added comments

This commit is contained in:
Robert 2021-07-12 05:26:38 +02:00
parent 54d6fc8c1e
commit ad4eafa882
9 changed files with 122 additions and 71 deletions

View file

@ -7,6 +7,13 @@
#include "lcd.hpp"
#include "rom.hpp"
// Why is this typedef? Lol
// This was originally a C project believe it or not. I thought getting
// this tiny performance increase was worth the trouble, but I guess that
// eventually I ran into a problem that couldn't be easily solved in less
// than 5 lines of C code. At least I thought so, but anyways, I decided
// to rewrite the emulator in C++, that's why all this code looks so
// fucked up and messy.
typedef union
{
BYTE b;
@ -18,6 +25,9 @@ typedef union
} w;
} TimerControl;
// JoypadReg = The register in the gameboy
// Joypad = A struct to keep the physical keyboard input
typedef union
{
BYTE b;
@ -38,32 +48,37 @@ struct Joypad
bool a, b, up, down, left, right, start, select;
};
// The Bus class contains all the stuff that I didn't know where else to put
class Bus
{
public:
Bus();
~Bus();
// Used to conn
void AttachCPU(CPU& cpu);
void AttachLCD(LCD& lcd);
void InsertROM(ROM& rom);
bool Tick();
bool Execute();
bool Frame();
bool Tick(); // Execute ONE machine cycle (why would you do that lol)
bool Execute(); // Execute ONE CPU instruction (better but still why)
bool Frame(); // Execute CPU instructions until we rendered one full frame (there we go)
BYTE Read(WORD addr);
void Write(WORD addr, BYTE val);
BYTE Fetch(WORD addr);
BYTE Read(WORD addr); // Read from the bus
void Write(WORD addr, BYTE val); // Write to the bus
BYTE Fetch(WORD addr); // This is literally the same as Read(). Like literally. the. exact. same.
// But I use it a lot in the CPU class so I'm too lazy/afraid to remove it
private:
BYTE& GetReference(WORD addr);
BYTE& GetReference(WORD addr); // Leftovers of a really really really bad idea, but again it's used in a few places so I'm too scared to remove it
public:
// Connected devices
ROM* rom;
CPU* cpu;
LCD* lcd;
// These are I/O registers :)
BYTE invalid;
BYTE div;
BYTE tima;
@ -75,7 +90,6 @@ public:
Joypad joypad;
// std::array<BYTE, 0x2000> vram;
std::array<BYTE, 0x2000> wram;
std::array<BYTE, 0x80> hram;
std::array<BYTE, 0x80> hram; // <-- This should be in the CPU class but who cares
};

View file

@ -6,6 +6,8 @@
class Bus;
// Structure to represent a register (register = 16 bits, but split into 2 "sub registers" of 8 bits).
// I also store the names of the regs for debug purposes
struct Register
{
union
@ -20,6 +22,7 @@ struct Register
char name[3];
};
// Convenience structure for the Interrupts
typedef union {
BYTE b;
struct
@ -46,6 +49,7 @@ typedef union
} f;
} StatusFlag;
// Read about opcode decoding, the link is in the cpu.cpp file
typedef union
{
BYTE b;
@ -66,6 +70,8 @@ typedef union
} pq;
} Opcode;
// Contains everything related to the CPU
class CPU
{
public:
@ -100,11 +106,12 @@ public:
bool stopped;
bool halted;
bool justHaltedWithDI;
bool justHaltedWithDI; // I don't even know
private:
void WriteToRegister(BYTE reg, BYTE val);
void WriteToRegister(BYTE reg, BYTE val); // The cycles, the god DAMN CPU CYCLES
BYTE ReadFromRegister(BYTE reg);
void ALU(BYTE operation, BYTE operand);
void CBPrefixed();
void ALU(BYTE operation, BYTE operand); // Handle any ALU related instructions
void CBPrefixed(); // Handle all CB prefixed instructions
};

View file

@ -5,6 +5,7 @@
class Bus;
// bunch of registers or smthn
typedef union
{
BYTE b;
@ -81,14 +82,13 @@ typedef union
} b;
} OAMEntry;
// The screen. With emphasis on ree
class LCD
{
public:
void Setup();
void Tick();
BYTE& GetReferenceToAddress(WORD addr, bool& handled);
bool Read(WORD addr, BYTE& val);
bool Write(WORD addr, BYTE val);

