Finished measure theory

This commit is contained in:
Robert 2021-03-31 21:54:02 +02:00
parent 6fcc9b8e04
commit 0bb864442f
4 changed files with 184 additions and 0 deletions

View file

@ -10,4 +10,5 @@
\subfile{sections/integrals.tex}
\subfile{sections/int_real_nums.tex}
\subfile{sections/product_measures.tex}
\subfile{sections/trans_thm.tex}
\end{document}

View file

@ -0,0 +1,182 @@
% !TeX root = ../../script.tex
\documentclass[../../script.tex]{subfiles}
\begin{document}
\section{The Transformation Theorem}
\begin{defi}
Let $U, V \subset \realn^n$ be open. A mapping $T: U \rightarrow V$ is said to be a diffeomorphism if it is bijective and if
$T$ and $\inv{T}$ are continuously differentiable. Analogously we define
\begin{gather*}
C^r \text{-diffeomorphism if it is } r \text{-times differentiable} \\
C^{\infty} \text{-diffeomorphism if it is infinitely differentiable}
\end{gather*}
\end{defi}
\begin{rem}
\begin{enumerate}[(i)]
\item In physics, $f$ and $f \circ T$ are often denoted with the same symbol
\item We can apply the chain rule to $T \circ \inv{T} = \idf_V$
\[
DT(\inv{T}(y)) \cdot D\inv{T}(y) = I_V
\]
Since $\inv{T}$ is surjective, $DT(x)$ is invertible $\forall x \in U$. According to the theorem about inverse functions,
the inverse $\inv{T}$ of a bijective mapping is continuously differentiable if $DT(x)$ is invertible
\item If $T$ is a diffeomorphism, then $\inv{T}$ is one too.
\end{enumerate}
\end{rem}
\begin{eg}
\begin{enumerate}[(i)]
\item Polar coordinates:
\begin{align*}
T: (0, \infty) \times (0, 2\pi) &\longrightarrow \realn^2 \setminus \set{[0, \infty] \times \set{0}} \\
(r, \phi) &\longmapsto (r \cos\phi, r \sin\phi)
\end{align*}
\item Another diffeomorphism would be
\begin{align*}
T: \oball[1](0) &\longrightarrow \realn^n \\
x &\longmapsto \frac{x}{\sqrt{1 - \norm{x}}}
\end{align*}
\item An example for a mapping that is no diffeomorphism would be
\begin{align*}
T: \realn &\longrightarrow \realn \\
x &\longmapsto x^3
\end{align*}
The Jacobian "matrix" $T'(x) = 3x^2$ is not invertible.
\item Another counter example would be
\begin{align*}
T: (0, \infty) \times \realn &\longrightarrow \realn^2 \setminus \set{0} \\
(r, \phi) &\longmapsto (r\cos\phi, r\sin\phi)
\end{align*}
This function is not injective, so it's not a diffeomorphism.
\end{enumerate}
\end{eg}
\begin{thm}[Transformation Theorem]
Let $U, V \subset \realn^n$ and $T: U \rightarrow V$ a diffeomorphism.
Then $f: V \rightarrow \realn$ is integrable over $V$ if and only if $f \circ T \cdot \abs{\det DT}$ is integrable over $U$.
In this case
\[
\int_V d \dd{\lambda^n} = \int_U f \circ T \cdot \abs{\det DT} \dd{\lambda^n}
\]
\end{thm}
\begin{proof}
Without proof.
\end{proof}
\begin{eg}[Area of the unit circle]
The area is defined as
\[
\lambda^2(K_1(0)) = \int_{\realn^2} \charfun_{K_1(0)} \dd{\lambda^2}
\]
We transform into polar coordinates:
\begin{align*}
U &= (0, \infty) \times (0, 2\pi) \\
V &= \realn^2 \setminus \underbrace{([0, \infty] \times \set{0})}_{\lambda^2-null set}
\end{align*}
We define the transformation
\[
T: (r, \phi) \longmapsto (r \cos\phi, r \sin\phi)
\]
Which results in
\begin{align*}
\det DT(r, \phi) &= r \\
\charfun_{K_1(0)} \circ T(r, \phi) &= \charfun_{(0, 1]}(r)
\end{align*}
So we can calculate
\begin{align*}
\lambda^2(K_1(0)) &= \int_B \charfun_{(0, 1]}(x, y) \dd{\lambda^2}(x, y) \\
