added contour integrals

This commit is contained in:
Robert 2021-05-10 11:05:38 +02:00
parent 40e0ad3b03
commit 10e516c493
6 changed files with 6672 additions and 5211 deletions

View file

@ -28,9 +28,8 @@ The topics covered in this script will be:
5.1 Metric and Normed spaces
5.2 Sequences, Series and Limits
5.3 Open and Closed Sets
5.4 ????
5.5 Continuiuty
5.6 Convergence of Function Sequences
5.4 Continuiuty
5.5 Convergence of Function Sequences
6. Differential Calculus for Functions with multiple Variables
6.1 Partial and Total Differentiability
@ -42,9 +41,8 @@ The topics covered in this script will be:
7.1 Contents and Measures
7.2 Integrals
7.3 Integrals over the real numbers
7.4 ????
7.5 Product Measures and the Fubini Theorem
7.6 The Transformation Theorem
7.4 Product Measures and the Fubini Theorem
7.5 The Transformation Theorem
8. Ordinary Differential Equations
8.1 Solution Methods

View file

@ -7,5 +7,5 @@
\pagebreak
\subfile{sections/complex_diff.tex}
\subfile{sections/complex_line_int.tex}
\subfile{sections/contour_integrals.tex}
\end{document}

View file

@ -1,6 +0,0 @@
% !TeX root = ../../script.tex
\documentclass[../../script.tex]{subfiles}
\begin{document}
\section{Complex Line Integrals}
\end{document}

View file

@ -0,0 +1,510 @@
% !TeX root = ../../script.tex
\documentclass[../../script.tex]{subfiles}
\begin{document}
\section{Contour Integrals}
\begin{defi}[Contour integrals]
Let $U \subset \cmpln$ be open, $\gamma = C([a, b], U)$ a curve in $U$ and $f: U \rightarrow \cmpln$ continuous. Then
\[
\int_{\gamma} f(z) \dd{z} := \int_a^b f(\gamma(t)) \gamma'(t) \dd{t}
\]
\end{defi}
\begin{eg}
Consider the path
\[
\gamma(t) = re^{it}, ~\quad t \in [0, 2\pi], r > 0
\]
we want to take the contout integral along the path $\gamma$ of the function $z^n$
\begin{align*}
\int_{\gamma} z^n \dd{z} &= \int_0^{2\pi} (r e^{it})^n ire^{it} \dd{t}\\
&= ir^{n+1} \int_0^{2\pi} e^{it(n+1)} \dd{t} = ir^{n+1} \begin{cases}
2\pi, & n = -1 \\
0, & n \ne -1
\end{cases}
\end{align*}
\end{eg}
\begin{lem}[Estimation Lemma]
For every curve $\gamma \in C([0, 1], U)$ and every continuous function $f: U \rightarrow \cmpln$ we have
\[
\abs{\int_{\gamma} f(z) \dd{z}} \le \sup_{z \in \gamma} \abs{f(z)} \int_0^1 \abs{\gamma'(t)} \dd{t}
\]
\end{lem}
\begin{proof}
\begin{equation}
\begin{split}
\abs{\int_{\gamma} f(z) \dd{z}} = \abs{\int_0^1 f(\gamma(t)) \gamma'(t) \dd{t}} &\le \int_0^1 \abs{f(\gamma(t))} \abs{\gamma'(t)} \dd{t} \\
&\le \sup_{t \in [0, 1]} \abs{f(\gamma(t))} \int_0^1 \abs{\gamma'(t)} \dd{t}
\end{split}
\end{equation}
\end{proof}
\begin{cor}
Let $\gamma \in C([0, 1], U)$ be a simple closed curve, $U \subset \cmpln$, and let $f: U \rightarrow \cmpln$ a holomorphic function with
