started quantum tunnelling

This commit is contained in:
Lauchmelder 2022-10-16 00:19:06 +02:00
parent 0ae66ac422
commit 4ba162a2c0
3 changed files with 81 additions and 13 deletions

View file

@ -77,7 +77,7 @@ This problem has an equivalent in classic optics: a planar lightwave encounterin
We divide the domain $-\infty < x < +\infty$ into two areas I and II\@. For area I with $\epot = 0$ we still have the equation~\eqref{eq:onedschroedinger} with the solution~\eqref{eq:onedsolution} We divide the domain $-\infty < x < +\infty$ into two areas I and II\@. For area I with $\epot = 0$ we still have the equation~\eqref{eq:onedschroedinger} with the solution~\eqref{eq:onedsolution}
for the location part of the wave function for the location part of the wave function
\[ \[
\psi_{\text{I}}(x) = Ae^{ikx} + Be^{-ikx} \wave[I](x) = Ae^{ikx} + Be^{-ikx}
\] \]
where $A$ is the amplitude of the incidental wave, and $B$ the amplitude of the wave reflected from the potential step. where $A$ is the amplitude of the incidental wave, and $B$ the amplitude of the wave reflected from the potential step.
@ -93,13 +93,13 @@ If we use the shorthand $\alpha = \sqrt{2m(\energy{0} - E)} / \hbar$ we can redu
\end{equation} \end{equation}
This equation has the solution This equation has the solution
\begin{equation}\label{eq:potentialstepsolution} \begin{equation}\label{eq:potentialstepsolution}
\psi_{\text{II}} = Ce^{+\alpha x} + De^{-\alpha x} \wave[II] = Ce^{+\alpha x} + De^{-\alpha x}
\end{equation} \end{equation}
If If
\[ \[
\psi(x) = \begin{cases} \psi(x) = \begin{cases}
\psi_{\text{I}} & x < 0 \\ \wave[I] & x < 0 \\
\psi_{\text{II}} & x \ge 0 \wave[II] & x \ge 0
\end{cases} \end{cases}
\] \]
is a solution to the Schrödinger equation~\eqref{eq:potentialstep} on the entire domain $-\infty < x < +\infty$, then $\psi$ has to be continuously differentiable at every point, is a solution to the Schrödinger equation~\eqref{eq:potentialstep} on the entire domain $-\infty < x < +\infty$, then $\psi$ has to be continuously differentiable at every point,
@ -108,14 +108,14 @@ Using~\eqref{eq:onedsolution} and~\eqref{eq:potentialstepsolution} this results
\begin{subequations}\label{eq:boundaryconditions} \begin{subequations}\label{eq:boundaryconditions}
\begin{equation} \begin{equation}
\begin{split} \begin{split}
\psi_{\text{I}}(x = 0) &= \psi_{\text{II}}(x = 0) \\ \wave[I](x = 0) &= \wave[II](x = 0) \\
&\implies A + B = C + D &\implies A + B = C + D
\end{split} \end{split}
\end{equation} \end{equation}
\begin{equation} \begin{equation}
\begin{split} \begin{split}
\eval{\dv{\psi_{\text{I}}}{x}}_0 &= \eval{\dv{\psi_{\text{II}}}{x}}_0 \\ \eval{\dv{\wave[I]}{x}}_0 &= \eval{\dv{\wave[II]}{x}}_0 \\
&\implies ik(A - B) = \alpha (C - D) &\implies ik(A - B) = \alpha (C - D)
\end{split} \end{split}
\end{equation} \end{equation}
@ -125,7 +125,7 @@ We can now investigate the two cases where the energy $\ekin = E$ of the incomin
\subsubsection{(a) $E < \energy{0}$} \subsubsection{(a) $E < \energy{0}$}
In this case, $\alpha$ is real valued and the coefficient $C$ in~\eqref{eq:potentialstepsolution} must be zero, because otherwise In this case, $\alpha$ is real valued and the coefficient $C$ in~\eqref{eq:potentialstepsolution} must be zero, because otherwise
\[ \[
\psi_{\text{II}} \xrightarrow{x \rightarrow +\infty} \pm\infty \wave[II] \xrightarrow{x \rightarrow +\infty} \pm\infty
\] \]
If this happens, the wave function is not normalizable. With the above boundary conditions this yields If this happens, the wave function is not normalizable. With the above boundary conditions this yields
\begin{align} \begin{align}
@ -133,7 +133,7 @@ If this happens, the wave function is not normalizable. With the above boundary
\end{align} \end{align}
Thus the wave function for $x < 0$ becomes Thus the wave function for $x < 0$ becomes
\begin{equation} \begin{equation}
\psi_{\text{I}}(x) = A \left[ e^{ikx} + \frac{ik + \alpha}{ik - \alpha}e^{-ikx} \right] \wave[I](x) = A \left[ e^{ikx} + \frac{ik + \alpha}{ik - \alpha}e^{-ikx} \right]
\end{equation} \end{equation}
The fraction of reflected particles is calculated as The fraction of reflected particles is calculated as
\begin{equation}\label{eq:reflectioncoefffirst} \begin{equation}\label{eq:reflectioncoefffirst}
@ -147,7 +147,7 @@ However there is a notable difference to classic particle mechanics:
\end{tcolorbox} \end{tcolorbox}
The probability $P(x)$ of finding a particle in $x > 0$ is The probability $P(x)$ of finding a particle in $x > 0$ is
\begin{equation} \begin{equation}
P(x) = \abs{\psi_{\text{II}}}^2 = \abs{De^{-\alpha x}}^2 = \frac{4k^2}{\alpha^2 + k^2} \abs{A}^2 e^{-2\alpha x} = \frac{4k^2}{k_0^2} \abs{A}^2 e^{-2\alpha x} P(x) = \abs{\wave[II]}^2 = \abs{De^{-\alpha x}}^2 = \frac{4k^2}{\alpha^2 + k^2} \abs{A}^2 e^{-2\alpha x} = \frac{4k^2}{k_0^2} \abs{A}^2 e^{-2\alpha x}
