b15f/control/src/drv/b15f.cpp
Tristan Krause a76321eb6b added mem 16
2019-06-21 16:32:04 +02:00

569 lines
12 KiB
C++

#include "b15f.h"
B15F *B15F::instance = nullptr;
errorhandler_t B15F::errorhandler = nullptr;
/*************************************
* Grundfunktionen des B15F Treibers *
*************************************/
B15F &B15F::getInstance(void)
{
if (!instance)
instance = new B15F();
return *instance;
}
void B15F::reconnect()
{
uint8_t tries = RECONNECT_TRIES;
while (tries--)
{
delay_ms(RECONNECT_TIMEOUT);
discard();
if (testConnection())
return;
}
abort("Verbindung kann nicht repariert werden");
}
void B15F::discard(void)
{
try
{
uint8_t rq[] =
{
RQ_DISCARD
};
usart.clearOutputBuffer();
for (uint8_t i = 0; i < 16; i++)
{
usart.transmit(&rq[0], 0, sizeof(rq)); // sende discard Befehl (verwerfe input)
delay_ms(4);
}
usart.clearInputBuffer();
}
catch (std::exception &ex)
{
abort(ex);
}
}
bool B15F::testConnection()
{
// erzeuge zufälliges Byte
srand(time(NULL));
uint8_t dummy = rand() % 256;
uint8_t rq[] =
{
RQ_TEST,
dummy
};
usart.transmit(&rq[0], 0, sizeof(rq));
uint8_t aw[2];
usart.receive(&aw[0], 0, sizeof(aw));
return aw[0] == MSG_OK && aw[1] == dummy;
}
bool B15F::testIntConv()
{
srand(time(NULL));
uint16_t dummy = rand() % (0xFFFF / 3);
uint8_t rq[] =
{
RQ_INT_TEST,
static_cast<uint8_t >(dummy & 0xFF),
static_cast<uint8_t >(dummy >> 8)
};
usart.transmit(&rq[0], 0, sizeof(rq));
uint16_t aw;
usart.receive(reinterpret_cast<uint8_t *>(&aw), 0, sizeof(aw));
return aw == dummy * 3;
}
std::vector<std::string> B15F::getBoardInfo(void)
{
std::vector<std::string> info;
uint8_t rq[] =
{
RQ_INFO
};
usart.transmit(&rq[0], 0, sizeof(rq));
uint8_t n;
usart.receive(&n, 0, sizeof(n));
while (n--)
{
uint8_t len;
usart.receive(&len, 0, sizeof(len));
char str[len + 1];
str[len] = '\0';
usart.receive(reinterpret_cast<uint8_t *>(&str[0]), 0, len);
info.push_back(std::string(str));
}
uint8_t aw;
usart.receive(&aw, 0, sizeof(aw));
if (aw != MSG_OK)
abort("Board Info fehlerhalft: code " + std::to_string((int) aw));
return info;
}
void B15F::delay_ms(uint16_t ms)
{
std::this_thread::sleep_for(std::chrono::milliseconds(ms));
}
void B15F::delay_us(uint16_t us)
{
std::this_thread::sleep_for(std::chrono::microseconds(us));
}
void B15F::reverse(uint8_t& b)
{
b = (b & 0xF0) >> 4 | (b & 0x0F) << 4;
b = (b & 0xCC) >> 2 | (b & 0x33) << 2;
b = (b & 0xAA) >> 1 | (b & 0x55) << 1;
}
// https://stackoverflow.com/a/478960
std::string B15F::exec(std::string cmd)
{
std::array<char, 128> buffer;
std::string result;
std::unique_ptr<FILE, decltype(&pclose)> pipe(popen(cmd.c_str(), "r"), pclose);
if (!pipe)
{
throw std::runtime_error("popen() failed!");
}
while (fgets(buffer.data(), buffer.size(), pipe.get()) != nullptr)
{
result += buffer.data();
}
return result;
}
void B15F::abort(std::string msg)
{
DriverException ex(msg);
abort(ex);
}
void B15F::abort(std::exception &ex)
{
if (errorhandler)
errorhandler(ex);
else
{
std::cerr << "NOTICE: B15F::errorhandler not set" << std::endl;
std::cout << ex.what() << std::endl;
throw DriverException(ex.what());
}
}
void B15F::setAbortHandler(errorhandler_t func)
{
errorhandler = func;
}
/*************************************/
/*************************
* Steuerbefehle für B15 *
*************************/
bool B15F::activateSelfTestMode()
{
uint8_t rq[] =