View file

@ -2,6 +2,7 @@
#include "util.hpp"
// The memory bank controller (MBC) needs to map addresses targeted at rom, to get the appropriate data from the ROM
class IMBC
{
public:
@ -11,7 +12,7 @@ public:
virtual ~IMBC() {}
virtual bool GetMappedRead(WORD address, DWORD& mappedAddr) = 0;
virtual bool GetMappedRead(WORD address, DWORD& mappedAddr) = 0; // Convert CPU address to ROM internal address
virtual bool GetMappedWrite(WORD address, BYTE val, DWORD& mappedAddr) = 0;
protected:

View file

@ -8,17 +8,7 @@
class Bus;
struct MemoryBankController
{
BYTE w;
struct
{
BYTE ROMBankNumber : 5;
BYTE RAMBankNumber : 2;
BYTE Mode : 1;
} b;
};
// Cartridge
class ROM
{
public:

View file

@ -7,7 +7,7 @@ static WORD timerModuloLookup[4] = { 1024, 16, 64, 256 };
Bus::Bus()
{
// 8KB of VRAM
// These are some default initializatsrions? We dont *necessarily* need them but eh, who cares
invalid = 0;
dmg_rom = 0;
tac.b = 0;
@ -50,21 +50,30 @@ void Bus::InsertROM(ROM& r)
bool Bus::Tick()
{
// Increase internal counter (used for the divider/timer register)
internalCounter++;
// Tick the CPU forward one cycle if it isn't stopped
if(!cpu->stopped)
cpu->Tick();
// LCD and CPU operate on the same clock (I think they do at least,
// the gbdev wiki is incredibly inconsistent about the use of the terms
// "cycles", "dots" and "clocks" so I just took a guess
lcd->Tick();
// The divider registers increases everytime the internal counter counts to 255
if (!(internalCounter % 0xFF))
div++;
// If the timer is enabled and the internal counter hit some number we do some stuff
if (tac.w.enable && !(internalCounter % timerModuloLookup[tac.w.select]))
{
// Like increase the timer register
tima++;
if (tima == 0x00)
{
// if the timer overflows set it to tma and issue an interrupt
tima = tma;
cpu->interruptFlag.flags.timer = 1;
}
@ -75,6 +84,7 @@ bool Bus::Tick()
bool Bus::Execute()
{
// just Tick for one CPU instruction
while (cpu->cycles > 0)
{
Tick();
@ -88,6 +98,7 @@ bool Bus::Execute()
bool Bus::Frame()
{
// Just tick for one frame
while (lcd->cycles > 0)
{
Tick();
@ -101,26 +112,27 @@ bool Bus::Frame()
BYTE Bus::Read(WORD addr)
{
// Read from bus
BYTE returnVal;
if (lcd->Read(addr, returnVal))
if (lcd->Read(addr, returnVal)) // If the address is in the LCD realm, then the PPU will handle it
{
return returnVal;
}
if ((addr >= 0x0000 && addr < 0x8000) || (addr >= 0xA000 && addr < 0xC000))
if ((addr >= 0x0000 && addr < 0x8000) || (addr >= 0xA000 && addr < 0xC000)) // If it is in ROM space, the ROM will handle it
{
return rom->Read(addr);
}
if (addr == 0xFF00)
if (addr == 0xFF00) // All other I/O regs are handled the same, except the joypad one because it's weird
{
if (!joypadReg.w.selectButtonKeys) {
if (!joypadReg.w.selectButtonKeys) { // Serious go to the gbdev wiki and read about how this register works
joypadReg.w.rightA = joypad.a;
joypadReg.w.leftB = joypad.b;
joypadReg.w.upSelect = joypad.select;
joypadReg.w.downStart = joypad.start;
}
else if (!joypadReg.w.selectDirKeys)
else if (!joypadReg.w.selectDirKeys) // This is the best I could come up with because this is stupid
{
joypadReg.w.rightA = joypad.right;
joypadReg.w.leftB = joypad.left;
@ -128,39 +140,35 @@ BYTE Bus::Read(WORD addr)
joypadReg.w.downStart = joypad.down;
}
return joypadReg.b;
return joypadReg.b; // That wasn't a joke, go read about register 0xFF00 in the gameboy
}
return GetReference(addr);
return GetReference(addr); // If none of the devices above care about the address, then the bus handles it
}
BYTE Bus::Fetch(WORD addr)
{
return Read(addr);
return Read(addr); // told ya it's literally just Read() lol
}
void Bus::Write(WORD addr, BYTE val)
{
if (lcd->Write(addr, val))
if (lcd->Write(addr, val)) // If the address is in the LCD realm, then the PPU will handle it
return;
if ((addr >= 0x0000 && addr < 0x8000) || (addr >= 0xA000 && addr < 0xC000))
if ((addr >= 0x0000 && addr < 0x8000) || (addr >= 0xA000 && addr < 0xC000)) // If it is in ROM space, the ROM will handle it
{
rom->Write(addr, val);
return;
}
GetReference(addr) = val;
GetReference(addr) = val; // otherwise the bus will handle it
undefined = 0xFF;
}
BYTE& Bus::GetReference(WORD addr)
{
if (addr >= 0xA000 && addr < 0xC000) // Accessing external RAM
{
return undefined;
}
else if (addr >= 0xC000 && addr < 0xFE00) // Accessing WRAM / ECHO RAM
if (addr >= 0xC000 && addr < 0xFE00) // Accessing WRAM / ECHO RAM
{
return wram[addr & 0x1FFF];
}