&= \int_U \charfun_{(0, 1]}(r) \cdot r \cdot \dd{\lambda^2}(r, \phi) \\
&= \int_0^{\infty} \int_0^{2\pi} \charfun_{(0, 1]} r \dd{\phi} \dd{r} \\
&= 2\pi \int_0^{\infty} \charfun_{(0, 1]}(r) \dd{r} = 2\pi \int_0^1 r \dd{r} \\
&= \pi r^2 = \pi
\end{align*}
\end{eg}
\begin{rem}
\begin{enumerate}[(i)]
\item Consider
\begin{align*}
T: \realn^n &\longrightarrow \realn^n \\
x &\longmapsto Ax ~~A \in \realn^{n \times n}
\end{align*}
If $\exists \inv{A}$, then $T$ is a diffeomorphism with $DT = A$
\[
\implies \int f \dd{\lambda^2} = \abs{\det A} \int f \circ T \dd{\lambda^2}
\]
\item Let $A$ be an orthogonal matrix (so a rotation/mirroring).
\[
\det A = \pm 1 \implies \abs{\det A} = 1
\]
Thus, rotations and mirrorings do not change the volume.
\item Let $A = \diag(a, a, \cdots, a) ~~a \in (0, \infty)$ (this is a scaling matrix). Then
\[
\det A = a^n
\]
which means that continuous scaling of a factor $a$ scales the $\lambda^n$-volume by $a^n$.
\item This is a "generalization" of the substitution rule
\[
\int_{\realn} f(g(x)) g'(x) \dd{x} = \int_{\realn} f(y) \dd{y}
\]
\end{enumerate}
\end{rem}
\begin{eg}
We want to compute
\[
K = \int_{\realn} e^{-x^2} \dd{x}
\]
Consider
\[
K^2 = \int_{\realn} e^{-x^2} \dd{x} \int_{\realn} e^{-y^2} \dd{y} = \int_{\realn^2} e^{-(x^2 + y^2)} \dd{\lambda^2(x, y)}
\]
By transforming $f = e^{-(x^2 + y^2)}$ into polar coordinates
\begin{align*}
K^2 &= \int_U f \circ T \abs{\det DT} \dd{\lambda^2} \\
&= \int_V e^{-r^2} \cdot r \dd{\lambda^2(r, \phi)} \\
&= \int_0^{\infty} \int_0^{2\pi} r e^{-r^2} \dd{r}\dd{\phi} \\
&= 2\pi \int_0^{\infty} r e^{-r^2} \dd{r} \\
&= 2\pi \limn\left(-\frac{1}{2} e^{-n^2} + \frac{1}{2}\right) = \pi
\end{align*}
Thus $K = \sqrt{\pi}$.
\end{eg}
\begin{eg}[Integrability of radial functions]
Let $f: [0, \infty] \rightarrow \realn$ be measureable and set
\begin{align*}
F: \realn^n &\longrightarrow \realn \\
x &\longmapsto f(\norm{x})
\end{align*}
$\dnorm$ is the Euclidian norm. Under which conditions is $F$ $\lambda^n$-integrable?
Let $D := (0, \infty) \times \underbrace{(0, \pi)^{n-2} \times (0, 2\pi)}_{D_{\phi}}$. And define
\begin{align*}
T: D &\longrightarrow \realn^n \setminus A \\
(r, \phi) &\longmapsto \begin{pmatrix}
r \cos\phi_1 \\
r \sin\phi_1 \cos\phi_2 \\
r \sin\phi_1 \sin\phi_2 \cos\phi_3 \\
\vdots \\
r \sin\phi_1 \cdots \sin\phi_{n-2} \cos\phi_{n-1} \\
r \sin\phi_1 \cdots \sin\phi_{n-2} \sin\phi_n
\end{pmatrix}^T
\end{align*}
Then $\norm{T(r, \phi)} = r$ and
\[
\abs{\det DT(r, \phi)} = r^{n-1} \sin^{n-2}\phi_1 \sin^{n-3} \phi_2 \cdots \sin\phi_{n-2} = r^{n-1} A_n(\phi)
\]
Thus
\begin{align*}
\int_{\realn^n} \abs{F(x)} \dd{\lambda^n}(x) &= \int_D \underbrace{\abs{F \circ T(r, \phi)}}_{f(r)} \abs{\det DT(r, \phi)} \dd{\lambda^n}(r, \phi) \\
&= \int_{D_{\phi}} \int_0^{\infty} r^{n-1} \abs{f(r)} A_n(\phi) \dd{r} \dd{\lambda^{n-1}}(\phi) \\
&= \int_0^{\infty} r^{n-1} \abs{f(x)} \dd{r} \underbrace{\int_{D_{\phi}} \abs{A_n(\phi)} \dd{\lambda^{n-1}}(\phi)}_{< \infty}
\end{align*}
So $F$ is $\lambda^n$-integrable if $r^{n-1} f(x)$ is integrable over $[0, \infty)$.
\end{eg}
\end{document}

Binary file not shown.

View file

@ -34,6 +34,7 @@
\DeclareMathOperator{\spn}{span}
%\DeclareMathOperator{\dim}{dim}
\DeclareMathOperator{\sgn}{sgn}
\DeclareMathOperator{\diag}{diag}
\newcommand{\natn}{\mathbb{N}}
\newcommand{\intn}{\mathbb{Z}}