\begin{align*}
u = \Re f && v = \Im f
\end{align*}
Then
\[
\oint_{\gamma} f(z) \dd{z} = 0
\]
\end{cor}
\begin{proof}
Let $A \subset U$ be the surface bounded by $\gamma$. Then
\begin{equation}
\oint_{\gamma} f(z) \dd{z} = \int_0^1 f(\gamma(t)) \gamma'(t) \dd{t}
\end{equation}
We can split $\gamma$ into a real and an imaginary part, like this
\begin{equation}
\gamma(t) = \gamma_1(t) + i\gamma_2(t), \quad \gamma_1, \gamma_2: [0, 1] \rightarrow \realn
\end{equation}
Then we can calculate
\begin{equation}
\begin{split}
\oint_{\gamma} f(z) \dd{z} &= \int_0^1 \left(u(\gamma_1(t), \gamma_2(t)) + iv(\gamma_1(t), \gamma_2(t)) (\gamma_1'(t) + i\gamma_2'(t))\right) \dd{t} \\
&= \int_0^1 u(\gamma_1(t), \gamma_2(t)) \gamma_1'(t) - v(\gamma_1(t), \gamma_2(t)) \gamma_2'(t) \dd{t} \\
&\quad + i\int_0^1 u(\gamma_1(t), \gamma_2(t))\gamma_2'(t) + v(\gamma_1(t), \gamma_2(t))\gamma_1'(t) \dd{t} \\
&= \int_0^1 \begin{pmatrix}
u(\gamma(t)) \\ -v(\gamma(t))
\end{pmatrix}
\begin{pmatrix}
\gamma_1'(t) \\ \gamma_2'(t)
\end{pmatrix}
\dd{t} + i \int_0^1 \begin{pmatrix}
v(\gamma(t)) \\ u(\gamma(t))
\end{pmatrix}
\begin{pmatrix}
\gamma_1'(t) \\ \gamma_2'(t)
\end{pmatrix}
\dd{t} \\
&= \oint_{\boundary{A}} \begin{pmatrix}
u \\ -v
\end{pmatrix} \dd{s} + i \oint_{\boundary{A}} \begin{pmatrix}
v \\ u
\end{pmatrix} \\
&= \int_A (-\partial_x v - \partial_y u) \dd{\lambda^2} + i \int_A (\partial_x u - \partial_y v) \dd{\lambda^2} \\
\end{split}
\end{equation}
Because $f$ is holomorphic we can apply the Cauchy-Riemann equation
\begin{equation}
\oint_{\gamma} f(z) \dd{z} = 0
\end{equation}
\end{proof}
\begin{defi}
\begin{enumerate}[(i)]
\item A closed curve $\gamma: [a, b] \rightarrow U$ with $U \subset \cmpln$ is said to be null-homotopic,
if it can be continuously deformed into a point within the set $U$.
\item Two curves $\gamma_1, \gamma_2: [0, 1] \rightarrow U$ with identical boundary points
\begin{align*}
\gamma_1(0) = \gamma_2(0) ~\wedge~ \gamma_1(1) = \gamma_2(1)
\end{align*}
is said to be homotopic in $U$ if the concatenation
\begin{align*}
\gamma: [0, 2] &\longrightarrow U \\
\gamma(t) &= \begin{cases}
\gamma_1(t), & t \in [0, 1] \\
\gamma_2(2 - t) & t \in [1, 2]
\end{cases}
\end{align*}
is null-homotopic.
\item Two closed surves $\gamma_0, \gamma_1$ are said to be free-homotopic in $U$ if they can be continuously transformed into each other.
\end{enumerate}
\end{defi}
\begin{defi}
A non-empty set $U \subset \cmpln$ is said to be
\begin{enumerate}[(i)]
\item \textit{connected} if any two points in $U$ can be connected by a curve in $U$.
\item \textit{simply connected} if $U$ is connected and every closed surve in $U$ is null-homotopic.
\item a \textit{domain} if it is open and connected.
