initial commit

This commit is contained in:
Robert 2020-09-27 00:40:57 +02:00
commit fd1c493e91
5 changed files with 274 additions and 0 deletions

1
.gitignore vendored Normal file
View file

@ -0,0 +1 @@
.vscode

15
index.html Normal file
View file

@ -0,0 +1,15 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>LauchSpace</title>
</head>
<body>
<ul>
<li>
<a href="orbitals.html">Orbitals</a>
</li>
</ul>
</body>
</html>

71
orbitals.html Normal file
View file

@ -0,0 +1,71 @@
<!DOCTYPE html5>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Orbitals</title>
<script src="orbitals/legendre.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/gl-matrix/2.8.1/gl-matrix-min.js"
integrity="sha512-zhHQR0/H5SEBL3Wn6yYSaTTZej12z0hVZKOv3TwCUXT1z5qeqGcXJLLrbERYRScEDDpYIJhPC1fk31gqR783iQ=="
crossorigin="anonymous" defer>
</script>
<script src="orbitals/rendering.js" defer></script>
<style>
#screen
{
border: 1px solid red;
}
</style>
</head>
<body>
<div style="float: left; margin-right: 50px;">
<canvas id="screen" width="500" height="500"></canvas>
</div>
<h1>What is this?</h1>
<p>
This little WebGL script visualizes the <a href="https://www.wikiwand.com/en/Spherical_harmonics">Spherical Harmonics</a>.
A quick rundown about what that means:
</p>
<p>
The <i>Spherical Harmonics</i> are results of a rather complex (pun not intended) function, commonly denoted with the capital letter Y.
This function depends on two parameters: <i>l</i> and <i>m</i>. Y is defined for all <b>integers</b> <i>l</i> and <i>m</i> such that 0 &le; <i>m</i> &le; <i>l</i>.
The function takes in two variables: &theta; and &phi;. The function essentially takes in a sphere and deforms it in a specific way.
</p>
<p>
This tool plots this function. Since the results of the function are complex, it isn't really easy to plot the function in all its glory.
(The function takes in two variables and spits out another two. We'd need 4D screens to see it in all its glory).
So this widget just plots the radius of the complex number. Think of complex numbers as points in 2D space. I plot the distance
of that point from the origin.
</p>
<br>
<br>
<table>
<tr>
<td>Point distance</td>
<td>--</td>
<td><input type="range" min="0.01" max="0.1" step="0.005" value="0.05" id="stepSize" /></td>
<td id="lstepSize"></td>
</tr>
<tr>
<td>l</td>
<td>--</td>
<td><input type="range" min="0" max="10" step="1" value="2" id="l" /></td>
<td id="ll"></td>
</tr>
<tr>
<td>m</td>
<td>--</td>
<td><input type="range" min="-10" max="10" step="1" value="0" id="m" /></td>
<td id="lm"></td>
</tr>
<tr><td><button onclick="createModel()">Create</button></td></tr>
</table>
</body>
</html>

38
orbitals/legendre.js Normal file
View file

@ -0,0 +1,38 @@
function fact(n)
{
if (n <= 1)
return 1
for (var i = n - 1; i >= 1; i--)
n *= i;
return n
}
function assoc_legendre(l, m, x)
{
l = Math.floor(l);
m = Math.floor(m);
if (x > 1 || x < -1 || l < 0 || m > l)
return 0;
if (m === l)
return (Math.pow(-1, m) * fact(2*m) / (Math.pow(2, m) * fact(m)) * Math.pow(1 - x*x, m/2))
return (x * (2*l - 1) * assoc_legendre(l-1, m, x) - (l + m - 1) * assoc_legendre(l-2, m, x)) / (l - m)
}
function N(l, m)
{
return Math.sqrt((2*l + 1)/2 * fact(l-m) / fact(l+m));
}
function Y(l, m, theta, phi)
{
var a = 1 / Math.sqrt(2 * Math.PI) * N(l, Math.abs(m)) * assoc_legendre(l, Math.abs(m), Math.cos(theta))
if(m >= 0)
return a * Math.cos(m * phi)
else
return a * Math.sin(Math.abs(m) * phi)
}

