% !TeX root = ../../script.tex \documentclass[../../script.tex]{subfiles} \begin{document} \section{The Picard-Lindelöf Theorem} \begin{eg} Consider the ODE \[ y' = 2\sqrt{\abs{y}} \] Possible solutions are \begin{align*} y(x) &= (x - c)^2 ~~c > 0 \\ y(x) &= -(x - c)^2 ~~c < 0 \\ y(x) = 0 \end{align*} Another solution could be \[ y(x) = \begin{cases} -(x - a)^2, & x \in (-\infty, a) \\ 0, & x \in [a, b] \\ (x - b)^2, & x \in (b, \infty) \end{cases} \] for $a, b \in \realn$ with $a \le b$ So the IVP $y(0) = 0$ has many solutions. \end{eg} \begin{defi} Let $D \subset \realn \times \realn^n$ be open, $(x_0, y_0) \in D$ and $f: D \rightarrow \realn^n$. We say $f$ fulfils a local Lipschitz-condition in the point $(x_0, y_0)$ if there exists a neighbourhood $U$ of $(x_0, y_0)$ such that \[ \norm{f(x, y) - f(x, z)} \le L \norm{y - z} ~~\forall (x, y), (x, z) \in U \] \end{defi} \begin{eg} Consider \begin{align*} f: \realn &\longrightarrow \realn \\ (x, y) &\longmapsto x^2y^2 \end{align*} Then \begin{align*} \abs{f(x, y) - f(x, z)} = \abs{x^2(y^2 - z^2)} &= \abs{x^2(y - z)(y + z)} \\ &= \underbrace{\abs{x^2 (y + z)}}_{\alpha(x, y, z)} \abs{y - z} \end{align*} The function $\alpha(x, y, z)$ is unbounded, so the global Lipschitz condition isn't satisfied. Now choose a fixed $(x_0, y_0) \in \realn \times \realn$, and set \[ R > \max\set{\abs{x_0}, \abs{y_0}} \] Then $\forall (x, y), (x, z) \in (-R, R) \times (-R, R)$ \[ \alpha(x, y, z) \le R^2 \abs{y + z} \le R^2\left(\abs{y} + \abs{z}\right) \le 2R^3 \] So $f$ fulfils a local Lipschitz condition in $(x_0, y_0)$. \end{eg} \begin{defi} Let $\measure$ be a measure space, $f: \Omega \rightarrow \realn^n$ measurable and $f_1, \cdots, f_n$ are the component functions of $f$. So \[ f(\omega) = \left(f_1(\omega), f_2(\omega), \cdots, f_n(\omega)\right) \] $f$ is said to be integrable if $f_1, \cdots, f_n$ are integrable, and we define \[ \int f \dd\mu = \left(\int f_1 \dd\mu, \int f_2 \dd\mu, \cdots, \int f_n \dd\mu \right) \] \end{defi} \begin{thm} Let $\measure$ be a measure space, define $\dnorm$ to be the norm on $\realn^n$ and let $f: \Omega \rightarrow \realn^n$ be measurable. Then $f$ is integrable if and only if $\norm{f}$ is integrable, and \[ \norm{\int f \dd\mu} \le \int \norm{f} \dd\mu \] \end{thm} \begin{proof} Without proof. \end{proof} \begin{lem}\label{lem:picardlem} Let $D \subset \realn \times \realn^n$, $(x_0, y_0) \in D$ and $f: D \rightarrow \realn^n$ continuous. Let $I$ be an open interval and $y: I \rightarrow \realn^n$ be continuously differentiable, such that $(x, y(x)) \in D ~~\forall x \in I$. Then $y$ is a solution of the IVP \begin{align*} y' = f(x, y) && y(x_0) = y_0 \end{align*} if and only if $y$ satisfies the integral equation \[ y(x) = y_0 + \int_{x_0}^x f(t, y(t)) \dd{t} \] \end{lem} \begin{proof} Let $y$ fulfil the IVP. Then \[ y(x) - y_0 = y(x) - y(x_0) = \int_{x_0}^x