\end{enumerate}
\end{defi}
\begin{thm}[Cauchy's Integral Theorem]
Let $f: U \rightarrow \cmpln$ be holomorphic and $\gamma$ a closed, null-homotopic curve in $U \subset \cmpln$ open. Then
\[
\oint_{\gamma} f(z) \dd{z} = 0
\]
\end{thm}
\begin{proof}
\noproof
\end{proof}
\begin{cor}
\begin{enumerate}[(i)]
\item Let $\gamma_1, \gamma_2$ be holomorphic curves with the same endpoints on the open set $U \subset \cmpln$. Then
\[
\int_{\gamma_1} f(z) \dd{z} = \int_{\gamma_2} f(z) \dd{z}
\]
for all holomorphic $f: U \rightarrow \cmpln$.
\item For $f: U \rightarrow \cmpln$ holomorphic, with $U \subset \cmpln$ open and simple connected. Then $\forall z_0 \in U$
\[
F(z) := \int_{z_0}^{z} f(\zeta) \dd{\zeta} = \int_{\gamma = \gamma_0} f(\zeta) \dd{\zeta}
\]
is a holomorphic anti-derivative of $f$, i.e.
\[
F'(z) = f(z) \quad \forall z \in U
\]
\end{enumerate}
\end{cor}
\begin{proof}
First we prove (i). The concatenation $\gamma := \gamma_1 \gamma_2$ is a null-homotopic curve, so together with the holomorphy of $f$ we can apply the Cauchy integral theorem
\begin{equation}
\begin{split}
0 = \oint_{\gamma} f(z) \dd{z} &= \int_0^2 f(\gamma(t)) \dot{\gamma}(t) \dd{t} \\
&= \int_0^1 f(\gamma_1(t))\dot{\gamma_1}(t) \dd{t} - \int_1^2 f(\gamma_2(2 - t)) \dot{\gamma_2}(2 - t) \dd{t}
\end{split}
\end{equation}
Substitute $s = 2 - t$ with $\dd{s} = -\dd{t}$:
\begin{equation}
\begin{split}
&= \int_0^1 f(\gamma_1(t)) \dot{\gamma}(t) \dd{t} - \gamma_0^1 f(\gamma_2(s)) \dot{\gamma_2}(s) \dd{s} \\
&= \int_{\gamma_1} f(z) \dd{z} - \int_{\gamma_2} f(z) \dd{z}
\end{split}
\end{equation}
Now we prove (ii). According to (i), we have
\begin{equation}
F(z + h) = F(z) + \int_{\gamma_{z+h, z}} f(z) \dd{z}
\end{equation}
We choose $\gamma_{z+h, z}$ to be a straight line, i.e.
\begin{equation}
\gamma_{z+h, z}(t) = t(z + h) + (1 - t)z, \quad t \in [0, 1]
\end{equation}
Then
\begin{equation}
\int_{\gamma_{z+h, z}} 1 \dd{\zeta} = \int_0^1 \dot{\gamma}(t) \dd{t} = h
\end{equation}
Thus follows
\begin{equation}
F(z + h) - F(z) = \int_{\gamma_{z + h, z}} f(\zeta) \dd{\zeta} \iff \frac{F(z+h) - F(z)}{h} = \frac{1}{h} \in f(\zeta) \dd{\zeta}
\end{equation}
and therefore
\begin{equation}
\begin{split}
\left| \frac{F(z+h) - F(z)}{h} - f(z) \right| = &\left| \frac{1}{h} \int_{\gamma_{z+h, z}} f(\zeta) \dd{\zeta} - f(z) \right| \\
= &\left| \frac{1}{h} \int_{\gamma_{z+h, z}} f(\zeta) - f(z) \dd{\zeta} \right| \\
= &\frac{1}{\abs{h}} \int_0^1 \left| f(\gamma_{z+h, z}(t)) - f(z)\right| \left| \dot{\gamma_{z+h, z}}(t) \right| \dd{t} \\
\le &\frac{1}{h} \sup_{t \in [0, 1]} \left| f(\gamma_{z+h,z}(t)) - f(z) \right| \cdot \underbrace{\int \left| \dot{\gamma_{z+h, z}}(t) \right| \dd{t}}_{\abs{h}} \\
= &\sup_{t \in [0, 1]} \left| f(\gamma_{z+h, z}(t)) - f(z) \right| \\
\conv{k \rightarrow 0} &0
\end{split}
\end{equation}
\end{proof}
