2021-05-10 09:05:38 +00:00
% !TeX root = ../../script.tex
\documentclass [../../script.tex] { subfiles}
\begin { document}
\section { Contour Integrals}
\begin { defi} [Contour integrals]
Let $ U \subset \cmpln $ be open, $ \gamma = C ( [ a, b ] , U ) $ a curve in $ U $ and $ f: U \rightarrow \cmpln $ continuous. Then
\[
\int _ { \gamma } f(z) \dd { z} := \int _ a^ b f(\gamma (t)) \gamma '(t) \dd { t}
\]
\end { defi}
\begin { eg}
Consider the path
\[
\gamma (t) = re^ { it} , ~\quad t \in [0, 2\pi ], r > 0
\]
we want to take the contout integral along the path $ \gamma $ of the function $ z ^ n $
\begin { align*}
\int _ { \gamma } z^ n \dd { z} & = \int _ 0^ { 2\pi } (r e^ { it} )^ n ire^ { it} \dd { t} \\
& = ir^ { n+1} \int _ 0^ { 2\pi } e^ { it(n+1)} \dd { t} = ir^ { n+1} \begin { cases}
2\pi , & n = -1 \\
0, & n \ne -1
\end { cases}
\end { align*}
\end { eg}
\begin { lem} [Estimation Lemma]
For every curve $ \gamma \in C ( [ 0 , 1 ] , U ) $ and every continuous function $ f: U \rightarrow \cmpln $ we have
\[
\abs { \int _ { \gamma } f(z) \dd { z} } \le \sup _ { z \in \gamma } \abs { f(z)} \int _ 0^ 1 \abs { \gamma '(t)} \dd { t}
\]
\end { lem}
\begin { proof}
\begin { equation}
\begin { split}
\abs { \int _ { \gamma } f(z) \dd { z} } = \abs { \int _ 0^ 1 f(\gamma (t)) \gamma '(t) \dd { t} } & \le \int _ 0^ 1 \abs { f(\gamma (t))} \abs { \gamma '(t)} \dd { t} \\
& \le \sup _ { t \in [0, 1]} \abs { f(\gamma (t))} \int _ 0^ 1 \abs { \gamma '(t)} \dd { t}
\end { split}
\end { equation}
\end { proof}
\begin { cor}
Let $ \gamma \in C ( [ 0 , 1 ] , U ) $ be a simple closed curve, $ U \subset \cmpln $ , and let $ f: U \rightarrow \cmpln $ a holomorphic function with
\begin { align*}
u = \Re f & & v = \Im f
\end { align*}
Then
\[
\oint _ { \gamma } f(z) \dd { z} = 0
\]
\end { cor}
\begin { proof}
Let $ A \subset U $ be the surface bounded by $ \gamma $ . Then
\begin { equation}
\oint _ { \gamma } f(z) \dd { z} = \int _ 0^ 1 f(\gamma (t)) \gamma '(t) \dd { t}
\end { equation}
We can split $ \gamma $ into a real and an imaginary part, like this
\begin { equation}
\gamma (t) = \gamma _ 1(t) + i\gamma _ 2(t), \quad \gamma _ 1, \gamma _ 2: [0, 1] \rightarrow \realn
\end { equation}
Then we can calculate
\begin { equation}
\begin { split}
\oint _ { \gamma } f(z) \dd { z} & = \int _ 0^ 1 \left (u(\gamma _ 1(t), \gamma _ 2(t)) + iv(\gamma _ 1(t), \gamma _ 2(t)) (\gamma _ 1'(t) + i\gamma _ 2'(t))\right ) \dd { t} \\
& = \int _ 0^ 1 u(\gamma _ 1(t), \gamma _ 2(t)) \gamma _ 1'(t) - v(\gamma _ 1(t), \gamma _ 2(t)) \gamma _ 2'(t) \dd { t} \\
& \quad + i\int _ 0^ 1 u(\gamma _ 1(t), \gamma _ 2(t))\gamma _ 2'(t) + v(\gamma _ 1(t), \gamma _ 2(t))\gamma _ 1'(t) \dd { t} \\
