\documentclass[../../script.tex]{subfiles} % !TEX root = ../../script.tex \begin{document} \section{Eigenvalue problems} \begin{defi} Let $A \in \field^{n \times n}$. Then $\lambda \in \field$ is called an eigenvalue of $A$, if \[ \exists v \in \field^n, ~v \ne 0: ~~Av = \lambda v \] Such a vector $v$ is called eigenvector. We call \[ \set[Av = \lambda v]{v \in \field^n} =: E_{\lambda} \] eigenspace belonging to $\lambda$. \end{defi} \begin{eg} Let \[ A = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Then \begin{align*} A \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} &= \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} = 2 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \\ A \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} &= \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \\ A \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} &= \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = 1 \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \end{align*} The eigenspaces are \begin{align*} E_2 &= \set[\kappa \in \realn]{\kappa \cdot \begin{pmatrix}1\\0\\0\end{pmatrix}} \\ E_1 &= \set[\kappa, \rho \in \realn]{\kappa \cdot \begin{pmatrix}1\\-1\\0\end{pmatrix} + \rho \cdot \begin{pmatrix}1\\0\\1\end{pmatrix}} = \spn\set{\begin{pmatrix}1\\-1\\0\end{pmatrix}, \begin{pmatrix}1\\0\\1\end{pmatrix}} \end{align*} \end{eg} \begin{rem} The eigenspace to an eigenvalue $\lambda$ is a linear subspace. \end{rem} \begin{rem} We want to find $\lambda \in \field$, $v \in \field^n$ such that \[ Av = \lambda v \iff (\underbrace{A - \lambda I}_{\in \field^{n \times n}}) v = 0 \] If $(A - \lambda I)$ is invertible, then $v = 0$. So the interesting case is when $(A - \lambda I)$ not invertible. \[ (A - \lambda I) \text{ not invertible} \iff \det(A - \lambda I) = 0 \] This determinant is called the characteristic polynomial. This polynomial has degree $n$, and the eigenvalues are the roots of that polynomial. So let $\lambda$ be an eigenvalue of $A$, then \[ (A - \lambda I) v = 0 \] is a linear equation system for the components of $v$. \end{rem} \begin{eg} Let \[ A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in \cmpln^{2 \times 2} \] The characteristic polynomial is \[ \det(A - \lambda I) = \begin{vmatrix} -\lambda & 1 \\ -1 & -\lambda \end{vmatrix} = \lambda^2 + 1 \] Its roots are \begin{multicols}{2} \noindent \[ \lambda_1 = i \] \[ \lambda_2 = -i \] \end{multicols} \noindent To find the eigenvector belonging to $\lambda_1$, we declare $v_1 = (x, y) \in \cmpln^2$ and solve the linear equation system \begin{multicols}{2}\noindent \[ (A - \lambda_1 I) v_1 = 0 \] \begin{align*} -ix + 1y &= 0 \\ -1x - iy &= 0 \\ \end{align*} \end{multicols} \noindent It has the solutions $x = -i$ and $y = 1$, so \[ v_1 = \begin{pmatrix} -i \\ 1 \end{pmatrix} \] Doing the same for $v_2$ yields \[ v_2 = \begin{pmatrix} i \\ 1 \end{pmatrix} \] It is to be noted that the eigenvectors aren't unique (multiples of eigenvectors are also eigenvectors). \end{eg} \begin{eg} Let $D$ be a diagonal matrix, with the diagonal entries $\lambda_j$. Then \[ \det(D - \lambda I) = \begin{vmatrix} \lambda_1 - \lambda & & & \\ & \lambda_2 - \lambda & & \\ & & \ddots & \\ & & & \lambda_n - \lambda \\ \end{vmatrix} \] The roots (eigenvalues) are $\lambda_1, \lambda_2, \cdots, \lambda_n$, and the eigenvectors are $De_i = \lambda_i e_i$. \end{eg} \begin{defi} $A \in \field^{n \times n}$ is called diagonalizable if there exists a basis of $\field^n$ that consists of eigenvectors. \end{defi} \begin{thm} A matrix $A \in \field^{n \times n}$ is diagonalizable, if and only if there exists a diagonal matrix $D$ and a invertible matrix $T$ such that \[ D = \inv{T}AT \] \end{thm} \begin{proof} Let $e_1, e_2, \cdots, e_n$ be the canonical basis of $\field^n$. Define $TD\inv{T} = A$, and let $\lambda_1, \cdots, \lambda_n$ be the diagonal entries of $D$. Then