\begin{eg}[The complex logarithm]
Consider $t \mapsto e^{it}, ~t \in \realn$. This is a $2\pi$-periodic function, that means
\[
e^{it} = e^{i(t + 2\pi n)}, \quad n \in \intn
\]
The function
\begin{align*}
f: \cmpln \setminus \set{0} &\longrightarrow \cmpln \\
z &\longmapsto \frac{1}{z}
\end{align*}
is holomorphic, and does not have an anti-derivative on $\cmpln \setminus \set{0}$. If it did, then
\[
\int_{\gamma} f(z) \dd{z} = F(\gamma(2\pi)) - F(\gamma(0)) = 0
\]
would have to hold, but we know that
\[
\int_{\gamma} \frac{\dd{z}}{z} = 2\pi i
\]
This is a contradiction. However $f$ does have an anti-derivative on $\cmpln_{-}$ (the complex numbers without the negative real axis) , since $\cmpln_{-}$ is simple connected and $f$ is holomorphic.
Thus we can define
\begin{align*}
\Log: \cmpln_{-} &\longrightarrow \cmpln \\
z &\longmapsto \int_{\gamma: [0, 1] \rightarrow z} \frac{\dd{\zeta}}{\zeta}
\end{align*}
It can also be defined as
\begin{align*}
\Log z = \begin{cases}
0, & 1 \\
\log\abs{z} + i \arg(z), & \text{else}
\end{cases}
\end{align*}
The function $\arg$ is defined as
\begin{align*}
\arg: \cmpln_{-} &\longrightarrow (-\pi, \pi) \\
z &\longmapsto \phi \text{ for } z = \abs{z} e^{i\phi}
\end{align*}
$\Log$ is said to be the main branch of the complex logarithm, and
\[
\Log z = \log\abs{z} + i (\arg(z) + 2\pi n), \quad n \in \intn
\]
the secondary branches.
\end{eg}
\begin{eg}[Fresnel Integrals]
Consider the integrals
\begin{align*}
\int_0^{\infty} \cos(t^2) \dd{t} && \int_0^{\infty} \sin(t^2) \dd{t}
\end{align*}
The way these integrals are supposed to be interpreted is as
\[
\int_0^{\infty} f(t) \dd{t} = \lim_{N \rightarrow \infty} \int_0^N f(t) \dd{t}
\]
We realize that
\begin{align*}
\cos(t^2) = \Re e^{-it^2} && \sin(t^2) = -\Im e^{-it^2}
\end{align*}
Now, consider these paths
\begin{center}
\begin{tikzpicture}
\draw[->, >=stealth] (0, -1) -- (0, 5) node[above] {$\Im$};
\draw[->, >=stealth] (-1, 0) -- (5, 0) node[right] {$\Re$};
\draw[->, >=stealth, very thick] (0, 0) -- node[below] {$\gamma_1$} (4, 0) node[below] {$R$};
\draw[->, >=stealth, very thick] (4, 0) -- node[right] {$\gamma_2$} (4, 4);
\draw[->, >=stealth, very thick] (0, 0) -- node[above left] {$\gamma$} (4, 4);
\draw[dashed] (0, 4) node[left] {$R$} -- (4, 4);
\end{tikzpicture}
\end{center}
So it becomes apparent that
\[
\int_0^R \cos(t^2) \dd{t} = \Re \int_0^R e^{-it^2} \dd{t} = \Re \int_{\gamma} e^{-z^2} \dd{z}
\]
We can define a new (closed) path
\[
\Gamma = \gamma_1 \gamma_2 (-\gamma)
\]
and with Cauchy's theorem we can realize that
\begin{align*}
0 = \oint_{\Gamma} e^{-z^2} \dd{z} = \int_{\gamma_1} e^{-z^2} \dd{z} + \int_{\gamma_2} e^{-z^2} \dd{z} - \int_{\gamma} e^{-z^2} \dd{z}
\end{align*}
The next step is to evaluate each of the integrals in the last term, starting with the integral over $\gamma$.