149
orbitals/rendering.js Normal file
View file

@ -0,0 +1,149 @@
function HSVtoRGB(h, s, v) {
var r, g, b, i, f, p, q, t;
if (arguments.length === 1) {
s = h.s, v = h.v, h = h.h;
}
i = Math.floor(h * 6);
f = h * 6 - i;
p = v * (1 - s);
q = v * (1 - f * s);
t = v * (1 - (1 - f) * s);
switch (i % 6) {
case 0: r = v, g = t, b = p; break;
case 1: r = q, g = v, b = p; break;
case 2: r = p, g = v, b = t; break;
case 3: r = p, g = q, b = v; break;
case 4: r = t, g = p, b = v; break;
case 5: r = v, g = p, b = q; break;
}
return {
r: Math.round(r * 255),
g: Math.round(g * 255),
b: Math.round(b * 255)
};
}
var canvas = document.querySelector('#screen');
canvas.height = screen.height - 200;
canvas.width = canvas.height;
console.log(window.height)
var gl = canvas.getContext("webgl");
var VBO = gl.createBuffer();
var vertices = [];
function createModel()
{
var stepSize = Number(document.getElementById("stepSize").value);
var l = Number(document.getElementById("l").value);
var m = Number(document.getElementById("m").value);
document.getElementById("lstepSize").innerHTML = stepSize;
document.getElementById("ll").innerHTML = l;
document.getElementById("lm").innerHTML = m;
vertices = [];
for(var theta = 0; theta <= Math.PI; theta += stepSize)
{
for(var phi = -Math.PI; phi <= Math.PI; phi += stepSize)
{
var length = Math.abs(Y(l, m, theta, phi));
var x = length * Math.sin(theta) * Math.cos(phi);
var y = length * Math.sin(theta) * Math.sin(phi);
var z = length * Math.cos(theta);
vertices.push(x);
vertices.push(y);
vertices.push(z);
}
}
gl.bindBuffer(gl.ARRAY_BUFFER, VBO);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertices), gl.STATIC_DRAW);
gl.bindBuffer(gl.ARRAY_BUFFER, null);
}
gl.clearColor(0, 0, 0, 1);
gl.clear(gl.COLOR_BUFFER_BIT);
createModel();
var vertCode =
'attribute vec3 coordinates;' +
'uniform mat4 uModelMatrix;' +
'uniform mat4 uModelViewMatrix;' +
'uniform mat4 uProjectionMatrix;' +
'void main(void) {' +
' gl_Position = uProjectionMatrix * uModelViewMatrix * uModelMatrix * vec4(coordinates, 1.0);' +
' gl_PointSize = 1.0;' +
'}';
var vertShader = gl.createShader(gl.VERTEX_SHADER);
gl.shaderSource(vertShader, vertCode);
gl.compileShader(vertShader);
var fragCode =
'void main(void) {' + 'gl_FragColor = vec4(0.2, 0.9, 0.2, 1.0);' + '}';
var fragShader = gl.createShader(gl.FRAGMENT_SHADER);
gl.shaderSource(fragShader, fragCode);
gl.compileShader(fragShader);
var shaderProgram = gl.createProgram();
gl.attachShader(shaderProgram, vertShader);
gl.attachShader(shaderProgram, fragShader);
gl.linkProgram(shaderProgram);
var modelMat = mat4.create()
mat4.rotate(modelMat, modelMat, Math.PI / 2, [1.0, 0.0, 0]);
var viewMat = mat4.create();
mat4.translate(viewMat, viewMat, [0.0, 0.0, -3.0]);
function drawScene()
{
gl.clearColor(0, 0, 0, 1);
gl.clearDepth(1.0);
gl.enable(gl.DEPTH_TEST);
gl.depthFunc(gl.LEQUAL)
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
const fov = 45 * Math.PI / 180;
const aspect = canvas.width / canvas.height;
const zNear = 0.1;
const zFar = 100.0;
const projMat = mat4.create();
mat4.perspective(projMat, fov, aspect, zNear, zFar);
mat4.rotate(viewMat, viewMat, 0.05, [0.0, 1.0, 0.0]);
gl.useProgram(shaderProgram);
gl.bindBuffer(gl.ARRAY_BUFFER, VBO);
gl.uniformMatrix4fv(gl.getUniformLocation(shaderProgram, "uModelMatrix"), false, modelMat);
gl.uniformMatrix4fv(gl.getUniformLocation(shaderProgram, "uModelViewMatrix"), false, viewMat);
gl.uniformMatrix4fv(gl.getUniformLocation(shaderProgram, "uProjectionMatrix"), false, projMat);
var coord = gl.getAttribLocation(shaderProgram, "coordinates");
gl.vertexAttribPointer(coord, 3, gl.FLOAT, false, 0, 0);
gl.enableVertexAttribArray(coord);
gl.viewport(0,0,canvas.width,canvas.height);
gl.drawArrays(gl.POINTS, 0, vertices.length / 3);
}
var then = 0;
function render(now) {
now *= 0.001; // convert to seconds
const deltaTime = now - then;
then = now;
drawScene();
requestAnimationFrame(render);
}
requestAnimationFrame(render);