b15f/drv/b15f.cpp
Tristan Krause 70e85ab8e9 usart Klasse
2019-03-29 11:12:31 +01:00

457 lines
8.5 KiB
C++

#include "b15f.h"
B15F* B15F::instance = nullptr;
B15F::B15F()
{
init();
}
void B15F::init()
{
std::cout << PRE << "Stelle Verbindung mit Adapter her... " << std::flush;
int code = system(std::string("stty " + std::to_string(BAUDRATE) + " -F " + SERIAL_DEVICE).c_str());
if(code)
{
throw DriverException("Konnte serielle Verbindung nicht initialisieren. Ist der Adapter angeschlossen?");
}
usart = open(SERIAL_DEVICE.c_str(), O_RDWR | O_NOCTTY | O_NDELAY);
struct termios options;
tcgetattr(usart, &options);
options.c_cflag = CS8 | CLOCAL | CREAD;
options.c_iflag = IGNPAR;
options.c_oflag = 0;
options.c_lflag = 0;
options.c_cc[VTIME]=100; // timeout in Dezisekunden
cfsetspeed(&options, BAUDRATE);
tcsetattr(usart, TCSANOW, &options);
tcflush(usart, TCIOFLUSH); // leere Puffer in beiden Richtungen
std::cout << "OK" << std::endl;
delay_ms(1);
std::cout << PRE << "Teste Verbindung... " << std::flush;
uint8_t tries = 3;
while(tries--)
{
// verwerfe Daten, die µC noch hat
discard();
if(!testConnection())
continue;
if(!testIntConv())
continue;
break;
}
if(tries == 0)
throw DriverException("Verbindungstest fehlgeschlagen. Neueste Version im Einsatz?");
std::cout << "OK" << std::endl;
// Gib board info aus
std::vector<std::string> info = getBoardInfo();
std::cout << PRE << "AVR Firmware Version: " << info[0] << " um " << info[1] << " Uhr (" << info[2] << ")" << std::endl;
}
void B15F::reconnect()
{
std::cout << PRE << "Verbindung unterbrochen, stelle Verbindung neu her: " << std::flush;
uint8_t tries = RECONNECT_TRIES;
while(tries--)
{
delay_ms(RECONNECT_TIMEOUT);
discard();
if(testConnection())
{
std::cout << "OK" << std::endl << std::flush;
return;
}
}
throw DriverException("Verbindung kann nicht repariert werden");
}
void B15F::discard(void)
{
tcflush(usart, TCOFLUSH); // leere Ausgangspuffer
for(uint8_t i = 0; i < 8; i++)
{
writeByte(RQ_DISC); // sende discard Befehl (verwerfe input)
delay_ms((16000 / BAUDRATE) + 1); // warte mindestens eine Millisekunde, gegebenenfalls mehr
}
tcflush(usart, TCIFLUSH); // leere Eingangspuffer
}
bool B15F::testConnection()
{
// erzeuge zufälliges Byte
srand(time(NULL));
uint8_t dummy = rand() % 256;
writeByte(RQ_TEST);
writeByte(dummy);
uint8_t aw = readByte();
uint8_t mirror = readByte();
return aw == MSG_OK && mirror == dummy;
}
bool B15F::testIntConv()
{
srand(time(NULL));
uint16_t dummy = rand() % (0xFFFF / 3);
writeByte(RQ_INT);
writeInt(dummy);
uint16_t aw = readInt();
return aw == dummy * 3;
}
std::vector<std::string> B15F::getBoardInfo(void)
{
try
{
std::vector<std::string> info;
writeByte(RQ_INFO);
uint8_t n = readByte();
while(n--)
{
uint8_t len = readByte();
std::string str;
while(len--)
str += static_cast<char>(readByte());
info.push_back(str);
}
uint8_t aw = readByte();
if(aw != MSG_OK)
throw DriverException("Board Info fehlerhalft");
return info;
}
catch(DriverException& de)
{
reconnect();
return getBoardInfo();
}
}
bool B15F::digitalWrite0(uint8_t port)
{
try
{
writeByte(RQ_BA0);
writeByte(port);
uint8_t aw = readByte();
return aw == MSG_OK;
}
catch(DriverException& de)
{
reconnect();
return digitalWrite0(port);
}
}
bool B15F::digitalWrite1(uint8_t port)
{
try
{
writeByte(RQ_BA1);
writeByte(port);
uint8_t aw = readByte();
return aw == MSG_OK;
}
catch(DriverException& de)
{
reconnect();
return digitalWrite1(port);
}
}
uint8_t B15F::digitalRead0()
{
try
{
writeByte(RQ_BE0);
return readByte();
}
catch(DriverException& de)
{
reconnect();
return digitalRead0();
}
}
uint8_t B15F::digitalRead1()
{
try
{
writeByte(RQ_BE1);
return readByte();
}
catch(DriverException& de)
{
reconnect();
return digitalRead1();
}
}
bool B15F::analogWrite0(uint16_t value)
{
try
{
writeByte(RQ_AA0);
delay_ms(1);
writeInt(value);
delay_ms(1);
uint8_t aw = readByte();
return aw == MSG_OK;
}
catch(DriverException& de)
{
reconnect();
return analogWrite0(value);
}
}
bool B15F::analogWrite1(uint16_t value)
{
try
{
writeByte(RQ_AA1);