we know that \begin{equation} De_i = \lambda_ie_i, ~~\forall i \in \set{1, \cdots n} \end{equation} Since $T$ is invertible, the $Te_1, \cdots Te_n$ form a basis. \begin{equation} A(Te_i) = T(\inv{T}AT)e_i = TDe_i = T\lambda_i e_i = \lambda_i (Te_i) \end{equation} Therefore $Te_i$ is an eigenvector of $A$ to the eigenvalue $\lambda_i$. Now let $v_1, \cdots, v_n$ be a basis of $\field^n$ and \begin{equation} Av_i = \lambda_iv_i, ~~\lambda_1, \cdots, \lambda_n \in \field^n \end{equation} Write write $v_1, \cdots, v_n$ as the columns of a matrix, therefore \begin{subequations} \begin{equation} T = (v_1, v_2, \cdots, v_n) \end{equation} \begin{equation} D = \begin{pmatrix} \lambda_1 & & \\ & \vdots & \\ & & \lambda_n \end{pmatrix} \end{equation} \end{subequations} So $Te_i = v_i$, and thus \begin{equation} A(Te_i) = Av_i = \lambda_iv_i = \lambda_i(Te_i) = T\lambda_ie_i = TDe_i \end{equation} This means that $(AT - TD)e_i = 0$, $\forall i \in \set{1, \cdots, n}$. \begin{equation} \implies AT = TD \end{equation} $T$ is invertible (left as an exercise for the reader), and thus \begin{equation} \implies \inv{T}AT = D \end{equation} \end{proof} \begin{eg} \begin{enumerate}[(i)] \item Let \[ A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \] The eigenvalues and eigenvectors are \begin{multicols}{2}\noindent \[ A \cdot \begin{pmatrix} -i \\ 1 \end{pmatrix} = i \begin{pmatrix} -i \\ 1 \end{pmatrix} \] \[ A \cdot \begin{pmatrix} i \\ 1 \end{pmatrix} = -i \begin{pmatrix} i \\ 1 \end{pmatrix} \] \end{multicols} \noindent Therefore \[ T = \begin{pmatrix} -i & i \\ 1 & 1 \end{pmatrix} \] which has the inverse \[ \inv{T} = \frac{1}{2} \begin{pmatrix} i & 1 \\ -i & 1 \end{pmatrix} \] Finally, \[ \inv{T}AT = \frac{1}{2} \begin{pmatrix} i & 1 \\ -i & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2i & 0 \\ 0 & -2i \end{pmatrix} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \] This is a diagonal matrix, therefore $A$ is diagonalizable. \item The matrix \[ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \] is not diagonalizable since its only eigenvector is $(1, 0)^T$. \end{enumerate} \end{eg} \begin{rem} For diagonal matrices the following is true \[ \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_3 \\ \end{pmatrix}^k = \begin{pmatrix} \lambda_1^k & & & \\ & \lambda_2^k & & \\ & & \ddots & \\ & & & \lambda_3^k \\ \end{pmatrix} \] If $\inv{T}AT = D$ (where $D$ is a diagonal matrix), then \[ D^k = (\inv{T}AT)^k = \underbrace{\inv{T}AT \cdot \inv{T}AT \cdot \cdots}_{k \text{ times}} = \inv{T}A^kT \] \[ \implies A^k = TD^k\inv{T} \] \end{rem} \begin{thm} Let $A \in \realn^{n \times n}$ be a symmetric matrix, i.e. $A = A^T$. (Or if $A \in \cmpln^{n \times n}$ a self-adjoint matrix $A = A^H$). Then $A$ has an orthonormal basis consisting of eigenvectors and is diagonalizable. \end{thm} \begin{proof} Let $\lambda \in \cmpln$ be an eigenvalue of $A \in \field^{n \times n}$ with eigenvector $v \in \field^n$ and $A = A^H$. Then \begin{equation} \lambda\innerproduct{v}{v} = \innerproduct{v}{\lambda v} = \innerproduct{v}{Av} = \innerproduct{A^Hv}{v} = \innerproduct{Av}{v} = \innerproduct{\lambda v}{v} = \conj{\lambda} \innerproduct{v}{v} \end{equation} Therefore \begin{equation} (\lambda - \conj{\lambda})\underbrace{\innerproduct{v}{v}}_0 = 0 \end{equation} \begin{equation} \implies (\lambda - \conj{\lambda}) = 0 \implies \lambda = \conj{\lambda} \implies \lambda \in \realn \end{equation} Now let $\lambda, \rho \in \realn$ be eigenvalues to the eigenvectors $v, w$, and require $\lambda \ne \rho$. Then \begin{equation} \rho\innerproduct{v}{w} = \innerproduct{v}{Aw} = \innerproduct{Av}{w} = \conj{\lambda}\innerproduct{v}{w} = \lambda\innerproduct{v}{w} \end{equation} And thus \begin{equation} \underbrace{(\rho - \lambda)}_{\ne 0} \underbrace{\innerproduct{v}{w}}_{=0} = 0 \implies v \perp w \end{equation} \end{proof} \end{document}