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1.1. THE SCHRÖDINGER EQUATION 3

Due to the uncertainty principle, location and impulse of an atomic particle cannot be both
stated with arbitrairy precision. The classic trajectory, represented in the model of mass
points by a well-defined curve in space r(t), is replaced by the probability

W (x, y, z, t) dv = |ψ(x, y, z, t)|2 dV (1.1)

to find the particle in the volume element dV = dx dy dz at the time t. This probability
depends on the absolute square of the matter wave function ψ(x, y, z, t).

In this chapter we wnat to show how this wave function can be calculated for simple exam-
ples. These examples will also demonstrate the physical fundamentals of quantum mechan-
ics and its differences to classical particle mechanics, elaborate on the concept of quantum
numbers and show under which conditions quantum mechanical results can be transitioned
into classical physics. This is supposed to clarify that classic (i.e. pre-quantum) mechanics
are contained in quantum mechanics as a limiting case for very small de Broglie wavelengths
λdB → 0.

These examples should also demonstrate that almost all insights of quantum mechanics are
already known in classic wave optics. This means: the actual novel concepts in quantum
mechanics is the description of classic particles with matter waves. The deterministic de-
scription of the temporal development of location and impulse of a particle is thus replaced
with a statistical treatment, by which we can only discuss probabilities of the results of a
measurement. A fundamental uncertainty occurs when we observe location and impulse at
the same time.

1.1 The Schrödinger Equation

In this section we will outline the fundamental equation of quantum mechanics, which was
established by Erwin Schrödinger (1887–1961) in 1926. The solutions of this equation are
the desired wave functions ψ(x, y, z, t). However, these solutions can only be derived in
analytical form for a few very simple physical problems. Very fast computers are usually
able to numerically compute solutions for complex problems.

First, we will consider the mathematically simplest case.A free particle of mass m which
moves at a constant velocity v in direction x. With p = ℏk and E = ℏω = Ekin (because
Epot = 0), we know the wave function must be of the form

ψ(x, t) = Aei(kx−ωt) = Ae(i/ℏ)(px−Ekint) (1.2)

Here we use the fact that Ekin = p2/2m, which is the kinetic energy of the particle. Since
the mathematical representation is absolutely identical to that of an electromagnetic wave,
it makes sense to start with the wave equation

∂2ψ

∂x2
=

1

u2
∂2ψ

∂t2
(1.3)
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for waves propagating with phase velocity u in direction x. For stationary problems where
p and E are time-independent the wave function can be split into a strictly location-
dependent factor ψ(x) = Aeikx, and a strictly time-dependent phase factor e−iωt. Thus
we can write

ψ(x, t) = ψ(x) · e−iωt = Aeikx · e−iωt (1.4)

If we use the ansatz (1.4) in the wave equation (1.3), and the fact that k2 = p2/ℏ2 =
2mEkin/ℏ2, we get the equations

∂2ψ

∂x2
= −k2ψ = −2m

k
· Ekin · ψ

∂2ψ

∂t2
= −ω2ψ

(1.5)

Comparison with (1.3) gives us

u2 =
ω2

k2
=⇒ u =

ω

k

Note that the particle velocity vP = v

v =
p

m
=

ℏk
m

=
∂ω

∂k

is different from the phase velocity u = vph = ω/k.

In the general case the particle can move in a force field. If it is conservative then we can
assign each point a potential energy, with the condition that the total energy E = Ekin+Epot

remains constant. Using Ekin = E − Epot and (1.5) we then receive the one-dimensional
stationary Schrödinger equation

−ℏ2

2m

∂2ψ

∂x2
+ Epotψ = Eψ (1.6)

For the general case where the particle is moving freely in three-dimensional space we can
use the three-dimensional wave equation

∆ψ =
1

u2
∂2ψ

∂t2

and the ansatz ψ(x, y, z, t) = ψ(x, y, z) · e−iωt, we can establish the three-dimensional sta-
tionary Schrödinger equation

−ℏ2

2m
∆ψ = Epotψ = Eψ (1.7)
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If we differentiate (1.2) partially for time we receive

∂ψ

∂t
= − i

h
Ekin · ψ

and with (1.5) we can find the time-dependent equation for a free particle with Epot = 0
(i.e. Ekin = const)

− ℏ2

2m

∂2ψ(x, t)

∂x2
= iℏ

∂ψ(x, t)

∂t
(1.8)

The three-dimensional representation is then

− ℏ2

2m
∆ψ(r, t) = iℏ

∂ψ(r, t)

∂t
(1.9)

There are some remarks to be made:

� In this “derivation” we have used the de Broglie-relationship p = ℏk, which is only
supported by experiments and has no mathematical justification.