{
RQ_SELF_TEST
};
usart.transmit(&rq[0], 0, sizeof(rq));
uint8_t aw;
usart.receive(&aw, 0, sizeof(aw));
return aw == MSG_OK;
}
bool B15F::digitalWrite0(uint8_t port)
{
uint8_t rq[] =
{
RQ_DIGITAL_WRITE_0,
port
};
usart.transmit(&rq[0], 0, sizeof(rq));
uint8_t aw;
usart.receive(&aw, 0, sizeof(aw));
return aw == MSG_OK;
}
bool B15F::digitalWrite1(uint8_t port)
{
uint8_t rq[] =
{
RQ_DIGITAL_WRITE_1,
port
};
usart.transmit(&rq[0], 0, sizeof(rq));
uint8_t aw;
usart.receive(&aw, 0, sizeof(aw));
return aw == MSG_OK;
}
uint8_t B15F::digitalRead0()
{
usart.clearInputBuffer();
uint8_t rq[] =
{
RQ_DIGITAL_READ_0
};
usart.transmit(&rq[0], 0, sizeof(rq));
uint8_t aw;
usart.receive(&aw, 0, sizeof(aw));
return aw;
}
uint8_t B15F::digitalRead1()
{
usart.clearInputBuffer();
uint8_t rq[] =
{
RQ_DIGITAL_READ_1
};
usart.transmit(&rq[0], 0, sizeof(rq));
uint8_t aw;
usart.receive(&aw, 0, sizeof(aw));
return aw;
}
uint8_t B15F::readDipSwitch()
{
usart.clearInputBuffer();
uint8_t rq[] =
{
RQ_READ_DIP_SWITCH
};
usart.transmit(&rq[0], 0, sizeof(rq));
uint8_t aw;
usart.receive(&aw, 0, sizeof(aw));
reverse(aw); // DIP Schalter muss invertiert werden!
return aw;
}
bool B15F::analogWrite0(uint16_t value)
{
uint8_t rq[] =
{
RQ_ANALOG_WRITE_0,
static_cast<uint8_t >(value & 0xFF),
static_cast<uint8_t >(value >> 8)
};
usart.transmit(&rq[0], 0, sizeof(rq));
uint8_t aw;
usart.receive(&aw, 0, sizeof(aw));
return aw == MSG_OK;
}
bool B15F::analogWrite1(uint16_t value)
{
uint8_t rq[] =
{
RQ_ANALOG_WRITE_1,
static_cast<uint8_t >(value & 0xFF),
static_cast<uint8_t >(value >> 8)
};
usart.transmit(&rq[0], 0, sizeof(rq));
uint8_t aw;
usart.receive(&aw, 0, sizeof(aw));
return aw == MSG_OK;
}
uint16_t B15F::analogRead(uint8_t channel)
{
usart.clearInputBuffer();
if (channel > 7)
abort("Bad ADC channel: " + std::to_string(channel));
uint8_t rq[] =
{
RQ_ANALOG_READ,
channel
};
usart.transmit(&rq[0], 0, sizeof(rq));
uint16_t aw;
usart.receive(reinterpret_cast<uint8_t *>(&aw), 0, sizeof(aw));
if (aw > 1023)
abort("Bad ADC data detected (1)");
return aw;
}
void
B15F::analogSequence(uint8_t channel_a, uint16_t *buffer_a, uint32_t offset_a, uint8_t channel_b, uint16_t *buffer_b,
uint32_t offset_b, uint16_t start, int16_t delta, uint16_t count)
{
// prepare pointers
buffer_a += offset_a;
buffer_b += offset_b;
usart.clearInputBuffer();
uint8_t rq[] =
{
RQ_ADC_DAC_STROKE,
channel_a,
channel_b,
static_cast<uint8_t >(start & 0xFF),
static_cast<uint8_t >(start >> 8),
static_cast<uint8_t >(delta & 0xFF),
static_cast<uint8_t >(delta >> 8),
static_cast<uint8_t >(count & 0xFF),
static_cast<uint8_t >(count >> 8)
};
usart.transmit(&rq[0], 0, sizeof(rq));
for (uint16_t i = 0; i < count; i++)
{
if (buffer_a)
{
usart.receive(reinterpret_cast<uint8_t *>(&buffer_a[i]), 0, 2);
if (buffer_a[i] > 1023) // check for broken usart connection
abort("Bad ADC data detected (2)");
}
else
{
usart.drop(2);
}
if (buffer_b)
{
usart.receive(reinterpret_cast<uint8_t *>(&buffer_b[i]), 0, 2);
if (buffer_b[i] > 1023) // check for broken usart connection
abort("Bad ADC data detected (3)");
}
else
{
usart.drop(2);
}
}
uint8_t aw;
usart.receive(&aw, 0, sizeof(aw));
if(aw != MSG_OK)
abort("Sequenz unterbrochen");
}
uint8_t B15F::pwmSetFrequency(uint32_t freq)
{
usart.clearInputBuffer();
uint8_t rq[] =
{
RQ_PWM_SET_FREQ,
static_cast<uint8_t>((freq >> 0) & 0xFF),