View file

@ -13,22 +13,24 @@
#define DBG_MSG(fmt, ...) do {} while(0)
#endif
#define PUSH(x) bus->Write(--(SP.w), (x))
#define POP() bus->Read((SP.w)++)
#define REG(z) (cbRegisterTable[z])
// Macros are cool amirite
#define PUSH(x) bus->Write(--(SP.w), (x)) // Push to stack
#define POP() bus->Read((SP.w)++) // Pop from stack
#define REG(z) (cbRegisterTable[z]) // Not used even once anywhere
#define HALF_CARRY_ADD(x, y) (((((x) & 0xF) + ((y) & 0xF)) & 0x10) == 0x10)
#define HALF_CARRY_ADD(x, y) (((((x) & 0xF) + ((y) & 0xF)) & 0x10) == 0x10) // Copied from SO
#define HALF_CARRY_SUB(x, y) (((((x) & 0xF) - ((y) & 0xF)) & 0x10) == 0x10)
// Sets up register fully automatically, assigning the strings using the variable name. kinda cool eh?
#define SETUP_REGISTER(x) { \
x.w = 0x0000; \
strcpy(x.name, #x); \
}
#define REGNAME(x) x->name
#define REGNAME_LO(x) x->name[0]
#define REGNAME_HI(x) x->name[1]
#define REGNAME(x) x->name // Not
#define REGNAME_LO(x) x->name[0] // used
#define REGNAME_HI(x) x->name[1] // anywhere
#define XZ_ID(op) (op.xyz.x * 8 + op.xyz.z)
#define XZ_ID(op) (op.xyz.x * 8 + op.xyz.z) // what?
#ifndef NDEBUG
#ifndef NO_LOG
@ -74,6 +76,7 @@ void CPU::Powerup()
void CPU::Tick()
{
// If halted, then we have to pray to the gods an interrupt occurs to free us from this cursed existence
if (halted)
{
if (interruptEnable.b & interruptFlag.b)
@ -82,6 +85,7 @@ void CPU::Tick()
return;
}
// If we still have cycles left, then come back later and try again
totalCycles++;
if (cycles != 0)
{
@ -92,6 +96,7 @@ void CPU::Tick()
// Check for interrupts
if (ime)
{
// mask the interrupts and check which ones need to be handled
BYTE interruptMask = interruptEnable.b & interruptFlag.b;
int interruptType = 0;
while (!(interruptMask & 0x1) && interruptMask)
@ -102,15 +107,17 @@ void CPU::Tick()
if (interruptMask)
{
// reset interrupt flag
interruptFlag.b &= ~(0x1 << interruptType);
ime = 0;
// jump to interrupt vector
PUSH(PC.b.hi);
PUSH(PC.b.lo);
PC.w = interruptVectors[interruptType];
// Will take 24 machine cycles
cycles = 24;
printf("INT%02xh\n", interruptVectors[interruptType]);
return;
}
}