� The law of conservation of energy of quantum mechanics is Eψ = Ekinψ+Epotψ. Like
in classical mechanics, there is no derivation for this law, and is accepted as truth from
experience.

� While electromagnetic waves have a linear dispersion relation ω(k) = kc, the matter
wave ψ(r, t) of a free particle has a quadratic dispersion relation ω(k) = (ℏ/2m) · k2.
This results from E = ℏω = p2/2m.

� The Schrödinger equations are a linear homogeneous differential equation. Because
of this, different solutions of the equation can be superpositioned. This means, if ψ1

and ψ2 are solutions to the equation, then ψ3 = a · ψ1 + b · ψ2 is also a solution.

� Since the time-dependent Schrödinger equation is a complex equation, the wave func-
tions ψ may also be complex. The absolute square |ψ|2 however, which represents the
probability of the presence of a particle, is always real.

For non-stationary problems (i.e. E = E(t) and p = p(t)), the dispersion relation ω(t) also
becomes time-dependent. This means that ∂2ψ/∂t2 can no longer be written as −ω2ψ, and
cannot be derived from the wave equation for matter waves of particles.

Schrödinger postulated (!), that even for time-dependent potential energy Epot(r, t) the
equation

−ℏ2

2m
∆ψ(r, t) + Epot(r, t)ψ(r, t) = iℏ

∂ψ(r, t)

∂t
(1.10)
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holds. The general time-dependent Schrödinger equation has since been verified in numerous
experiments, and is generally considered correct, even if no mathematical justification exists.
This equation is the fundamental equation of quantum mechanics.

For stationary problems we can separate ψ(r, t) into ψ(r, t) = ψ(r) · e−i(E/ℏ)·t. Inserting
this into (1.10) yields the stationary Schrödinger equation (1.7) for ψ(r).

1.2 Examples of the Stationary Schrödinger Equation

We now want to solve the Schrödinger equation

−ℏ2

2m

d2ψ

dx2
+ Epotψ = Eψ

for a few simple, one-dimensional problems. These examples will illustrate the description
of classical particles as waves and the following physical consequences.

1.2.1 The Free Particle

A particle is said to be free, if it is moving in a constant potention ϕ0, because then
F = −∇Epot means that no forces are acting on the particle. Through a suitable choice
of the zero point energy we can set ϕ0 = 0, i.e. Epot = 0, and thus get the Schrödinger
equation for a free particle

−ℏ2

2m

d2ψ

dx2
= Eψ (1.11)

The total energy E = Ekin + Epot is because of Epot now

E =
p2

2m
=

ℏ2k2

2m

Thus (1.11) gets reduced to
d2ψ

dx2
= −k2ψ

which has the general solution

ψ(x) = Aeikx +Be−ikx (1.12)

The time-dependent wave function

ψ(x, t) = ψ(x) · e−iωt = Aei(kx−ωt) +Be−i(kx+ωt) (1.13)

represents the superposition of a planar wave travelling in the +x and −x direction.

The coefficients A and B are the amplitudes of those waves, which are determined by the
boundary conditions. For example, the wave function of electrons which are emitted from
a cathode in +x direction towards a detector, will have B = 0, since there are no particles
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moving in −x. From this experimental setup we know that the electrons are found along
the length L of the path between cathode and detector. This means their wave function
can only be different from zero in this region of space. Using the normalization condition
we get

� L

0
|ψ(x)|2 dx = 1

=⇒ A2 · L = 1 =⇒ A =
1√
L

To determine the location of a particle at time t more accurately, we will have to construct
wave packets in place of planar waves (1.12)

ψ(x, t) =

� k0+∆k/2

k0−∆k/2
A(k)ei(kx−ωt) dk (1.14)

The location uncertainty of this packet at t = 0 is

∆x ≥ ℏ
2∆px

=
1

2∆k

and depends on the pulse width ∆px = ℏ∆k. The larger k is, the more certainly ∆x(t = 0)
can be determined, but the faster the wave packet spreads.

