Let $D \subset\realn\times\realn^n$ be open, $(x_0, y_0)\in D$ and $f: D \rightarrow\realn^n$ continuous such that $f$ fulfils a local Lipschitz condition in $y$.
Then $\exists\epsilon > 0$ such that the IVP
\begin{align*}
y' = f(x, y) && y(x_0) = y_0
\end{align*}
has exactly one solution on $(x_0-\epsilon, x_0+\epsilon)$.
\end{thm}
\begin{proof}
Let $U \subset D$ be a neighbourhood of $(x_0, y_0)$, such that
\begin{equation}
\norm{f(x, y) - f(x, z)}\le L \norm{y - z} ~~\forall (x, y), (x, z) \in U
\end{equation}
Choose $a, r > 0$ such that
\begin{equation}
\tilde{D} = [x_0 - a, x_0 + a] \times K_r(y_0) \subset U
(x, y, z) &\longmapsto\left(z, (y_1^2 + y_2^2 + y_3^2)^{-\frac{3}{2}}\cdot y \right)
\end{align*}
is continuously differentiable. So the IVP for arbitrary initial points in $D$ has a locally unique solution.
\end{eg}
\begin{defi}
Let $D \subset\realn\times\realn^n$ be open, $(x_0, y_0)\in D$. A solution $\tilde{y}: \tilde{I}\rightarrow\realn^n$ of the IVP
\begin{align*}
y' = f(x, y) && y(x_0) = y_0
\end{align*}
is said to be a (real) continuation of the solution $y: I \rightarrow\realn^n$ if $I \subset\tilde{I}$ and $y(x)=\tilde{y}(x) ~~\forall x \in I$.
A solution $y$ is said to be a maximal solution if there are no real continuations.
\end{defi}
\begin{thm}
Let $D \subset\realn\times\realn^n$ be open, $(x_0, y_0)\in D$ and $f: D \rightarrow\realn^n$ continuous and satisfying a local Lipschitz condition in terms of $y$.
Then the IVP
\begin{align*}
y' = f(x, y) && y(x_0) = y_0
\end{align*}
has a unique solution.
\end{thm}
\begin{proof}
First, let $y: I \rightarrow\realn^n$ and $\tilde{y}: \tilde{I}\rightarrow\realn^n$ be solutions of the IVP.
Then $y =\tilde{y}$ on $I \cap\tilde{I}=: (a, b)$. Let
\begin{equation}
c = \sup\set[{y = \tilde{y} \text{ on } [x_0, \tilde{c}]}]{\tilde{c}\in [x_0, b)}
\end{equation}
According to Picard-Lindelöf, such $\tilde{c}$ exist. Then there exists a sequence $\seq{c}\subset(x_0, c)$ such that $y =\tilde{y}$ on
$[x_0, c_n) ~~\forall n \in\natn$ and $c_n \rightarrow c$.
If $c < b$, then
\begin{equation}
y(c) = \tilde{y}(c)
\end{equation}
because $y(c_n)=\tilde{y}(c_n) ~~\forall n \in\natn$.
The IVP
\begin{align}
u' = f(x, u) && u(c) = y(c)
\end{align}
has a locally unique solution on $(c -\epsilon, c +\epsilon) ~~\epsilon > 0$ according to Picard-Lindelöf.
Since the $y$ and $\tilde{y}$ are both solutions to the IVP, they are identical on $(c -\epsilon, c +\epsilon)$.
However, this contradicts the construction of $c$, so $c = b$.
\begin{equation}
\implies y = \tilde{y}\quad\text{on } [x_0, b)
\end{equation}
Analogously, one can prove $y =\tilde{y}$ on $(a, x_0]$.
Now let $I_{\max}$ be the union of all open intervals that are domains of the solution of the IVP.
For $x \in I_{\max}$ we can choose
\begin{equation}
y_{\max}(x) = y(x)
\end{equation}
for arbitrary solutions $y: I \rightarrow\realn$ with $x \in I$. So
Let $D \subset\realn\times\realn^n$ be open, $(x_0, y_0)\subset D$ and $f: D \rightarrow\realn^n$ continuous and satisfying the local Lipschitz condition in terms of $y$.
Let $a, b \in\realn\cup\set{-\infty, \infty}$ such that
\[
-\infty\le a < x_0 < b \infty\infty
\]
and let
\[
y: (a, b) \rightarrow\realn
\]
a solution of the IVP
\begin{align*}
y' = f(x, y) && y(x_0) = y_0
\end{align*}
Then $y$ is the maximal solution of the IVP if and only if one of these conditions