View file

@ -6,6 +6,7 @@
static BYTE colormap[4] = { 0b00000000, 0b00100101, 0b01001010, 0b10010011 };
// Reverses a Byte (0111010 -> 0101110)
BYTE Reverse(BYTE b) {
b = (b & 0xF0) >> 4 | (b & 0x0F) << 4;
b = (b & 0xCC) >> 2 | (b & 0x33) << 2;
@ -13,6 +14,7 @@ BYTE Reverse(BYTE b) {
return b;
}
// initializes a bunch of variables
void LCD::Setup()
{
lcdc.b = 0;
@ -36,18 +38,24 @@ void LCD::Setup()
spriteFIFO.full = 0x00;
}
// One LCD tick. Or clock? cycles? who even knows, the wiki uses all of
// those terms interchangeably while still insisting they're all different
void LCD::Tick()
{
// Update cycles
scanlineCycles++;
cycles++;
// if we're 455 dots into this scanline we gotta wrap back around
// and go to the next scanline
if (scanlineCycles > 455)
{
fetcher.cycle = 0;
scanlineCycles = 0;
ly += 1;
// if we reached the bottom then we gotta wrap
// back up
if (ly > 153)
{
cycles = 0;
@ -77,9 +85,11 @@ void LCD::Tick()
// Screen
if (ly >= 0 && ly < 144)
{
// If we just started this scanline then start the OAM search phase
if (scanlineCycles == 0)
stat.w.mode = 2;
// Else if we entered screen space, go to the rendering phase
else if (scanlineCycles == 81) {
stat.w.mode = 3;
bgFIFO.full = 0x00;
@ -95,6 +105,8 @@ void LCD::Tick()
// OAM Search
if (stat.w.mode == 2)
{
// Go through all entries in the OAM table and fetch all sprites that are on the current scanline
// if there are more than 10 sprites on the scanline, discard the rest by setting y = 0
OAMEntry* entry;
int counter = 0;
for (int i = 0; i < 40; i++)
@ -110,26 +122,26 @@ void LCD::Tick()
}
}
// Pixel Fetcher
// Pixel Fetcher (oh lord)
else if (stat.w.mode == 3)
{
if (lcdc.w.obj_enable)
if (lcdc.w.obj_enable) // IF sprite rendering is enabled
{
OAMEntry* entry;
for (int i = 0; i < 40; i++)
for (int i = 0; i < 40; i++) // Go through all sprites
{
entry = (OAMEntry*)(oam.data() + i * 4);
if (x == entry->b.x - 8 && entry->b.y <= ly + 16 && ly + 8 + (8 * lcdc.w.obj_size) < entry->b.y)
if (x == entry->b.x - 8 && entry->b.y <= ly + 16 && ly + 8 + (8 * lcdc.w.obj_size) < entry->b.y) // and if the sprite is rendered on the current coordinate
{
// Fetch Sprite!
WORD yOffset = (ly - entry->b.y + 16);
WORD yOffset = (ly - entry->b.y + 16); // offset of the tile data in vram
if (entry->b.attr.yFlip)
{
yOffset = 8 * (1 + lcdc.w.obj_size) - yOffset;
yOffset = 8 * (1 + lcdc.w.obj_size) - yOffset; // flip vertically by just doing this
}
BYTE lo = vram[2 * yOffset + (entry->b.idx * 16 * (1 + lcdc.w.obj_size))];
BYTE lo = vram[2 * yOffset + (entry->b.idx * 16 * (1 + lcdc.w.obj_size))]; // get lo and hi byte of tile data
BYTE hi = vram[2 * yOffset + (entry->b.idx * 16 * (1 + lcdc.w.obj_size)) + 1];
if (entry->b.attr.xFlip)
{
@ -137,22 +149,25 @@ void LCD::Tick()
hi = Reverse(hi);
}
// Feed it all into the spriteFIFO
spriteFIFO.lowByte = lo;
spriteFIFO.highByte = hi;
spriteFIFO.full = 0xFF;
BYTE counter = 0;
while (spriteFIFO.full)
{