Experimentally, this can be illustrated as follows: If we apply a short voltage pulse to
the cathode at time t = 0, then electrons can start travelling towards the detector at this
instance. The emitted electrons have a velocity distribution ∆v, such that electrons with
differing velocities v will not necessarily be in the same location x at a later point in time
t. Instead they are spread over the interval ∆x(t) = t · ∆v. The velocity distribution is
described by ∆v ∝ ∆k of the wave packet, such that the location uncertainty ∆x

d(∆x(t))

dt
= ∆v(t = 0) =

ℏ
m
∆k(t = 0)

changes proportionally to the initial impulse uncertainty.

1.2.2 Potential Step

We are still considering the particles from the previous example, however we introduce a
potential step at x = 0. This means we are considering the potential

ϕ(x) =

{
0 x < 0

ϕ0 x ≥ 0

This means the particles are still moving in direction +x and are free (Epot = 0) if their
position is x < 0. However at position x = 0 they enter into an area of higher potential
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ϕ(x ≥ 0) = ϕ0 > 0. The potential energy in this area is still constant Epot = E0. Thus,
at x = 0 we have a potential jump ∆E = E0. This problem has an equivalent in classic
optics: a planar lightwave encountering a boundary between vacuum and material (e.g. a
glass surface).

We divide the domain −∞ < x < +∞ into two areas I and II. For area I with Epot = 0
we still have the equation (1.11) with the solution (1.12) for the location part of the wave
function

ψI(x) = Aeikx +Be−ikx

where A is the amplitude of the incidental wave, and B the amplitude of the wave reflected
from the potential step.

Note: The complete solution is (1.13). The temporal part of the soltuion is often omitted,
because it has no influence in the stationary problems considered here.

In area II, the Schrödinger equation becomes

d2ψ

dx2
+

2m

ℏ2
(E − E0)ψ = 0 (1.15)

If we use the shorthand α =
√
2m(E0 − E)/ℏ we can reduce the equation to

d2ψ

dx2
− α2ψ = 0 (1.16)

This equation has the solution

ψII = Ce+αx +De−αx (1.17)

If

ψ(x) =

{
ψI x < 0

ψII x ≥ 0

is a solution to the Schrödinger equation (1.16) on the entire domain −∞ < x < +∞, then
ψ has to be continuously differentiable at every point, or else the second derivative d2ψ/dx2

is not defined, and thus the Schrödinger equation is not applicable. Using (1.12) and (1.17)
this results in the boundary conditions

ψI(x = 0) = ψII(x = 0)

=⇒ A+B = C +D
(1.18a)

dψI

dx

∣∣∣∣
0

=
dψII

dx

∣∣∣∣
0

=⇒ ik(A−B) = α(C −D)

(1.18b)

We can now investigate the two cases where the energy Ekin = E of the incoming particle
is smaller or larger than the potential step.
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(a) E < E0

In this case, α is real valued and the coefficient C in (1.17) must be zero, because other-
wise

ψII
x→+∞−−−−→ ±∞

If this happens, the wave function is not normalizable. With the above boundary conditions
this yields

B =
ik + α

ik − α
A and D =

2ik

ik − α
A (1.19)

Thus the wave function for x < 0 becomes

ψI(x) = A

[
eikx +

ik + α

ik − α
e−ikx

]
(1.20)

The fraction of reflected particles is calculated as

R =

∣∣Be−ikx
∣∣2

|Aeikx|2
=

|B|2

|A|2
=

∣∣∣∣ ik + α

ik − α

∣∣∣∣2 = 1 (1.21)

which means that all particles are being reflected if E < E0. This corresponds to the
expected classical behaviour or particles. However there is a notable difference to classic
particle mechanics:

The particles are not being reflected at x = 0, but instead penetrate the domain
x > 0 where Epot = E0 > Ekin before returning, even if their energy Ekin < E0

should not be enough to do so in a classical model.

The probability P (x) of finding a particle in x > 0 is

P (x) = |ψII|2 =
∣∣De−αx

∣∣2 = 4k2

α2 + k2
|A|2e−2αx =

4k2

k20
|A|2e−2αx (1.22)

where k20 = 2mE0/ℏ2. After a distance x = 1/(2α), the penetration probability is reduced
to 1/e of its value at x = 0.