& = \int _ 0^ 1 \begin { pmatrix}
u(\gamma (t)) \\ -v(\gamma (t))
\end { pmatrix}
\begin { pmatrix}
\gamma _ 1'(t) \\ \gamma _ 2'(t)
\end { pmatrix}
\dd { t} + i \int _ 0^ 1 \begin { pmatrix}
v(\gamma (t)) \\ u(\gamma (t))
\end { pmatrix}
\begin { pmatrix}
\gamma _ 1'(t) \\ \gamma _ 2'(t)
\end { pmatrix}
\dd { t} \\
& = \oint _ { \boundary { A} } \begin { pmatrix}
u \\ -v
\end { pmatrix} \dd { s} + i \oint _ { \boundary { A} } \begin { pmatrix}
v \\ u
\end { pmatrix} \\
& = \int _ A (-\partial _ x v - \partial _ y u) \dd { \lambda ^ 2} + i \int _ A (\partial _ x u - \partial _ y v) \dd { \lambda ^ 2} \\
\end { split}
\end { equation}
Because $ f $ is holomorphic we can apply the Cauchy-Riemann equation
\begin { equation}
\oint _ { \gamma } f(z) \dd { z} = 0
\end { equation}
\end { proof}
\begin { defi}
\begin { enumerate} [(i)]
\item A closed curve $ \gamma : [ a, b ] \rightarrow U $ with $ U \subset \cmpln $ is said to be null-homotopic,
if it can be continuously deformed into a point within the set $ U $ .
\item Two curves $ \gamma _ 1 , \gamma _ 2 : [ 0 , 1 ] \rightarrow U $ with identical boundary points
\begin { align*}
\gamma _ 1(0) = \gamma _ 2(0) ~\wedge ~ \gamma _ 1(1) = \gamma _ 2(1)
\end { align*}
is said to be homotopic in $ U $ if the concatenation
\begin { align*}
\gamma : [0, 2] & \longrightarrow U \\
\gamma (t) & = \begin { cases}
\gamma _ 1(t), & t \in [0, 1] \\
\gamma _ 2(2 - t) & t \in [1, 2]
\end { cases}
\end { align*}
is null-homotopic.
\item Two closed surves $ \gamma _ 0 , \gamma _ 1 $ are said to be free-homotopic in $ U $ if they can be continuously transformed into each other.
\end { enumerate}
\end { defi}
\begin { defi}
A non-empty set $ U \subset \cmpln $ is said to be
\begin { enumerate} [(i)]
\item \textit { connected} if any two points in $ U $ can be connected by a curve in $ U $ .
\item \textit { simply connected} if $ U $ is connected and every closed surve in $ U $ is null-homotopic.
\item a \textit { domain} if it is open and connected.
\end { enumerate}
\end { defi}
\begin { thm} [Cauchy's Integral Theorem]
Let $ f: U \rightarrow \cmpln $ be holomorphic and $ \gamma $ a closed, null-homotopic curve in $ U \subset \cmpln $ open. Then
\[
\oint _ { \gamma } f(z) \dd { z} = 0
\]
\end { thm}
\begin { proof}
\noproof
\end { proof}
\begin { cor}
\begin { enumerate} [(i)]
\item Let $ \gamma _ 1 , \gamma _ 2 $ be holomorphic curves with the same endpoints on the open set $ U \subset \cmpln $ . Then
\[
\int _ { \gamma _ 1} f(z) \dd { z} = \int _ { \gamma _ 2} f(z) \dd { z}
\]
for all holomorphic $ f: U \rightarrow \cmpln $ .
