
The Bisquit Programming Language

A Bisquit program is essentially a list of simple instructions, each 
terminated by a line break. Each sentence is made of a simple combination 
of the languages four core atoms:

Keywords are function names. Some, like PRINT or ADD
expect to be supplied with arguments.

Decimal Literals represent floating point values.

String Literals represent values of type string.

Identifiers refer to variables.

Instructions always start with one keyword, followed by arguments in the 
form of literals or variable identifiers, if so required by the keyword.
A small example program:

PRINT “Hello world!”
ASSIGN 12 my_number
ADD 5 my_number my_number
PRINT “This should be 15: ” my_number
EXIT

All variables are duck typed, (either string or float) and referred to 
through identifiers. They do not need to be explicitly declared. A variable
is automatically declared once a value is assigned to it, by whichever 
keyword. Trying to read from a variable which hasn't previously been 
assigned to, however, will result in an error.

The language has the following built-in keywords:

PRINT <any> ...
Prints the supplied list of arguments, including a line break at 
the end.

ASSIGN <any> <identifier>
Copies the value of the first operand to the variable specified in the 
second argument.

ADD <number> <number> <identifier>
The values of the first two arguments are added and the result is assigned 
to the variable in argument three.

SUB <number> <number> <identifier>



The first argument is subtracted by the second and the difference gets 
assigned to the variable in argument three.

MUL <number> <number> <identifier>
The values of the first two arguments are multiplied and the result is 
assigned to the variable in argument three.

DIV <number> <number> <identifier>
The first argument is divided by the second and the result gets assigned to
the variable in argument three.

EXIT
Exits the program. Always expected at the end of a program.

GOTO <number> <number>
Jumps to the instruction at the index specified by the first argument if 
the second argument is greater than zero.

JUMP <number> <number>
Skips n instructions as specified in the first argument, if the second 
argument is greater than zero. Negative values to argument one means 
jumping backwards.

STRIN <string> <identifier>
Print the supplied prompt string, then takes in a string from the terminal 
and assigns it to the specified variable.

NUMIN <string> <identifier>
Print the supplied prompt string, then takes in a number from the terminal 
and assigns it to the specified variable.

RAND <number> <identifier>
Generates an integral number in the range [0, arg1) and assigns it to the 
specified variable.

EQUAL <number> <number> <identifier>
Assigns 1 to the third argument, if the first two arguments are equal. Else
assigns 0.