\begin{align*}
\int_{\gamma} e^{-z^2} \dd{z} = &\int_0^R e^{-((1+i)t)^2} (1+i) \dd{t} \\
= &(1 + i) \int_0^R e^{-2it^2} \dd{t} \\
= &\frac{1+i}{\sqrt{2}} \int_0^{\sqrt{2} R} e^{-is^2} \dd{s}
\end{align*}
The integrall over $\gamma_1$ evaluates to
\begin{align*}
\int_{\gamma_1} e^{-z^2} \dd{z} = \int_0^R e^{-t^2} \dd{t} \conv{R \rightarrow \infty} \int_0^{\infty} e^{-t^2} \dd{t} = \frac{1}{2} \int_{-\infty}^{\infty} e^{-t^2} \dd{t} = \frac{\sqrt{\pi}}{2}
\end{align*}
And the one over $\gamma_2$ to
\begin{align*}
\int_{\gamma_2} e^{-z^2} \dd{z} = \int_0^R e^{-(r +it)^2} i \dd{t} = i \int_0^R e^{-R^2 + t^2} e^{-2irt} \dd{t}
\end{align*}
To evaluate this we need to consider the absolute value of this integral
\begin{align*}
\abs{\int_{\gamma_2} e^{-z^2} \dd{z}} \le &e^{-R^2} \int_0^R e^{t^2} \underbrace{\abs{e^{-2iRt}}}_{=1} \dd{t} \\
= &e^{-R^2} \int_0^R e^{t^2} \dd{t} \le e^{-R^2} \int_0^R e^{tR} \dd{t} \\
= &e^{-R^2} \left[\frac{1}{R} e^{tR}\right]_0^R = \frac{e^{-R^2}}{R} \left(e^{R^2} - 1\right)
\end{align*}
so
\[
\abs{\int_{\gamma_2} e^{-z^2} \dd{z}} \le \frac{1}{R} \left(1 - e^{-R^2}\right) \conv{R \rightarrow \infty} 0
\]
Thus we can calculate
\[
\int_{\gamma} e^{-z^2} \dd{z} = \frac{1+i}{\sqrt{2}} \int_0^{\sqrt{2} R} e^{-it^2} \dd{t} = \int_{\gamma_1} e^{-z^2} \dd{z} + \int_{\gamma_2} e^{-z^2} \dd{z}
\]
And finally
\begin{align*}
\lim_{R \rightarrow \infty} \int_0^{\infty} e^{-it^2} \dd{t} = &\lim_{R \rightarrow \infty} \int_0^{\sqrt{2} R} e^{-t^2} \dd{t} \\
= &\frac{\sqrt{2}}{1+i} \left(\lim_{R \rightarrow \infty} \left( \int_{\gamma_1} e^{-z^2} \dd{z} + \int_{\gamma_2} e^{-z^2} \dd{z} \right) \right) \\
= &\frac{\sqrt{2}}{1+i} \left(\frac{\pi}{2} + 0\right) \\
= &\sqrt{\frac{\pi}{2}} \frac{1-i}{2} = \sqrt{\frac{\pi}{8}} (1 - i)
\end{align*}
So we can calculate the Fresnel integrals
\begin{align*}
\int_0^{\infty} \cos(t^2) \dd{t} &= \sqrt{\frac{\pi}{8}} \\
\int_0^{\infty} \sin(t^2) \dd{t} &= \sqrt{\frac{\pi}{8}}
\end{align*}
\end{eg}
\begin{thm}[Cauchy's Theorem for circular disks]
Let $f: U \rightarrow \cmpln$ be holomorphic, $U \subset \cmpln$ open and $\cball[r](a) \subset U$. Then
\[
f(a) = \frac{1}{2\pi i} \int_{\abs{z - a} = r} \frac{f(z)}{z-a} \dd{z}
\]
\end{thm}
\begin{proof}
Consider the following path
\begin{center}
\begin{tikzpicture}[scale=7.5]
\draw[fill] (5, 0.7) node[below] {$a$} circle [radius=0.004];
\begin{scope}[decoration={
markings,