writeInt(value);
uint8_t aw = readByte();
return aw == MSG_OK;
}
catch(DriverException& de)
{
reconnect();
return analogWrite1(value);
}
}
uint16_t B15F::analogRead(uint8_t channel)
{
try
{
writeByte(RQ_ADC);
delay_ms(1);
writeByte(channel);
return readInt();
}
catch(DriverException& de)
{
reconnect();
return analogRead(channel);
}
}
bool B15F::analogSequence(uint8_t channel_a, uint16_t* buffer_a, uint32_t offset_a, uint8_t channel_b, uint16_t* buffer_b, uint32_t offset_b, uint16_t start, int16_t delta, uint16_t count)
{
discard();
try
{
writeByte(RQ_ADC_DAC_STROKE);
writeByte(channel_a);
writeByte(channel_b);
writeInt(start);
writeInt(static_cast<uint16_t>(delta));
writeInt(count);
uint8_t aw = readByte();
if(aw != MSG_OK)
{
std::cout << PRE << "Out of sync" << std::endl;
return analogSequence(channel_a, buffer_a, offset_a, channel_b, buffer_b, offset_b, start, delta, count);
}
uint8_t block[5]; // 4 Datenbyte + crc
for(uint16_t i = 0; i < count; i++)
{
bool crc_ok = readBlock(&block[0], 0);
if (!crc_ok)
{
std::cout << PRE << "bad crc" << std::endl;
return analogSequence(channel_a, buffer_a, offset_a, channel_b, buffer_b, offset_b, start, delta, count);
}
buffer_a[offset_a + i] = ((uint16_t) block[0]) | (((uint16_t) block[1]) << 8);
buffer_b[offset_b + i] = ((uint16_t) block[2]) | (((uint16_t) block[3]) << 8);
}
aw = readByte();
if(aw == MSG_OK)
return aw;
std::cout << PRE << "Da ging etwas verloren" << std::endl;
return analogSequence(channel_a, buffer_a, offset_a, channel_b, buffer_b, offset_b, start, delta, count);
}
catch(DriverException& de)
{
reconnect();
return analogSequence(channel_a, buffer_a, offset_a, channel_b, buffer_b, offset_b, start, delta, count);
}
}
void B15F::writeByte(uint8_t b)
{
if(write(usart, &b, 1) != 1)
throw DriverException("Fehler beim Senden. (byte)");
}
void B15F::writeInt(uint16_t v)
{
if(write(usart, reinterpret_cast<char*>(&v), 2) != 2)
throw DriverException("Fehler beim Senden. (int)");
}
uint8_t B15F::readByte()
{
char b;
auto start = std::chrono::steady_clock::now();
auto end = start;
uint16_t elapsed = 0;
while(elapsed < timeout)
{
int n_ready;
int code = ioctl(usart, FIONREAD, &n_ready);
if(code != 0)
std::cout << PRE << "n_ready code: " << code << std::endl;
if(n_ready > 0)
{
//std::cout << code << " \tready: " << n_ready << std::endl;
code = read(usart, &b, 1);
if (code > 0)
return static_cast<uint8_t>(b);
if (code < 0)
std::cout << PRE << "usart code: " << code << std::endl;
}
end = std::chrono::steady_clock::now();
elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
}
if(elapsed >= timeout)
throw DriverException("Verbindung unterbrochen. (timeout)");
}
uint16_t B15F::readInt()
{
return readByte() | readByte() << 8;
}
bool B15F::readBlock(uint8_t* buffer, uint16_t offset)
{
uint8_t len = readByte();
uint8_t crc = 0;
buffer += offset;
// wait for block
int n_ready;
uint16_t elapsed = 0;
auto start = std::chrono::steady_clock::now();
auto end = start;
while(elapsed < block_timeout)
{
int code = ioctl(usart, FIONREAD, &n_ready);
if(code != 0)
{
std::cout << PRE << "n_ready code: " << code << std::endl;
return false;
}
if(n_ready >= len + 1)
break;
end = std::chrono::steady_clock::now();
elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
}
if(elapsed >= timeout)
{
std::cout << PRE << "block timeout: " << std::endl;
return false;
}
while(len--)
{
*buffer = readByte();
crc ^= *buffer++;
for (uint8_t i = 0; i < 8; i++)
{
if (crc & 1)
crc ^= CRC7_POLY;
crc >>= 1;
}
}
crc ^= readByte();
for (uint8_t i = 0; i < 8; i++)
{
if (crc & 1)
crc ^= CRC7_POLY;
crc >>= 1;
}
if(TEST == 1)
crc = 1;
if(TEST > 100)
TEST = 0;
if (crc == 0)
{
writeByte(MSG_OK);
return true;
}
else
{
writeByte(MSG_FAIL);
return false;
}
}
void B15F::delay_ms(uint16_t ms)
{
std::this_thread::sleep_for(std::chrono::milliseconds(ms));
}
void B15F::delay_us(uint16_t us)
{
std::this_thread::sleep_for(std::chrono::microseconds(us));
}
B15F& B15F::getInstance(void)
{
if(!instance)
instance = new B15F();
return *instance;
}