y'(t) \dd{t} = \int_{x_0}^x f(t, y(t)) \dd{t} \] If $y$ fulfils the integral equation, then \[ y'(x) = f(x, y(x)) \] \end{proof} \begin{thm}[Picard-Lindelöf Theorem] Let $D \subset \realn \times \realn^n$ be open, $(x_0, y_0) \in D$ and $f: D \rightarrow \realn^n$ continuous such that $f$ fulfils a local Lipschitz condition in $y$. Then $\exists \epsilon > 0$ such that the IVP \begin{align*} y' = f(x, y) && y(x_0) = y_0 \end{align*} has exactly one solution on $(x_0 - \epsilon, x_0 + \epsilon)$. \end{thm} \begin{proof} Let $U \subset D$ be a neighbourhood of $(x_0, y_0)$, such that \begin{equation} \norm{f(x, y) - f(x, z)} \le L \norm{y - z} ~~\forall (x, y), (x, z) \in U \end{equation} Choose $a, r > 0$ such that \begin{equation} \tilde{D} = [x_0 - a, x_0 + a] \times K_r(y_0) \subset U \end{equation} \begin{center} \begin{tikzpicture} \draw[thick, ->] (3, 0) -- (4, 0) node[right] {$x$}; \draw[thick, ->] (3, 0) -- (3, 1) node[above] {$y$}; \draw[thick] (0, 0) ellipse (2.5cm and 4cm); \node at (1.3, 3) {$D$}; \draw[dashed] (2, -1.5) -- (2, 1.5) -- (-2, 1.5) -- (-2, -1.5) -- (2, -1.5); \node[below left] at (2, 1.5) {$\tilde{D}$}; \draw[fill] (0, 0) circle[radius=1pt] node[below right] {$(x_0, y_0)$}; \node[below] at (0, -1.5) {$a$}; \node[left] at (-2, 0) {$r$}; \end{tikzpicture} \end{center} $\tilde{D}$ is compact and $f$ is continuous, i.e. $f$ is bounded on $\tilde{D}$ by $M \in (0, \infty)$. \begin{equation} \norm{f(x, y)} \le M ~~\forall (x, y) \in \tilde{D} \end{equation} Choose an $\epsilon$ such that $0 < \epsilon \le a$ and such that \begin{align} \epsilon M < r && \epsilon L < 1 \end{align} Set $I := (x_0 - \epsilon, x_0 + \epsilon)$, and \begin{equation} X = \set[y \text{ continuous}]{y: I \rightarrow K_r(y_0)} \subset C(I) \end{equation} $X$ is closed, and thus complete. Define $T: X \rightarrow X$ with \begin{equation} T(y)(x) := y_0 + \int_{x_0}^x f(t, y(t)) \dd{t} \end{equation} We want to show $T(y) \subset X$: \begin{equation} \begin{split} \norm{T(y)(x) - y_0} = \norm{\int_{x_0}^x f(t, y(t)) \dd{t}} &\le \int_{x_0}^x \norm{f(t, y(t))} \dd{t} \\ &\le M \int_{x_0}^x \dd{t} < \epsilon M < r \end{split} \end{equation} Now consider \begin{equation} \begin{split} \norm{T(y)(x) - T(\tilde{y})(x)} &= \norm{\int_{x_0}^x(f(t, y(t)) - f(t, \tilde{y}(t))) \dd{t}} \\ &\le \int_{x_0}^x \norm{f(t, y(t)) - f(t, \tilde{y}(t))} \dd{t} \\ &\le \int_{x_0}^x L \cdot \norm{y(t) - \tilde{y}(t)} \dd{t} \\ &\le \int_{x_0}^x L \supnorm{y - \tilde{y}} \le L\supnorm{y - \tilde{y}} \cdot \epsilon \end{split} \end{equation} By taking the supremum over all $x \in I$ we get \begin{equation} \supnorm{T(y) - T(\tilde{y})} \le \underbrace{\epsilon L}_{< 1} \supnorm{y - \tilde{y}} \end{equation} So $T: X \rightarrow X$ is strictly contractive. According to the Banach fixed point theorem, there exists a unique fixed point of $T$ in $x$, that means $\exists y \in X$ such that \begin{equation} y_0 + \int_{x_0}^x f(t, y(t)) \dd{t} = T(y)(x) = y(x) ~~\forall x \in I \end{equation} Due to \Cref{lem:picardlem}, there eixsts a unique solution to the ODE. \end{proof} \begin{rem} One can approximate a fixed point by repeatedly applying $T$. For example consider \[ \phi(x) = y_0 \] and define \begin{align*} \phi_0 = \phi && \phi_i = T(\phi_{i-1}) = y_0 + \int_{x_0}^x f(t, \phi_{i-1}(t)) \dd{t} \end{align*} This process is called Picard iteration, and the $\phi_i$ converge uniformly to the solution. \end{rem} \begin{eg} Consider \[ y' = \sqrt{\norm{y}} \] Then \[ \limes{y}{0} \left(\frac{\abs{f(x, y) - f(x, 0)}}{\abs{y - 0}}\right) = \limes{y}{0} \rec{\sqrt{\abs{y}}} \conv{} \infty \] Which means the local Lipschitz condition is not satisfied. \end{eg} \begin{thm} Let $D \subset \realn \times \realn^n$ be open, $f: D \rightarrow \realn^n$ continuously differentiable. Then $f$ satisfies a local Lipschitz condition in terms of $y$. \end{thm} \begin{proof} Let $(x_0, y_0) \in D$. Choose $r > 0$ such that $\cball[r](x_0, y_0) \subset D$. The total derivative $D_y f$ is continuous and thus bounded on $\cball[r](x_0, y_0)$. \begin{equation} \exists L > 0: ~~\norm{D_y f(x, y)} \le L ~~\forall (x, y) \in \cball[r](x_0, y_0) \end{equation} Applying the generalized mean value theorem yields \begin{equation} \begin{split} \norm{f(x, y) - f(x, z)} &\le \sup_{t \in [0, 1]} \norm{D_y f(x, y + t(z - y))} \norm{y - z} \\ &\le L \norm{y - z} \end{split} \end{equation} If $n=1$ we can specify \begin{equation} \abs{f(x, y) - f(x, z)} = \abs{\partial_y f(x, \xi) (y - z)} \end{equation} \end{proof} \begin{eg} Consider \[ y'' = -\frac{y}{\norm{y}^3} \] The function \begin{align*} f: \underbrace{\realn \times \realn^3 \setminus \set{0} \times \realn^3}_D &\longrightarrow \realn^3 \times \realn^3 \\ (x, y, z) &\longmapsto \left(z, (y_1^2 + y_2^2 + y_3^2)^{-\frac{3}{2}} \cdot y \right) \end{align*} is continuously differentiable. So the IVP for arbitrary initial points in $D$ has a locally unique solution. \end{eg} \begin{defi} Let $D \subset \realn \times \realn^n$ be open, $(x_0, y_0) \in D$. A solution $\tilde{y}: \tilde{I} \rightarrow \realn^n$ of the IVP \begin{align*} y' = f(x, y) && y(x_0) = y_0 \end{align*} is said to be a (real) continuation of the solution $y: I \rightarrow \realn^n$ if $I \subset \tilde{I}$ and $y(x) = \tilde{y}(x) ~~\forall x \in I$. A solution $y$ is said to be a maximal solution if there are no real continuations. \end{defi} \begin{thm} Let $D \subset \realn \times \realn^n$ be open, $(x_0, y_0) \in D$ and $f: D \rightarrow \realn^n$ continuous and satisfying a local Lipschitz condition in terms of $y$. Then the IVP \begin{align*} y' = f(x, y) && y(x_0) = y_0 \end{align*} has a unique solution. \end{thm} \begin{proof} First, let $y: I \rightarrow \realn^n$ and $\tilde{y}: \tilde{I} \rightarrow \realn^n$ be