mark=at position 0.5 with {\arrow{latex}}}
]
\draw[thick, postaction={decorate}, domain=435:105] plot ({0.1*cos(\x) + 5}, {0.1*sin(\x) + 0.7});
\draw[postaction={decorate}, domain=435:105] plot ({0.3*cos(\x) + 5}, {0.3*sin(\x) + 0.7});
\draw[thick, postaction={decorate}] ({0.1*cos(105) + 5}, {0.1*sin(105) + 0.7}) -- node[left] {$\alpha_{\delta}^1$} ({0.3*cos(105) + 5}, {0.3*sin(105) + 0.7});
\draw[thick, postaction={decorate}] ({0.3*cos(435) + 5}, {0.3*sin(435) + 0.7}) -- node[right] {$\alpha_{\delta}^2$} ({0.1*cos(435) + 5}, {0.1*sin(435) + 0.7});
\draw[thick, postaction={decorate}, domain=105:75] plot ({0.3*cos(\x) + 5}, {0.3*sin(\x) + 0.7});
\end{scope}
\node[below] at ({0.1*cos(270) + 5}, {0.1*sin(270) + 0.7}) {$\gamma_{\epsilon}$};
\node[below] at ({0.3*cos(270) + 5}, {0.3*sin(270) + 0.7}) {$|z - a| = r$};
\draw[dashed] (5, 0.7) -- ({0.1*cos(150) + 5}, {0.1*sin(150) + 0.7}) node[above left=-0.1cm] {$\epsilon$} ;
\draw[dashed] (5, 0.7) -- ({0.3*cos(5) + 5}, {0.3*sin(5) + 0.7}) node[right] {$r$};
\node[above] at ({0.3*cos(90) + 5}, {0.3*sin(90) + 0.7}) {$\gamma_{\delta}$};
\end{tikzpicture}
\end{center}
According to the first corollary of Cauchy's theorem we have
\begin{equation}
\begin{split}
\int_{\abs{z-a}=r} \frac{f(z)}{z-a} \dd{z} = &\lim_{\delta \rightarrow 0} \int_{\gamma_{\epsilon, \delta}} \frac{f(z)}{z-a} \dd{z} + \underbrace{\int_{\alpha_{\delta}^1} \frac{f(z)}{z-a} \dd{z} + \int_{\alpha_{\delta}^2} \frac{f(z)}{z-a} \dd{z}}_{\conv{\delta \rightarrow 0} 0} \\
= &\int_{\gamma_{\epsilon}} \frac{f(z)}{z-a} \dd{z}
\end{split}
\end{equation}
Thus we conclude
\begin{equation}
\begin{split}
\int_{\abs{z-a}=r} \frac{f(z)}{z-a} \dd{z} = \int_{\gamma_{\epsilon}} \frac{f(z)}{z-a} \dd{z} = &\int_{\gamma_{\epsilon}} \frac{f(z) - f(a)}{z-a} \dd{z} + \int_{\gamma_{\epsilon}} \frac{f(a)}{z-a} \dd{z} \\
= &\int_{\gamma_{\epsilon}} \frac{f(z) - f(a)}{z-a} \dd{z} + f(a) \int_{\gamma_{\epsilon}} \frac{\dd{z}}{z-a}
\end{split}
\end{equation}
We also know that
\begin{equation}
\int_{\gamma_{\epsilon}} \frac{\dd{z}}{z-a} = 2\pi i
\end{equation}
Since $f$ is holomorphic we can realize
\begin{equation}
\sup_{\cball[r](a)} \left| \frac{f(z) - f(a)}{z - a} \right| = M_r < \infty
\end{equation}
Which results in
\begin{equation}
\abs{\int_{\gamma_{\epsilon}} \frac{f(z) - f(a)}{z - a} \dd{z}} \le M_r \underbrace{\int_0^{2\pi} \abs{\dot{\gamma_{\epsilon}}(t)} \dd{t}}_{2\pi\epsilon} \conv{\epsilon \rightarrow 0} 0