\item For $ f: U \rightarrow \cmpln $ holomorphic, with $ U \subset \cmpln $ open and simple connected. Then $ \forall z _ 0 \in U $
\[
F(z) := \int _ { z_ 0} ^ { z} f(\zeta ) \dd { \zeta } = \int _ { \gamma = \gamma _ 0} f(\zeta ) \dd { \zeta }
\]
is a holomorphic anti-derivative of $ f $ , i.e.
\[
F'(z) = f(z) \quad \forall z \in U
\]
\end { enumerate}
\end { cor}
\begin { proof}
First we prove (i). The concatenation $ \gamma : = \gamma _ 1 \gamma _ 2 $ is a null-homotopic curve, so together with the holomorphy of $ f $ we can apply the Cauchy integral theorem
\begin { equation}
\begin { split}
0 = \oint _ { \gamma } f(z) \dd { z} & = \int _ 0^ 2 f(\gamma (t)) \dot { \gamma } (t) \dd { t} \\
& = \int _ 0^ 1 f(\gamma _ 1(t))\dot { \gamma _ 1} (t) \dd { t} - \int _ 1^ 2 f(\gamma _ 2(2 - t)) \dot { \gamma _ 2} (2 - t) \dd { t}
\end { split}
\end { equation}
Substitute $ s = 2 - t $ with $ \dd { s } = - \dd { t } $ :
\begin { equation}
\begin { split}
& = \int _ 0^ 1 f(\gamma _ 1(t)) \dot { \gamma } (t) \dd { t} - \gamma _ 0^ 1 f(\gamma _ 2(s)) \dot { \gamma _ 2} (s) \dd { s} \\
& = \int _ { \gamma _ 1} f(z) \dd { z} - \int _ { \gamma _ 2} f(z) \dd { z}
\end { split}
\end { equation}
Now we prove (ii). According to (i), we have
\begin { equation}
F(z + h) = F(z) + \int _ { \gamma _ { z+h, z} } f(z) \dd { z}
\end { equation}
We choose $ \gamma _ { z + h, z } $ to be a straight line, i.e.
\begin { equation}
\gamma _ { z+h, z} (t) = t(z + h) + (1 - t)z, \quad t \in [0, 1]
\end { equation}
Then
\begin { equation}
\int _ { \gamma _ { z+h, z} } 1 \dd { \zeta } = \int _ 0^ 1 \dot { \gamma } (t) \dd { t} = h
\end { equation}
Thus follows
\begin { equation}
F(z + h) - F(z) = \int _ { \gamma _ { z + h, z} } f(\zeta ) \dd { \zeta } \iff \frac { F(z+h) - F(z)} { h} = \frac { 1} { h} \in f(\zeta ) \dd { \zeta }
\end { equation}
and therefore
\begin { equation}
\begin { split}
\left | \frac { F(z+h) - F(z)} { h} - f(z) \right | = & \left | \frac { 1} { h} \int _ { \gamma _ { z+h, z} } f(\zeta ) \dd { \zeta } - f(z) \right | \\
= & \left | \frac { 1} { h} \int _ { \gamma _ { z+h, z} } f(\zeta ) - f(z) \dd { \zeta } \right | \\
= & \frac { 1} { \abs { h} } \int _ 0^ 1 \left | f(\gamma _ { z+h, z} (t)) - f(z)\right | \left | \dot { \gamma _ { z+h, z} } (t) \right | \dd { t} \\
\le & \frac { 1} { h} \sup _ { t \in [0, 1]} \left | f(\gamma _ { z+h,z} (t)) - f(z) \right | \cdot \underbrace { \int \left | \dot { \gamma _ { z+h, z} } (t) \right | \dd { t} } _ { \abs { h} } \\
= & \sup _ { t \in [0, 1]} \left | f(\gamma _ { z+h, z} (t)) - f(z) \right | \\
\conv { k \rightarrow 0} & 0
\end { split}
\end { equation}
\end { proof}
\begin { eg} [The complex logarithm]
Consider $ t \mapsto e ^ { it } , ~t \in \realn $ . This is a $ 2 \pi $ -periodic function, that means
\[
e^ { it} = e^ { i(t + 2\pi n)} , \quad n \in \intn
\]
The function
\begin { align*}
f: \cmpln \setminus \set { 0} & \longrightarrow \cmpln \\
z & \longmapsto \frac { 1} { z}
\end { align*}
is holomorphic, and does not have an anti-derivative on $ \cmpln \setminus \set { 0 } $ . If it did, then
\[
\int _ { \gamma } f(z) \dd { z} = F(\gamma (2\pi )) - F(\gamma (0)) = 0
\]
would have to hold, but we know that
\[
\int _ { \gamma } \frac { \dd { z} } { z} = 2\pi i
\]
This is a contradiction. However $ f $ does have an anti-derivative on $ \cmpln _ { - } $ (the complex numbers without the negative real axis) , since $ \cmpln _ { - } $ is simple connected and $ f $ is holomorphic.
