|
||||
\]
|
||||
is called the Lebesgue-Stieltjes integral on $\realn$ and is denoted by
|
||||
\[
|
||||
\int_A f(x) \dd{F(x)} := \int_A f \dd{\lambda_F}
|
||||
\]
|
||||
If $A = [a, b]$, then we write
|
||||
\[
|
||||
\int_a^b f(x) \dd{F(x)}
|
||||
\]
|
||||
\end{defi}
|
||||
\end{document}
|
BIN
script.pdf
BIN
script.pdf
Binary file not shown.
|
@ -180,5 +180,6 @@
|
|||
\subfile{chapters/topo_of_metr_spaces.tex}
|
||||
\subfile{chapters/multivar_calc.tex}
|
||||
\subfile{chapters/measures_integrals.tex}
|
||||
\subfile{chapters/ode.tex}
|
||||
|
||||
\end{document}
|
||||
|
|
Loading…
Reference in a new issue