We already know this result from wave optics. Even if waves are reflected totally at a
boundary with refraction index n = n′− iκ, the wave penetrates the surface of the medium
before returning, and the intensity of the penetrating wave sinks to 1/e of its initial value
after a distance x = 1/(2kκ) = λ/(4πκ).

Particles with energy E can penetrate into potential areas E0 > E with a certain
probability, even if they shouldn’t be able to according to classic particle physics.

Once we accept that particles are described by waves, we can come to the conclusion that
particles are allowed to exist in classically forbidden locations.
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(b) E > E0

In this case, the kinetic energy ekin = E of the incidental particle is greater than the
potential jump E0, and in the classical model all particles would enter the area x > 0,
losing speed in the process, because their kinetic energy decreases to Ekin = E −E0. What
does this look like in the wave model? The quantity α is now purely imaginary, so we
introduce the real quantity

k′ =

√
2m(E − E0)

ℏ
= iα (1.23)

The solution (1.17) then becomes

ψII = Ce−ik′x +Deik
′x (1.24)

Since there are no particles moving in the −x direction, we know that C = 0, and we are
left with ψII = Deik

′x. From the boundary conditions (1.18) we can deduce

B =
k − k′

k + k′
A and D =

2k

k + k′
A (1.25)

thus leaving us with the wave functions

ψI(x) = A ·
(
eikx +

k − k′

k + k′
· e−ikx

)
ψII(x) =

2k

k + k′
Aeik

′x

(1.26)

The reflection coefficient R, i.e. the fraction of reflected particles is then analogous to
the result from optics

R =
|B|2

|A|2
=

∣∣∣∣k − k′

k + k′

∣∣∣∣2 (1.27)

Remark. Since the wave number k is proportional to the refractive index in optics (k =
n · k0), the result (1.27) can easily be transformed into the reflection coefficient

R =

∣∣∣∣n1 − n2
n1 + n2

∣∣∣∣2
of a lightwave encountering a boundary surface between two mediums with refractive indexes
n1 and n2.

To compute the amount of particles being transmitted per unit of time (i.e. the number of
particles passing through the area x = x0 > 0 divided by the amount of particles passing
through an area x < 0 per unit of time) one has to consider that the velocities in both areas
are different. The ratio v′/v = k′/k = λ/λ′ is given by the ratio of the wave numbers. That
is why the transmission coefficient

T =
v′|D|2

v|A|2
=

4k · k′

(k + k′)2
(1.28)
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From comparing (1.27) and (1.28) we can see that

T +R = 1

which makes sense because the amount of particles overall has to be conserved.

Remarks.

� Total reflection also occurs for E = E0. In this case α = 0 and k′ = 0, and thus
according to (1.21) or (1.27) we see that R = 1

� Instead of a positive potential barrier one can also consider a negative one with E0 < 0,
where reflection and transmission occurs as well. One has to let the wave incide from
the right in order to yield the same equations. The optical equivalent would be the
transition from a medium with higher optical density into one with a lower optical
density.

1.2.3 Quantum Tunnelling

Now we will consider the case where the area in which the potential energy Epot(x) = E0

has only a finite width ∆x = a, such that for x < 0 and x > a we have Epot(x) = 0, and
for 0 ≤ x ≤ a we have Epot(x) = E0.

The domain is then split into three parts I, II and III, for which we repeat our previous
approaches for the calculation of the wave functions

ψI = Aeikx +Be−ikx

ψII = Ceαx +De−αx

ψIII = A′eikx
(1.29)

We also find the boundary conditions

ψI(0) = ψII(0), ψII(a) = ψIII(a)

ψ′
I(0) = ψ′

II(0), ψ′
II(a) = ψ′

III(a) (1.30)

Similar to the previous example we then find the following conditions

A+B = C +D

Ceαa +De−αa = A′eika

ik(A−B) = α(C −D)

αCeαa − αDe−αa = ikA′eika

Solving the last equation for A′ and inserting the relationships between C and A and D and
A from the first three equations then gives us the transmission coefficient of the barrier

T=
v · |A′|2

v · |A|2
(1.31)
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I II III

E0a

λ = 2π
k λ = 2π

k

Figure 1.1: Quantum tunnelling through a rectangular potential barrier

Inserting k = p/h and E = p2/2m gives

T =
1− E/E0

(1− E/E0) + (E0/4E) · sinh2(α · a)
(1.32)

with α =
√

2m(E0 − E)/ℏ.
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