Thus we can define
\begin { align*}
\Log : \cmpln _ { -} & \longrightarrow \cmpln \\
z & \longmapsto \int _ { \gamma : [0, 1] \rightarrow z} \frac { \dd { \zeta } } { \zeta }
\end { align*}
It can also be defined as
\begin { align*}
\Log z = \begin { cases}
0, & 1 \\
\log \abs { z} + i \arg (z), & \text { else}
\end { cases}
\end { align*}
The function $ \arg $ is defined as
\begin { align*}
\arg : \cmpln _ { -} & \longrightarrow (-\pi , \pi ) \\
z & \longmapsto \phi \text { for } z = \abs { z} e^ { i\phi }
\end { align*}
$ \Log $ is said to be the main branch of the complex logarithm, and
\[
\Log z = \log \abs { z} + i (\arg (z) + 2\pi n), \quad n \in \intn
\]
the secondary branches.
\end { eg}
\begin { eg} [Fresnel Integrals]
Consider the integrals
\begin { align*}
\int _ 0^ { \infty } \cos (t^ 2) \dd { t} & & \int _ 0^ { \infty } \sin (t^ 2) \dd { t}
\end { align*}
The way these integrals are supposed to be interpreted is as
\[
\int _ 0^ { \infty } f(t) \dd { t} = \lim _ { N \rightarrow \infty } \int _ 0^ N f(t) \dd { t}
\]
We realize that
\begin { align*}
\cos (t^ 2) = \Re e^ { -it^ 2} & & \sin (t^ 2) = -\Im e^ { -it^ 2}
\end { align*}
Now, consider these paths
\begin { center}
\begin { tikzpicture}
\draw [->, >=stealth] (0, -1) -- (0, 5) node[above] { $ \Im $ } ;
\draw [->, >=stealth] (-1, 0) -- (5, 0) node[right] { $ \Re $ } ;
\draw [->, >=stealth, very thick] (0, 0) -- node[below] { $ \gamma _ 1 $ } (4, 0) node[below] { $ R $ } ;
\draw [->, >=stealth, very thick] (4, 0) -- node[right] { $ \gamma _ 2 $ } (4, 4);
\draw [->, >=stealth, very thick] (0, 0) -- node[above left] { $ \gamma $ } (4, 4);
\draw [dashed] (0, 4) node[left] { $ R $ } -- (4, 4);
\end { tikzpicture}
\end { center}
So it becomes apparent that
\[
\int _ 0^ R \cos (t^ 2) \dd { t} = \Re \int _ 0^ R e^ { -it^ 2} \dd { t} = \Re \int _ { \gamma } e^ { -z^ 2} \dd { z}
\]
We can define a new (closed) path
\[
\Gamma = \gamma _ 1 \gamma _ 2 (-\gamma )
\]
and with Cauchy's theorem we can realize that
\begin { align*}
0 = \oint _ { \Gamma } e^ { -z^ 2} \dd { z} = \int _ { \gamma _ 1} e^ { -z^ 2} \dd { z} + \int _ { \gamma _ 2} e^ { -z^ 2} \dd { z} - \int _ { \gamma } e^ { -z^ 2} \dd { z}
\end { align*}
The next step is to evaluate each of the integrals in the last term, starting with the integral over $ \gamma $ .