\end{equation}
Thus follows
\begin{equation}
\int_{|z - a| = r} \frac{f(z)}{z - a} \dd{z} = \int_{\gamma_{\epsilon}} \frac{f(z) - f(a)}{z - a} \dd{z} + 2\pi i f(a) \conv{\epsilon \rightarrow 0} 2\pi i f(a)
\end{equation}
Or short
\begin{equation}
\int_{\abs{z - a} = r} \frac{f(z)}{z - a} \dd{z} = 2\pi i f(a)
\end{equation}
\end{proof}
\begin{cor}
Let $f: U \rightarrow \cmpln$ be a holomorphic function and $U \subset \cmpln$ an open set such that $\cball[r](a) \subset U$. Then
\[
f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a + re^{it}) \dd{t}
\]
\end{cor}
\begin{proof}
\reader
\end{proof}
\begin{defi}[Analytic functions]
Let $f: U \rightarrow \cmpln$ be a function and $U \subset \cmpln$ a domain. $f$ is said to be analytic in $z_0 \in U$ if and only if there exists a power series
\[
\sum_{n=0}^{\infty} a_n \zeta^n
\]
with convergence radius
\[
\rho = \left(\limsup |a_n|^{\frac{1}{n}}\right)^{-1} > 0
\]
and $\delta \in (0, \rho)$ such that $\oball[\delta](z_0) \subset U$ and
\[
f(z) = \int_{k=0}^{\infty} a_n (z - z_0)^n, \quad \forall z \in \oball[\delta](z_0)
\]
$f$ is said to be analytic on $U$ if $f$ is analytic $\forall z_0 \in U$.
\end{defi}
\begin{thm}[Power series expansion]
If $f$ is holomorphic on a circular disk $\oball[r](z_0)$ for some $r > 0$, then $f$ is analytic in $z_0$.
$f$ can be represented with the on $\oball[\rho](z_0)$ convergent power series
\[
f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n, \quad z \in \oball[\rho](z_0)
\]
with
\[
c_n = \frac{1}{2\pi i} \int_{|z - z_0| = r} \frac{f(z)}{(z - z_0)^{n+1}} \dd{z}, \quad \forall \rho \in (0, r)
\]
\end{thm}
\begin{proof}
\noproof
\end{proof}
\begin{rem}
If $f$ is holomorphic then $f$ can be infinitely often differentiated on $\cmpln$ with
\[
f^{(n)}(z) = n! c_n = \frac{n!}{2\pi i} \int_{\abs{z - z_0} = \rho} \frac{f(z)}{(z- z_0)^{n+1}} \dd{z}
\]
By employing the estimation lemma we can then find that
\begin{align*}
\abs{c_n} \le \frac{1}{2\pi} \abs{\int_{\abs{z - z_0} = \rho} \frac{f(z)}{(z - z_0)^{n+1}} \dd{z}} \le &\frac{1}{2\pi} \sup_{\abs{z - z_0} = \rho} \abs{\frac{f(z)}{\abs{z - z_0}^{n+1}}} \cdot 2\pi \rho \\
= &\frac{1}{\rho^n} \sup_{z \in \oball[r](z_0)} \abs{f(z)} \\
= &\frac{M_r}{\rho^n}, \quad M_r < \infty
\end{align*}
This is Cauchy's estimate.
\end{rem}
\begin{thm}[Liouville's Theorem]
Every bounded entire function is constant.