BYTE color = ((spriteFIFO.highByte & 0x80) >> 6) | ((spriteFIFO.lowByte & 0x80) >> 7);
while (spriteFIFO.full) // While theres data in the fifo
{
BYTE color = ((spriteFIFO.highByte & 0x80) >> 6) | ((spriteFIFO.lowByte & 0x80) >> 7); // Get color of sprite at that pixel
if (color != 0x00)
if (color != 0x00) // if its not transparent
{
BYTE bgPriority = (bgFIFO.sprite & (0x80 >> counter)) >> 6;
BYTE bgPriority = (bgFIFO.sprite & (0x80 >> counter)) >> 6; // See if there is already a sprite rendered at this pixel (if yes,
// then dont render over it because sprites with the LOWER x coord get priority)
if (!bgPriority)
{
BYTE bgColor = ((bgFIFO.highByte & (0x80 >> counter)) >> 6) | ((bgFIFO.lowByte & (0x80 >> counter)) >> 7);
if (entry->b.attr.bgPriority)
BYTE bgColor = ((bgFIFO.highByte & (0x80 >> counter)) >> 6) | ((bgFIFO.lowByte & (0x80 >> counter)) >> 7); // Get the color of the background at this pixel
if (entry->b.attr.bgPriority) // If the background/window are supposed to have priority do this
{
if (bgColor == 0x00)
{
@ -170,6 +185,7 @@ void LCD::Tick()
}
}
// Advance FIFOs
spriteFIFO.full <<= 1;
spriteFIFO.highByte <<= 1;
spriteFIFO.lowByte <<= 1;
@ -179,11 +195,12 @@ void LCD::Tick()
}
}
// Okay we're back at rendering the background now
switch (fetcher.cycle)
{
case 0: // Get Tile
{
// TODO: Can be different (Window)
// TODO: Implement the window
WORD baseAddr = (lcdc.w.bg_tilemap ? 0x1C00 : 0x1800);
BYTE fetcherX = ((scx + fetcher.x) & 0xFF) / 8;
BYTE fetcherY = ((ly + scy) & 0xFF) / 8;
@ -231,25 +248,28 @@ void LCD::Tick()
// Draw pixels
if (bgFIFO.full & 0x00FF) // If Data in FIFO
{
// calculate color
BYTE color = ((bgFIFO.highByte & 0x80) >> 6) | ((bgFIFO.lowByte & 0x80) >> 7);
// set color (pretty easy huh)
display[ly * 160 + x] = colormap[color];
x++;
// advance fifo
bgFIFO.highByte <<= 1;
bgFIFO.lowByte <<= 1;
bgFIFO.full <<= 1;
bgFIFO.sprite <<= 1;
}
if (x == 160)
if (x == 160) // if we reached the end of the scanline, enable hblank
{
stat.w.mode = 0;
}
}
}
else if (ly == 144)
else if (ly == 144) // if we're at the end of the screen, enable the vblanking period
{
stat.w.mode = 1;
fetcher.y = -1;

View file

@ -12,6 +12,7 @@ static BYTE bios[0x100] = {
ROM::ROM(FILE* f)
{
// read in rom from file
fseek(f, 0, SEEK_END);
long fsize = ftell(f);
rewind(f);
@ -19,6 +20,7 @@ ROM::ROM(FILE* f)
data = std::vector<BYTE>(fsize);
fread(data.data(), 1, fsize, f);
// figure out how much ram we need (or dont need)
switch (data[0x149])
{
case 0x01: ram = std::vector<BYTE>(0x800); break;
@ -28,6 +30,7 @@ ROM::ROM(FILE* f)
case 0x05: ram = std::vector<BYTE>(0x10000); break;
}
// figure out how many rom banks there are
WORD RomBanks = (WORD)0x2 << data[0x0148];
if (data[0x0148] == 0x52)
RomBanks = 72;
@ -36,7 +39,8 @@ ROM::ROM(FILE* f)
else if (data[0x0148] == 0x54)
RomBanks = 96;
WORD RamBanks = 0x00;
// figure out how many ram banks there are
WORD RamBanks = 0x00;
switch (data[0x0149])
{
case 0x03: RamBanks = 4; break;