\begin { align*}
\int _ { \gamma } e^ { -z^ 2} \dd { z} = & \int _ 0^ R e^ { -((1+i)t)^ 2} (1+i) \dd { t} \\
= & (1 + i) \int _ 0^ R e^ { -2it^ 2} \dd { t} \\
= & \frac { 1+i} { \sqrt { 2} } \int _ 0^ { \sqrt { 2} R} e^ { -is^ 2} \dd { s}
\end { align*}
The integrall over $ \gamma _ 1 $ evaluates to
\begin { align*}
\int _ { \gamma _ 1} e^ { -z^ 2} \dd { z} = \int _ 0^ R e^ { -t^ 2} \dd { t} \conv { R \rightarrow \infty } \int _ 0^ { \infty } e^ { -t^ 2} \dd { t} = \frac { 1} { 2} \int _ { -\infty } ^ { \infty } e^ { -t^ 2} \dd { t} = \frac { \sqrt { \pi } } { 2}
\end { align*}
And the one over $ \gamma _ 2 $ to
\begin { align*}
\int _ { \gamma _ 2} e^ { -z^ 2} \dd { z} = \int _ 0^ R e^ { -(r +it)^ 2} i \dd { t} = i \int _ 0^ R e^ { -R^ 2 + t^ 2} e^ { -2irt} \dd { t}
\end { align*}
To evaluate this we need to consider the absolute value of this integral
\begin { align*}
\abs { \int _ { \gamma _ 2} e^ { -z^ 2} \dd { z} } \le & e^ { -R^ 2} \int _ 0^ R e^ { t^ 2} \underbrace { \abs { e^ { -2iRt} } } _ { =1} \dd { t} \\
= & e^ { -R^ 2} \int _ 0^ R e^ { t^ 2} \dd { t} \le e^ { -R^ 2} \int _ 0^ R e^ { tR} \dd { t} \\
= & e^ { -R^ 2} \left [\frac{1}{R} e^{tR}\right] _ 0^ R = \frac { e^ { -R^ 2} } { R} \left (e^ { R^ 2} - 1\right )
\end { align*}
so
\[
\abs { \int _ { \gamma _ 2} e^ { -z^ 2} \dd { z} } \le \frac { 1} { R} \left (1 - e^ { -R^ 2} \right ) \conv { R \rightarrow \infty } 0
\]
Thus we can calculate
\[
\int _ { \gamma } e^ { -z^ 2} \dd { z} = \frac { 1+i} { \sqrt { 2} } \int _ 0^ { \sqrt { 2} R} e^ { -it^ 2} \dd { t} = \int _ { \gamma _ 1} e^ { -z^ 2} \dd { z} + \int _ { \gamma _ 2} e^ { -z^ 2} \dd { z}
\]
And finally
\begin { align*}
\lim _ { R \rightarrow \infty } \int _ 0^ { \infty } e^ { -it^ 2} \dd { t} = & \lim _ { R \rightarrow \infty } \int _ 0^ { \sqrt { 2} R} e^ { -t^ 2} \dd { t} \\
= & \frac { \sqrt { 2} } { 1+i} \left (\lim _ { R \rightarrow \infty } \left ( \int _ { \gamma _ 1} e^ { -z^ 2} \dd { z} + \int _ { \gamma _ 2} e^ { -z^ 2} \dd { z} \right ) \right ) \\
= & \frac { \sqrt { 2} } { 1+i} \left (\frac { \pi } { 2} + 0\right ) \\
= & \sqrt { \frac { \pi } { 2} } \frac { 1-i} { 2} = \sqrt { \frac { \pi } { 8} } (1 - i)
\end { align*}
So we can calculate the Fresnel integrals
\begin { align*}
\int _ 0^ { \infty } \cos (t^ 2) \dd { t} & = \sqrt { \frac { \pi } { 8} } \\
\int _ 0^ { \infty } \sin (t^ 2) \dd { t} & = \sqrt { \frac { \pi } { 8} }