\end{thm}
\begin{proof}
According to the power series expansion theorem, $f$ can be represented by a power series on all of $\cmpln$:
\begin{equation}
f(z) = \sum_{n=0}^{\infty} c_n z^n
\end{equation}
and the coefficients satisfy the Cauchy estimate
\begin{equation}
\abs{c_n} \le \frac{1}{\rho^n} \sup_{\abs{z} = \rho} \abs{f(z)} \le \frac{1}{\rho^n} \underbrace{\sup_{z \in \cmpln} \abs{f(z)}}_{< \infty}
\end{equation}
This inequality tends to $0$ if $\rho$ tends to $\infty$ for all $n \ge 1$, thus we can find
\begin{equation}
c_n = 0, \quad \forall n \ge 1
\end{equation}
Thus
\begin{equation}
f(z) = c_0 = \const.
\end{equation}
\end{proof}
\begin{thm}[Fundamental Theorem of Algebra]
Every polynomial of degree $n \ge 1$
\[
f(z) = \sum_{k=0}^n c_k z^k, \quad c_n \ne 0
\]
has a root, i.e.
\[
\exists z_0 \in \cmpln: \quad f(z_0) = 0
\]
\end{thm}
\begin{proof}
Assume there exists no root. Then the function
\begin{equation}
z \longmapsto \frac{1}{f(z)}
\end{equation}
would be holomorphic on all of $\cmpln$, since $z \mapsto \rec{z}$ is holomorphic on $\cmpln \setminus \set{0}$.
Furthermore we find that
\begin{equation}
\exists R \ge 0: ~~\abs{z} \ge R \implies \abs{f(z)} \ge \abs{f(0)} > 0
\end{equation}
which implies
\begin{equation}
\sup_{z \in \cmpln} \frac{1}{\abs{f(z)}} = \sup_{\abs{z} < R} \frac{1}{\abs{f(z)}} = \max_{\abs{z} \le R} \frac{1}{\abs{f(z)}} < \infty
\end{equation}
since $f$ doesn't have a root. According to Liouville's theorem $\rec{f}$ has to be constant, and thus $f$ must be constant.
This implies that $c_n = 0$, which contradicts the assumption. So $f$ has to have a root.
\end{proof}
\begin{cor}[Polynomial Decomposition]
Let
\[
f(z) = \sum_{k=0}^n c_k z^k, \quad n \in \natn, c_k \in \cmpln, c_n = 1
\]
Then $\exists z_j \in \cmpln, ~~j = 1, \cdots, n$ such that
\[
f(z) = \prod_{j=1}^n (z - z_j)
\]
\end{cor}
\end{document}

11350
script.pdf

File diff suppressed because it is too large Load diff

View file

@ -11,7 +11,7 @@
\usepackage{fancyhdr}
\usepackage{pdfpages}
\usepackage[arrowdel]{physics}
\usetikzlibrary{calc,trees,positioning,arrows,fit,shapes,angles,patterns}
\usetikzlibrary{calc,trees,decorations.markings,positioning,arrows,fit,shapes,angles,patterns}
\DeclareDocumentCommand\vnabla{}{\vectorarrow{\nabla}}
\graphicspath{assets}
@ -38,6 +38,7 @@
\DeclareMathOperator{\sgn}{sgn}
\DeclareMathOperator{\diag}{diag}
\DeclareMathOperator{\const}{const}
\DeclareMathOperator{\Log}{Log}
\newcommand{\natn}{\mathbb{N}}
\newcommand{\intn}{\mathbb{Z}}
@ -86,7 +87,7 @@
\newcommand{\interior}[1]{\mathring{#1}}
\newcommand{\boundary}[1]{\partial #1}
\newcommand{\closure}[1]{\bar{#1}}
\newcommand{\closure}[1]{\overline{#1}}
\newcommand{\conv}[1]{\xrightarrow{\makebox[2em][c]{$\scriptstyle#1$}}}
\newcommand{\convinf}{\conv{n \rightarrow \infty}}