started quantum tunnelling

This commit is contained in:
Lauchmelder 2022-10-16 00:19:06 +02:00
parent 0ae66ac422
commit 4ba162a2c0
3 changed files with 81 additions and 13 deletions

View file

@ -77,7 +77,7 @@ This problem has an equivalent in classic optics: a planar lightwave encounterin
We divide the domain $-\infty < x < +\infty$ into two areas I and II\@. For area I with $\epot = 0$ we still have the equation~\eqref{eq:onedschroedinger} with the solution~\eqref{eq:onedsolution}
for the location part of the wave function
\[
\psi_{\text{I}}(x) = Ae^{ikx} + Be^{-ikx}
\wave[I](x) = Ae^{ikx} + Be^{-ikx}
\]
where $A$ is the amplitude of the incidental wave, and $B$ the amplitude of the wave reflected from the potential step.
@ -93,13 +93,13 @@ If we use the shorthand $\alpha = \sqrt{2m(\energy{0} - E)} / \hbar$ we can redu
\end{equation}
This equation has the solution
\begin{equation}\label{eq:potentialstepsolution}
\psi_{\text{II}} = Ce^{+\alpha x} + De^{-\alpha x}
\wave[II] = Ce^{+\alpha x} + De^{-\alpha x}
\end{equation}
If
\[
\psi(x) = \begin{cases}
\psi_{\text{I}} & x < 0 \\
\psi_{\text{II}} & x \ge 0
\wave[I] & x < 0 \\
\wave[II] & x \ge 0
\end{cases}
\]
is a solution to the Schrödinger equation~\eqref{eq:potentialstep} on the entire domain $-\infty < x < +\infty$, then $\psi$ has to be continuously differentiable at every point,
@ -108,14 +108,14 @@ Using~\eqref{eq:onedsolution} and~\eqref{eq:potentialstepsolution} this results
\begin{subequations}\label{eq:boundaryconditions}
\begin{equation}
\begin{split}
\psi_{\text{I}}(x = 0) &= \psi_{\text{II}}(x = 0) \\
\wave[I](x = 0) &= \wave[II](x = 0) \\
&\implies A + B = C + D
\end{split}
\end{equation}
\begin{equation}
\begin{split}
\eval{\dv{\psi_{\text{I}}}{x}}_0 &= \eval{\dv{\psi_{\text{II}}}{x}}_0 \\
\eval{\dv{\wave[I]}{x}}_0 &= \eval{\dv{\wave[II]}{x}}_0 \\
&\implies ik(A - B) = \alpha (C - D)
\end{split}
\end{equation}
@ -125,7 +125,7 @@ We can now investigate the two cases where the energy $\ekin = E$ of the incomin
\subsubsection{(a) $E < \energy{0}$}
In this case, $\alpha$ is real valued and the coefficient $C$ in~\eqref{eq:potentialstepsolution} must be zero, because otherwise
\[
\psi_{\text{II}} \xrightarrow{x \rightarrow +\infty} \pm\infty
\wave[II] \xrightarrow{x \rightarrow +\infty} \pm\infty
\]
If this happens, the wave function is not normalizable. With the above boundary conditions this yields
\begin{align}
@ -133,7 +133,7 @@ If this happens, the wave function is not normalizable. With the above boundary
\end{align}
Thus the wave function for $x < 0$ becomes
\begin{equation}
\psi_{\text{I}}(x) = A \left[ e^{ikx} + \frac{ik + \alpha}{ik - \alpha}e^{-ikx} \right]
\wave[I](x) = A \left[ e^{ikx} + \frac{ik + \alpha}{ik - \alpha}e^{-ikx} \right]
\end{equation}
The fraction of reflected particles is calculated as
\begin{equation}\label{eq:reflectioncoefffirst}
@ -147,7 +147,7 @@ However there is a notable difference to classic particle mechanics:
\end{tcolorbox}
The probability $P(x)$ of finding a particle in $x > 0$ is
\begin{equation}
P(x) = \abs{\psi_{\text{II}}}^2 = \abs{De^{-\alpha x}}^2 = \frac{4k^2}{\alpha^2 + k^2} \abs{A}^2 e^{-2\alpha x} = \frac{4k^2}{k_0^2} \abs{A}^2 e^{-2\alpha x}
P(x) = \abs{\wave[II]}^2 = \abs{De^{-\alpha x}}^2 = \frac{4k^2}{\alpha^2 + k^2} \abs{A}^2 e^{-2\alpha x} = \frac{4k^2}{k_0^2} \abs{A}^2 e^{-2\alpha x}
\end{equation}
where $k_0^2 = 2m\energy{0} / \hbar^2$. After a distance $x = 1/(2\alpha)$, the penetration probability is reduced to $1/e$ of its value at $x = 0$.
@ -166,9 +166,9 @@ losing speed in the process, because their kinetic energy decreases to $\ekin =
\end{equation}
The solution~\eqref{eq:potentialstepsolution} then becomes
\begin{equation}
\psi_{\text{II}} = Ce^{-ik'x} + De^{ik'x}
\wave[II] = Ce^{-ik'x} + De^{ik'x}
\end{equation}
Since there are no particles moving in the $-x$ direction, we know that $C = 0$, and we are left with $\psi_{\text{II}} = De^{ik'x}$.
Since there are no particles moving in the $-x$ direction, we know that $C = 0$, and we are left with $\wave[II] = De^{ik'x}$.