\end { align*}
\end { eg}
\begin { thm} [Cauchy's Theorem for circular disks]
Let $ f: U \rightarrow \cmpln $ be holomorphic, $ U \subset \cmpln $ open and $ \cball [ r ] ( a ) \subset U $ . Then
\[
f(a) = \frac { 1} { 2\pi i} \int _ { \abs { z - a} = r} \frac { f(z)} { z-a} \dd { z}
\]
\end { thm}
\begin { proof}
Consider the following path
\begin { center}
\begin { tikzpicture} [scale=7.5]
\draw [fill] (5, 0.7) node[below] { $ a $ } circle [radius=0.004];
\begin { scope} [decoration={
markings,
mark=at position 0.5 with { \arrow { latex} } }
]
\draw [thick, postaction={decorate}, domain=435:105] plot ({ 0.1*cos(\x ) + 5} , { 0.1*sin(\x ) + 0.7} );
\draw [postaction={decorate}, domain=435:105] plot ({ 0.3*cos(\x ) + 5} , { 0.3*sin(\x ) + 0.7} );
\draw [thick, postaction={decorate}] ({ 0.1*cos(105) + 5} , { 0.1*sin(105) + 0.7} ) -- node[left] { $ \alpha _ { \delta } ^ 1 $ } ({ 0.3*cos(105) + 5} , { 0.3*sin(105) + 0.7} );
\draw [thick, postaction={decorate}] ({ 0.3*cos(435) + 5} , { 0.3*sin(435) + 0.7} ) -- node[right] { $ \alpha _ { \delta } ^ 2 $ } ({ 0.1*cos(435) + 5} , { 0.1*sin(435) + 0.7} );
\draw [thick, postaction={decorate}, domain=105:75] plot ({ 0.3*cos(\x ) + 5} , { 0.3*sin(\x ) + 0.7} );
\end { scope}
\node [below] at ({ 0.1*cos(270) + 5} , { 0.1*sin(270) + 0.7} ) { $ \gamma _ { \epsilon } $ } ;
\node [below] at ({ 0.3*cos(270) + 5} , { 0.3*sin(270) + 0.7} ) { $ |z - a| = r $ } ;
\draw [dashed] (5, 0.7) -- ({ 0.1*cos(150) + 5} , { 0.1*sin(150) + 0.7} ) node[above left=-0.1cm] { $ \epsilon $ } ;
\draw [dashed] (5, 0.7) -- ({ 0.3*cos(5) + 5} , { 0.3*sin(5) + 0.7} ) node[right] { $ r $ } ;
\node [above] at ({ 0.3*cos(90) + 5} , { 0.3*sin(90) + 0.7} ) { $ \gamma _ { \delta } $ } ;
\end { tikzpicture}
\end { center}
According to the first corollary of Cauchy's theorem we have
\begin { equation}
\begin { split}
\int _ { \abs { z-a} =r} \frac { f(z)} { z-a} \dd { z} = & \lim _ { \delta \rightarrow 0} \int _ { \gamma _ { \epsilon , \delta } } \frac { f(z)} { z-a} \dd { z} + \underbrace { \int _ { \alpha _ { \delta } ^ 1} \frac { f(z)} { z-a} \dd { z} + \int _ { \alpha _ { \delta } ^ 2} \frac { f(z)} { z-a} \dd { z} } _ { \conv { \delta \rightarrow 0} 0} \\
= & \int _ { \gamma _ { \epsilon } } \frac { f(z)} { z-a} \dd { z}
\end { split}
\end { equation}
Thus we conclude
\begin { equation}
\begin { split}