\end{equation} \end{equation}
where $k_0^2 = 2m\energy{0} / \hbar^2$. After a distance $x = 1/(2\alpha)$, the penetration probability is reduced to $1/e$ of its value at $x = 0$. where $k_0^2 = 2m\energy{0} / \hbar^2$. After a distance $x = 1/(2\alpha)$, the penetration probability is reduced to $1/e$ of its value at $x = 0$.
@ -166,9 +166,9 @@ losing speed in the process, because their kinetic energy decreases to $\ekin =
\end{equation} \end{equation}
The solution~\eqref{eq:potentialstepsolution} then becomes The solution~\eqref{eq:potentialstepsolution} then becomes
\begin{equation} \begin{equation}
\psi_{\text{II}} = Ce^{-ik'x} + De^{ik'x} \wave[II] = Ce^{-ik'x} + De^{ik'x}
\end{equation} \end{equation}
Since there are no particles moving in the $-x$ direction, we know that $C = 0$, and we are left with $\psi_{\text{II}} = De^{ik'x}$. Since there are no particles moving in the $-x$ direction, we know that $C = 0$, and we are left with $\wave[II] = De^{ik'x}$.
From the boundary conditions~\eqref{eq:boundaryconditions} we can deduce From the boundary conditions~\eqref{eq:boundaryconditions} we can deduce
\begin{align} \begin{align}
B = \frac{k - k'}{k + k'}A && \text{and} && D = \frac{2k}{k + k'}A B = \frac{k - k'}{k + k'}A && \text{and} && D = \frac{2k}{k + k'}A
@ -176,8 +176,8 @@ From the boundary conditions~\eqref{eq:boundaryconditions} we can deduce
thus leaving us with the wave functions thus leaving us with the wave functions
\begin{equation} \begin{equation}
\begin{split} \begin{split}
\psi_{\text{I}}(x) &= A \cdot \left(e^{ikx} + \frac{k - k'}{k + k'} \cdot e^{-ikx} \right) \\ \wave[I](x) &= A \cdot \left(e^{ikx} + \frac{k - k'}{k + k'} \cdot e^{-ikx} \right) \\
\psi_{\text{II}}(x) &= \frac{2k}{k + k'}Ae^{ik'x} \wave[II](x) &= \frac{2k}{k + k'}Ae^{ik'x}
\end{split} \end{split}
\end{equation} \end{equation}
The \textbf{\textit{reflection coefficient}} $R$, i.e.\ the fraction of reflected particles is then analogous to the result from optics The \textbf{\textit{reflection coefficient}} $R$, i.e.\ the fraction of reflected particles is then analogous to the result from optics
@ -210,4 +210,63 @@ which makes sense because the amount of particles overall has to be conserved.
\end{itemize} \end{itemize}
\subsection{Quantum Tunnelling} \subsection{Quantum Tunnelling}
Now we will consider the case where the area in which the potential energy $\epot(x) = \energy{0}$ has only a finite width $\Delta x = a$,
such that for $x < 0$ and $x > a$ we have $\epot(x) = 0$, and for $0 \le x \le a$ we have $\epot(x) = \energy{0}$.
The domain is then split into three parts I, II and III, for which we repeat our previous approaches for the calculation of the wave functions
\begin{equation}
\begin{split}
\wave[I] &= Ae^{ikx} + Be^{-ikx} \\
\wave[II] &= Ce^{\alpha x} + De^{-\alpha x} \\
\wave[III] &= A'e^{ikx}
\end{split}
\end{equation}
We also find the boundary conditions
\begin{align}
\wave[I](0) &= \wave[II](0), & \wave[II](a) &= \wave[III](a) \nonumber \\
\wave[I]'(0) &= \wave[II]'(0), & \wave[II]'(a) &= \wave[III]'(a)
\end{align}
Similar to the previous example we then find the following conditions
\begin{align*}
A + B &= C + D \\
Ce^{\alpha a} + De^{-\alpha a} &= A'e^{ika} \\
ik(A - B) &= \alpha (C - D) \\
\alpha Ce^{\alpha a} - \alpha D e^{-\alpha a} &= ikA' e^{ika}
\end{align*}
Solving the last equation for $A'$ and inserting the relationships between $C$ and $A$ and $D$ and $A$ from the first three equations then gives us the transmission coefficient of the barrier
\begin{equation}
^T = \frac{v \cdot \abs{A'}^2}{v \cdot \abs{A}^2}
\end{equation}
\begin{figure}
\begin{center}
\begin{tikzpicture}
\fill[red!10] (3, 0) rectangle (5, 2.5);
\draw[black] (0, 0) -- node[above] {I} (3, 0) -- node[above] {II} (5, 0) -- node[above] {III} (8, 0);
\draw[red] (0, 0) -- (3, 0) -- (3, 2.5) -- (5, 2.5) -- (5, 0) -- (8, 0);
\draw[black] (5.05, 2.5) -- (5.35, 2.5);
\draw[black, <->] (5.2, 0) -- node[below right] {$\energy{0}$} (5.2, 2.5);
\draw[black, <->] (3, 0.5) -- node[above] {$a$} (5, 0.5);
\draw[black] (0, 1.5) -- (8, 1.5);
\draw[red, domain=0:3, smooth, variable=\x] plot ({\x}, {sin(5*\x r) * 0.7 + 1.5}) ;
\draw[red, domain=3:5, smooth, variable=\x] plot ({\x}, {exp(-(\x - 3)) + 0.96});
\draw[red, domain=5:8, smooth, variable=\x] plot ({\x}, {sin(5*(\x + 0.95) r) * 0.4 + 1.5});
\node at (1.5, 2.8) {$\lambda = \frac{2\pi}{k}$};
\node at (6.5, 2.5) {$\lambda = \frac{2\pi}{k}$};
\end{tikzpicture}
\end{center}
\caption{Quantum tunnelling through a rectangular potential barrier}
\label{fig:quantumtunnelling}
\end{figure}
Inserting $k = p/h$ and $E = p^2/2m$ gives
\begin{equation}
T = \frac{1 - E/\energy{0}}{(1 - E/\energy{0}) + (\energy{0} / 4E) \cdot \sinh^2(\alpha \cdot a)}
\end{equation}
with $\alpha = \sqrt{2m(\energy{0} - E)}/\hbar$.
\end{document} \end{document}