From the boundary conditions~\eqref{eq:boundaryconditions} we can deduce
\begin{align}
B = \frac{k - k'}{k + k'}A && \text{and} && D = \frac{2k}{k + k'}A
@ -176,8 +176,8 @@ From the boundary conditions~\eqref{eq:boundaryconditions} we can deduce
thus leaving us with the wave functions
\begin{equation}
\begin{split}
\psi_{\text{I}}(x) &= A \cdot \left(e^{ikx} + \frac{k - k'}{k + k'} \cdot e^{-ikx} \right) \\
\psi_{\text{II}}(x) &= \frac{2k}{k + k'}Ae^{ik'x}
\wave[I](x) &= A \cdot \left(e^{ikx} + \frac{k - k'}{k + k'} \cdot e^{-ikx} \right) \\
\wave[II](x) &= \frac{2k}{k + k'}Ae^{ik'x}
\end{split}
\end{equation}
The \textbf{\textit{reflection coefficient}} $R$, i.e.\ the fraction of reflected particles is then analogous to the result from optics
@ -210,4 +210,63 @@ which makes sense because the amount of particles overall has to be conserved.
\end{itemize}
\subsection{Quantum Tunnelling}
Now we will consider the case where the area in which the potential energy $\epot(x) = \energy{0}$ has only a finite width $\Delta x = a$,
such that for $x < 0$ and $x > a$ we have $\epot(x) = 0$, and for $0 \le x \le a$ we have $\epot(x) = \energy{0}$.
The domain is then split into three parts I, II and III, for which we repeat our previous approaches for the calculation of the wave functions
\begin{equation}
\begin{split}
\wave[I] &= Ae^{ikx} + Be^{-ikx} \\
\wave[II] &= Ce^{\alpha x} + De^{-\alpha x} \\
\wave[III] &= A'e^{ikx}
\end{split}
\end{equation}
We also find the boundary conditions
\begin{align}
\wave[I](0) &= \wave[II](0), & \wave[II](a) &= \wave[III](a) \nonumber \\
\wave[I]'(0) &= \wave[II]'(0), & \wave[II]'(a) &= \wave[III]'(a)
\end{align}
Similar to the previous example we then find the following conditions
\begin{align*}
A + B &= C + D \\
Ce^{\alpha a} + De^{-\alpha a} &= A'e^{ika} \\
ik(A - B) &= \alpha (C - D) \\
\alpha Ce^{\alpha a} - \alpha D e^{-\alpha a} &= ikA' e^{ika}
\end{align*}
Solving the last equation for $A'$ and inserting the relationships between $C$ and $A$ and $D$ and $A$ from the first three equations then gives us the transmission coefficient of the barrier
\begin{equation}
^T = \frac{v \cdot \abs{A'}^2}{v \cdot \abs{A}^2}
\end{equation}
\begin{figure}
\begin{center}
\begin{tikzpicture}
\fill[red!10] (3, 0) rectangle (5, 2.5);
\draw[black] (0, 0) -- node[above] {I} (3, 0) -- node[above] {II} (5, 0) -- node[above] {III} (8, 0);
\draw[red] (0, 0) -- (3, 0) -- (3, 2.5) -- (5, 2.5) -- (5, 0) -- (8, 0);
\draw[black] (5.05, 2.5) -- (5.35, 2.5);
\draw[black, <->] (5.2, 0) -- node[below right] {$\energy{0}$} (5.2, 2.5);
\draw[black, <->] (3, 0.5) -- node[above] {$a$} (5, 0.5);
\draw[black] (0, 1.5) -- (8, 1.5);
\draw[red, domain=0:3, smooth, variable=\x] plot ({\x}, {sin(5*\x r) * 0.7 + 1.5}) ;
\draw[red, domain=3:5, smooth, variable=\x] plot ({\x}, {exp(-(\x - 3)) + 0.96});
\draw[red, domain=5:8, smooth, variable=\x] plot ({\x}, {sin(5*(\x + 0.95) r) * 0.4 + 1.5});
\node at (1.5, 2.8) {$\lambda = \frac{2\pi}{k}$};
\node at (6.5, 2.5) {$\lambda = \frac{2\pi}{k}$};
\end{tikzpicture}
\end{center}
\caption{Quantum tunnelling through a rectangular potential barrier}
\label{fig:quantumtunnelling}
\end{figure}
Inserting $k = p/h$ and $E = p^2/2m$ gives
\begin{equation}
T = \frac{1 - E/\energy{0}}{(1 - E/\energy{0}) + (\energy{0} / 4E) \cdot \sinh^2(\alpha \cdot a)}
\end{equation}
with $\alpha = \sqrt{2m(\energy{0} - E)}/\hbar$.
\end{document}

Binary file not shown.

View file

@ -16,8 +16,10 @@
\usepackage{pdfpages}
\usepackage{fancyhdr}
\usepackage[arrowdel]{physics}
\usepackage{xparse}
\usetikzlibrary{calc,trees,decorations.markings,positioning,arrows,fit,shapes,angles,patterns}
\DeclareDocumentCommand\vnabla{}{\vectorarrow{\nabla}}
\usetikzlibrary{arrows, decorations.markings}
\graphicspath{assets}
@ -51,6 +53,13 @@
\newcommand{\energy}[1]{E_{\text{#1}}}
\newcommand{\ekin}{\energy{kin}}
\newcommand{\epot}{\energy{pot}}
\newcommand{\wave}[1][\@nil]{%
\def\tmp{#1}%
\ifx\tmp\@nnil
\psi%
\else
\psi_{\text{#1}}
\fi}
\renewcommand{\vec}{\vb*}
\renewcommand{\laplacian}{\Delta}