\int _ { \abs { z-a} =r} \frac { f(z)} { z-a} \dd { z} = \int _ { \gamma _ { \epsilon } } \frac { f(z)} { z-a} \dd { z} = & \int _ { \gamma _ { \epsilon } } \frac { f(z) - f(a)} { z-a} \dd { z} + \int _ { \gamma _ { \epsilon } } \frac { f(a)} { z-a} \dd { z} \\
= & \int _ { \gamma _ { \epsilon } } \frac { f(z) - f(a)} { z-a} \dd { z} + f(a) \int _ { \gamma _ { \epsilon } } \frac { \dd { z} } { z-a}
\end { split}
\end { equation}
We also know that
\begin { equation}
\int _ { \gamma _ { \epsilon } } \frac { \dd { z} } { z-a} = 2\pi i
\end { equation}
Since $ f $ is holomorphic we can realize
\begin { equation}
\sup _ { \cball [r] (a)} \left | \frac { f(z) - f(a)} { z - a} \right | = M_ r < \infty
\end { equation}
Which results in
\begin { equation}
\abs { \int _ { \gamma _ { \epsilon } } \frac { f(z) - f(a)} { z - a} \dd { z} } \le M_ r \underbrace { \int _ 0^ { 2\pi } \abs { \dot { \gamma _ { \epsilon } } (t)} \dd { t} } _ { 2\pi \epsilon } \conv { \epsilon \rightarrow 0} 0
\end { equation}
Thus follows
\begin { equation}
\int _ { |z - a| = r} \frac { f(z)} { z - a} \dd { z} = \int _ { \gamma _ { \epsilon } } \frac { f(z) - f(a)} { z - a} \dd { z} + 2\pi i f(a) \conv { \epsilon \rightarrow 0} 2\pi i f(a)
\end { equation}
Or short
\begin { equation}
\int _ { \abs { z - a} = r} \frac { f(z)} { z - a} \dd { z} = 2\pi i f(a)
\end { equation}
\end { proof}
\begin { cor}
Let $ f: U \rightarrow \cmpln $ be a holomorphic function and $ U \subset \cmpln $ an open set such that $ \cball [ r ] ( a ) \subset U $ . Then
\[
f(a) = \frac { 1} { 2\pi } \int _ 0^ { 2\pi } f(a + re^ { it} ) \dd { t}
\]
\end { cor}
\begin { proof}
\reader
\end { proof}
\begin { defi} [Analytic functions]
Let $ f: U \rightarrow \cmpln $ be a function and $ U \subset \cmpln $ a domain. $ f $ is said to be analytic in $ z _ 0 \in U $ if and only if there exists a power series
\[
\sum _ { n=0} ^ { \infty } a_ n \zeta ^ n
\]
with convergence radius
\[
\rho = \left (\limsup |a_ n|^ { \frac { 1} { n} } \right )^ { -1} > 0
\]
and $ \delta \in ( 0 , \rho ) $ such that $ \oball [ \delta ] ( z _ 0 ) \subset U $ and
\[
f(z) = \int _ { k=0} ^ { \infty } a_ n (z - z_ 0)^ n, \quad \forall z \in \oball [\delta] (z_ 0)
\]
$ f $ is said to be analytic on $ U $ if $ f $ is analytic $ \forall z _ 0 \in U $ .
\end { defi}
\begin { thm} [Power series expansion]
If $ f $ is holomorphic on a circular disk $ \oball [ r ] ( z _ 0 ) $ for some $ r > 0 $ , then $ f $ is analytic in $ z _ 0 $ .
