The eigenspace to an eigenvalue $\lambda$ is a linear subspace.
\end{rem}
\begin{rem}
We want to find $\lambda\in\field$, $v \in\field^n$ such that
\[
Av = \lambda v \iff (\underbrace{A - \lambda I}_{\in\field^{n \times n}}) v = 0
\]
If $(A -\lambda I)$ is invertible, then $v =0$. So the interesting case is when $(A -\lambda I)$ not invertible.
\[
(A - \lambda I) \text{ not invertible}\iff\det(A - \lambda I) = 0
\]
This determinant is called the characteristic polynomial. This polynomial has degree $n$, and the eigenvalues are the roots of that polynomial.
So let $\lambda$ be an eigenvalue of $A$, then
\[
(A - \lambda I) v = 0
\]
is a linear equation system for the components of $v$.
\end{rem}
\begin{eg}
Let
\[
A = \begin{pmatrix}
0 & 1 \\ -1 & 0
\end{pmatrix}
\in\cmpln^{2 \times 2}
\]
The characteristic polynomial is
\[
\det(A - \lambda I) = \begin{vmatrix}
-\lambda& 1 \\ -1 & -\lambda
\end{vmatrix}
= \lambda^2 + 1
\]
Its roots are
\begin{multicols}{2}
\noindent
\[\lambda_1= i \]
\[\lambda_2=-i \]
\end{multicols}
\noindent To find the eigenvector belonging to $\lambda_1$, we declare $v_1=(x, y)\in\cmpln^2$ and solve the linear equation system
\begin{multicols}{2}\noindent
\[(A -\lambda_1 I) v_1=0\]
\begin{align*}
-ix + 1y &= 0 \\
-1x - iy &= 0 \\
\end{align*}
\end{multicols}
\noindent It has the solutions $x =-i$ and $y =1$, so
\[
v_1 = \begin{pmatrix}
-i \\ 1
\end{pmatrix}
\]
Doing the same for $v_2$ yields
\[
v_2 = \begin{pmatrix}
i \\ 1
\end{pmatrix}
\]
It is to be noted that the eigenvectors aren't unique (multiples of eigenvectors are also eigenvectors).
\end{eg}
\begin{eg}
Let $D$ be a diagonal matrix, with the diagonal entries $\lambda_j$. Then
\[
\det(D - \lambda I) = \begin{vmatrix}
\lambda_1 - \lambda&&&\\
&\lambda_2 - \lambda&&\\
&&\ddots&\\
&&&\lambda_n - \lambda\\
\end{vmatrix}
\]
The roots (eigenvalues) are $\lambda_1, \lambda_2, \cdots, \lambda_n$, and the eigenvectors are $De_i =\lambda_i e_i$.
\end{eg}
\begin{defi}
$A \in\field^{n \times n}$ is called diagonalizable if there exists a basis of $\field^n$ that consists of eigenvectors.
\end{defi}
\begin{thm}
A matrix $A \in\field^{n \times n}$ is diagonalizable, if and only if there exists a diagonal matrix $D$ and a invertible matrix $T$ such that
\[
D = \inv{T}AT
\]
\end{thm}
\begin{proof}
Let $e_1, e_2, \cdots, e_n$ be the canonical basis of $\field^n$. Define $TD\inv{T}= A$, and let $\lambda_1, \cdots, \lambda_n$ be the diagonal entries of $D$.
Then we know that
\begin{equation}
De_i = \lambda_ie_i, ~~\forall i \in\set{1, \cdots n}
\end{equation}
Since $T$ is invertible, the $Te_1, \cdots Te_n$ form a basis.