Binary file not shown.

View file

@ -16,8 +16,10 @@
\usepackage{pdfpages} \usepackage{pdfpages}
\usepackage{fancyhdr} \usepackage{fancyhdr}
\usepackage[arrowdel]{physics} \usepackage[arrowdel]{physics}
\usepackage{xparse}
\usetikzlibrary{calc,trees,decorations.markings,positioning,arrows,fit,shapes,angles,patterns} \usetikzlibrary{calc,trees,decorations.markings,positioning,arrows,fit,shapes,angles,patterns}
\DeclareDocumentCommand\vnabla{}{\vectorarrow{\nabla}} \DeclareDocumentCommand\vnabla{}{\vectorarrow{\nabla}}
\usetikzlibrary{arrows, decorations.markings}
\graphicspath{assets} \graphicspath{assets}
@ -51,6 +53,13 @@
\newcommand{\energy}[1]{E_{\text{#1}}} \newcommand{\energy}[1]{E_{\text{#1}}}
\newcommand{\ekin}{\energy{kin}} \newcommand{\ekin}{\energy{kin}}
\newcommand{\epot}{\energy{pot}} \newcommand{\epot}{\energy{pot}}
\newcommand{\wave}[1][\@nil]{%
\def\tmp{#1}%
\ifx\tmp\@nnil
\psi%
\else
\psi_{\text{#1}}
\fi}
\renewcommand{\vec}{\vb*} \renewcommand{\vec}{\vb*}
\renewcommand{\laplacian}{\Delta} \renewcommand{\laplacian}{\Delta}