$ f $ can be represented with the on $ \oball [ \rho ] ( z _ 0 ) $ convergent power series
\[
f(z) = \sum _ { n=0} ^ { \infty } c_ n (z - z_ 0)^ n, \quad z \in \oball [\rho] (z_ 0)
\]
with
\[
c_ n = \frac { 1} { 2\pi i} \int _ { |z - z_ 0| = r} \frac { f(z)} { (z - z_ 0)^ { n+1} } \dd { z} , \quad \forall \rho \in (0, r)
\]
\end { thm}
\begin { proof}
\noproof
\end { proof}
\begin { rem}
If $ f $ is holomorphic then $ f $ can be infinitely often differentiated on $ \cmpln $ with
\[
f^ { (n)} (z) = n! c_ n = \frac { n!} { 2\pi i} \int _ { \abs { z - z_ 0} = \rho } \frac { f(z)} { (z- z_ 0)^ { n+1} } \dd { z}
\]
By employing the estimation lemma we can then find that
\begin { align*}
\abs { c_ n} \le \frac { 1} { 2\pi } \abs { \int _ { \abs { z - z_ 0} = \rho } \frac { f(z)} { (z - z_ 0)^ { n+1} } \dd { z} } \le & \frac { 1} { 2\pi } \sup _ { \abs { z - z_ 0} = \rho } \abs { \frac { f(z)} { \abs { z - z_ 0} ^ { n+1} } } \cdot 2\pi \rho \\
= & \frac { 1} { \rho ^ n} \sup _ { z \in \oball [r] (z_ 0)} \abs { f(z)} \\
= & \frac { M_ r} { \rho ^ n} , \quad M_ r < \infty
\end { align*}
This is Cauchy's estimate.
\end { rem}
\begin { thm} [Liouville's Theorem]
Every bounded entire function is constant.
\end { thm}
\begin { proof}
According to the power series expansion theorem, $ f $ can be represented by a power series on all of $ \cmpln $ :
\begin { equation}
f(z) = \sum _ { n=0} ^ { \infty } c_ n z^ n
\end { equation}
and the coefficients satisfy the Cauchy estimate
\begin { equation}
\abs { c_ n} \le \frac { 1} { \rho ^ n} \sup _ { \abs { z} = \rho } \abs { f(z)} \le \frac { 1} { \rho ^ n} \underbrace { \sup _ { z \in \cmpln } \abs { f(z)} } _ { < \infty }
\end { equation}
This inequality tends to $ 0 $ if $ \rho $ tends to $ \infty $ for all $ n \ge 1 $ , thus we can find
\begin { equation}
c_ n = 0, \quad \forall n \ge 1
\end { equation}
Thus
\begin { equation}
f(z) = c_ 0 = \const .
\end { equation}
\end { proof}
2021-12-05 23:58:57 +00:00
\begin { thm} [Fundamental Theorem of Algebra]\label { thm:fundamental}
2021-05-10 09:05:38 +00:00
Every polynomial of degree $ n \ge 1 $
\[
f(z) = \sum _ { k=0} ^ n c_ k z^ k, \quad c_ n \ne 0
\]
has a root, i.e.
\[
\exists z_ 0 \in \cmpln : \quad f(z_ 0) = 0
\]
\end { thm}
\begin { proof}
Assume there exists no root. Then the function
\begin { equation}
z \longmapsto \frac { 1} { f(z)}
\end { equation}
would be holomorphic on all of $ \cmpln $ , since $ z \mapsto \rec { z } $ is holomorphic on $ \cmpln \setminus \set { 0 } $ .
Furthermore we find that
\begin { equation}
\exists R \ge 0: ~~\abs { z} \ge R \implies \abs { f(z)} \ge \abs { f(0)} > 0
\end { equation}
which implies
\begin { equation}
\sup _ { z \in \cmpln } \frac { 1} { \abs { f(z)} } = \sup _ { \abs { z} < R} \frac { 1} { \abs { f(z)} } = \max _ { \abs { z} \le R} \frac { 1} { \abs { f(z)} } < \infty
\end { equation}
since $ f $ doesn't have a root. According to Liouville's theorem $ \rec { f } $ has to be constant, and thus $ f $ must be constant.
This implies that $ c _ n = 0 $ , which contradicts the assumption. So $ f $ has to have a root.
\end { proof}
\begin { cor} [Polynomial Decomposition]
Let
\[
f(z) = \sum _ { k=0} ^ n c_ k z^ k, \quad n \in \natn , c_ k \in \cmpln , c_ n = 1
\]
Then $ \exists z _ j \in \cmpln , ~~j = 1 , \cdots , n $ such that
\[
f(z) = \prod _ { j=1} ^ n (z - z_ j)
\]
\end { cor}
\end { document}