solutions of the IVP. Then $y = \tilde{y}$ on $I \cap \tilde{I} =: (a, b)$. Let \begin{equation} c = \sup\set[{y = \tilde{y} \text{ on } [x_0, \tilde{c}]}]{\tilde{c} \in [x_0, b)} \end{equation} According to Picard-Lindelöf, such $\tilde{c}$ exist. Then there exists a sequence $\seq{c} \subset (x_0, c)$ such that $y = \tilde{y}$ on $[x_0, c_n) ~~\forall n \in \natn$ and $c_n \rightarrow c$. If $c < b$, then \begin{equation} y(c) = \tilde{y}(c) \end{equation} because $y(c_n) = \tilde{y}(c_n) ~~\forall n \in \natn$. The IVP \begin{align} u' = f(x, u) && u(c) = y(c) \end{align} has a locally unique solution on $(c - \epsilon, c + \epsilon) ~~\epsilon > 0$ according to Picard-Lindelöf. Since the $y$ and $\tilde{y}$ are both solutions to the IVP, they are identical on $(c - \epsilon, c + \epsilon)$. However, this contradicts the construction of $c$, so $c = b$. \begin{equation} \implies y = \tilde{y} \quad \text{on } [x_0, b) \end{equation} Analogously, one can prove $y = \tilde{y}$ on $(a, x_0]$. Now let $I_{\max}$ be the union of all open intervals that are domains of the solution of the IVP. For $x \in I_{\max}$ we can choose \begin{equation} y_{\max}(x) = y(x) \end{equation} for arbitrary solutions $y: I \rightarrow \realn$ with $x \in I$. So \begin{equation} y_{\max}: I_{\max} \rightarrow \realn \end{equation} is a maximal solution that is unique. \end{proof} \begin{eg} \begin{enumerate}[(i)] \item Consider \begin{align*} y' = e^{-y} && y(1) = 0 \end{align*} The solution to this is \begin{align*} y: (0, \infty] &\longrightarrow \realn \\ x &\longmapsto \ln(x) \end{align*} and is maximal. \item Consider \begin{align*} y' = -i \frac{y}{x^2} && y\left(\rec{2\pi}\right) = 1 \end{align*} The solution to this is \begin{align*} (0, \infty) &\longrightarrow \cmpln \\ x &\longmapsto e^{\frac{i}{x}} \end{align*} and is maximal. \end{enumerate} \end{eg} We define $\metric$ to be a metric space, $x \in X$ and $A \subset X$. Then \[ d(x, A) = \inf\set[y \in A]{d(x, y)} \] \begin{thm}\label{thm:837} Let $D \subset \realn \times \realn^n$ be open, $(x_0, y_0) \subset D$ and $f: D \rightarrow \realn^n$ continuous and satisfying the local Lipschitz condition in terms of $y$. Let $a, b \in \realn \cup \set{-\infty, \infty}$ such that \[ -\infty \le a < x_0 < b \infty \infty \] and let \[ y: (a, b) \rightarrow \realn \] a solution of the IVP \begin{align*} y' = f(x, y) && y(x_0) = y_0 \end{align*} Then $y$ is the maximal solution of the IVP if and only if one of these conditions \begin{align*} \text{(i)} && b = \infty \\ \text{(ii)} && \limes{x}{b} \norm{y(x)} = \infty \\ \text{(iii)} && \limes{x}{b} d((x, y(x)), \boundary{D}) = 0 \end{align*} and one of these \begin{align*} \text{(i)} && a = -\infty \\ \text{(ii)} && \limes{x}{a} \norm{y(x)} = \infty \\ \text{(iii)} && \limes{x}{a} d((x, y(x)), \boundary{D}) = 0 \end{align*} is fulfilled. \end{thm} \end{document}