static_cast<uint8_t>((freq >> 8) & 0xFF),
static_cast<uint8_t>((freq >> 16) & 0xFF),
static_cast<uint8_t>((freq >> 24) & 0xFF)
};
usart.transmit(&rq[0], 0, sizeof(rq));
uint8_t aw;
usart.receive(&aw, 0, sizeof(aw));
return aw;
}
bool B15F::pwmSetValue(uint8_t value)
{
usart.clearInputBuffer();
uint8_t rq[] =
{
RQ_PWM_SET_VALUE,
value
};
usart.transmit(&rq[0], 0, sizeof(rq));
uint8_t aw;
usart.receive(&aw, 0, sizeof(aw));
return aw == MSG_OK;
}
bool B15F::setMem8(volatile uint16_t* adr, uint8_t val)
{
usart.clearInputBuffer();
uint8_t rq[] =
{
RQ_SET_MEM_8,
static_cast<uint8_t >(reinterpret_cast<size_t>(adr) & 0xFF),
static_cast<uint8_t >(reinterpret_cast<size_t>(adr) >> 8),
val
};
usart.transmit(&rq[0], 0, sizeof(rq));
uint8_t aw;
usart.receive(&aw, 0, sizeof(aw));
return aw == val;
}
uint8_t B15F::getMem8(volatile uint16_t* adr)
{
usart.clearInputBuffer();
uint8_t rq[] =
{
RQ_GET_MEM_8,
static_cast<uint8_t >(reinterpret_cast<size_t>(adr) & 0xFF),
static_cast<uint8_t >(reinterpret_cast<size_t>(adr) >> 8)
};
usart.transmit(&rq[0], 0, sizeof(rq));
uint8_t aw;
usart.receive(&aw, 0, sizeof(aw));
return aw;
}
bool B15F::setMem16(volatile uint16_t* adr, uint16_t val)
{
usart.clearInputBuffer();
uint8_t rq[] =
{
RQ_SET_MEM_16,
static_cast<uint8_t >(reinterpret_cast<size_t>(adr) & 0xFF),
static_cast<uint8_t >(reinterpret_cast<size_t>(adr) >> 8),
static_cast<uint8_t >(val & 0xFF),
static_cast<uint8_t >(val >> 8)
};
usart.transmit(&rq[0], 0, sizeof(rq));
uint16_t aw;
usart.receive(reinterpret_cast<uint8_t *>(&aw), 0, sizeof(aw));
return aw == val;
}
uint16_t B15F::getMem16(volatile uint16_t* adr)
{
usart.clearInputBuffer();
uint8_t rq[] =
{
RQ_GET_MEM_16,
static_cast<uint8_t >(reinterpret_cast<size_t>(adr) & 0xFF),
static_cast<uint8_t >(reinterpret_cast<size_t>(adr) >> 8)
};
usart.transmit(&rq[0], 0, sizeof(rq));
uint16_t aw;
usart.receive(reinterpret_cast<uint8_t *>(&aw), 0, sizeof(aw));
return aw;
}
bool B15F::setRegister(volatile uint8_t* adr, uint8_t val)
{
return setMem8(reinterpret_cast<volatile uint16_t*>(adr), val);
}
uint8_t B15F::getRegister(volatile uint8_t* adr)
{
return getMem8(reinterpret_cast<volatile uint16_t*>(adr));
}
/*************************/
/**********************
* Private Funktionen *
**********************/
B15F::B15F()
{
init();
}
void B15F::init()
{
std::string device = exec("bash -c 'ls /dev/ttyUSB*'");
while (device.find(' ') != std::string::npos || device.find('\n') != std::string::npos ||
device.find('\t') != std::string::npos)
device.pop_back();
if (device.length() == 0)
abort("Adapter nicht gefunden");
std::cout << PRE << "Verwende Adapter: " << device << std::endl;
std::cout << PRE << "Stelle Verbindung mit Adapter her... " << std::flush;
usart.setBaudrate(BAUDRATE);
usart.openDevice(device);
std::cout << "OK" << std::endl;
std::cout << PRE << "Teste Verbindung... " << std::flush;
uint8_t tries = 3;
while (tries--)
{
// verwerfe Daten, die µC noch hat
//discard();
if (!testConnection())
continue;
if (!testIntConv())
continue;
break;
}
if (tries == 0)
abort("Verbindungstest fehlgeschlagen. Neueste Version im Einsatz?");
std::cout << "OK" << std::endl;
// Gib board info aus
std::vector<std::string> info = getBoardInfo();
std::cout << PRE << "AVR Firmware Version: " << info[0] << " um " << info[1] << " Uhr (" << info[2] << ")"
<< std::endl;
}