b15f/drv/b15f.cpp
2019-03-29 11:50:16 +01:00

242 lines
4.6 KiB
C++

#include "b15f.h"
B15F* B15F::instance = nullptr;
B15F::B15F()
{
init();
}
void B15F::init()
{
std::cout << PRE << "Stelle Verbindung mit Adapter her... " << std::flush;
usart.setBaudrate(BAUDRATE);
usart.openDevice(SERIAL_DEVICE);
std::cout << "OK" << std::endl;
delay_ms(1);
std::cout << PRE << "Teste Verbindung... " << std::flush;
uint8_t tries = 3;
while(tries--)
{
// verwerfe Daten, die µC noch hat
discard();
if(!testConnection())
continue;
if(!testIntConv())
continue;
break;
}
if(tries == 0)
throw DriverException("Verbindungstest fehlgeschlagen. Neueste Version im Einsatz?");
std::cout << "OK" << std::endl;
// Gib board info aus
std::vector<std::string> info = getBoardInfo();
std::cout << PRE << "AVR Firmware Version: " << info[0] << " um " << info[1] << " Uhr (" << info[2] << ")" << std::endl;
}
void B15F::reconnect()
{
std::cout << PRE << "Verbindung unterbrochen, stelle Verbindung neu her: " << std::flush;
uint8_t tries = RECONNECT_TRIES;
while(tries--)
{
delay_ms(RECONNECT_TIMEOUT);
discard();
if(testConnection())
{
std::cout << "OK" << std::endl << std::flush;
return;
}
}
throw DriverException("Verbindung kann nicht repariert werden");
}
void B15F::discard(void)
{
usart.clearOutputBuffer();
for(uint8_t i = 0; i < 8; i++)
{
usart.writeByte(RQ_DISC); // sende discard Befehl (verwerfe input)
delay_ms((16000 / BAUDRATE) + 1); // warte mindestens eine Millisekunde, gegebenenfalls mehr
}
usart.clearInputBuffer();
}
bool B15F::testConnection()
{
// erzeuge zufälliges Byte
srand(time(NULL));
uint8_t dummy = rand() % 256;
usart.writeByte(RQ_TEST);
usart.writeByte(dummy);
uint8_t aw = usart.readByte();
uint8_t mirror = usart.readByte();
return aw == MSG_OK && mirror == dummy;
}
bool B15F::testIntConv()
{
srand(time(NULL));
uint16_t dummy = rand() % (0xFFFF / 3);
usart.writeByte(RQ_INT);
usart.writeInt(dummy);
uint16_t aw = usart.readInt();
return aw == dummy * 3;
}
std::vector<std::string> B15F::getBoardInfo(void)
{
std::vector<std::string> info;
usart.writeByte(RQ_INFO);
uint8_t n = usart.readByte();
while(n--)
{
uint8_t len = usart.readByte();
std::string str;
while(len--)
str += static_cast<char>(usart.readByte());
info.push_back(str);
}
uint8_t aw = usart.readByte();
if(aw != MSG_OK)
throw DriverException("Board Info fehlerhalft");
return info;
}
bool B15F::digitalWrite0(uint8_t port)
{
usart.writeByte(RQ_BA0);
usart.writeByte(port);
uint8_t aw = usart.readByte();
return aw == MSG_OK;
}
bool B15F::digitalWrite1(uint8_t port)
{
usart.writeByte(RQ_BA1);
usart.writeByte(port);
uint8_t aw = usart.readByte();
return aw == MSG_OK;
}
uint8_t B15F::digitalRead0()
{
usart.writeByte(RQ_BE0);
return usart.readByte();
}
uint8_t B15F::digitalRead1()
{
usart.writeByte(RQ_BE1);
return usart.readByte();
}
bool B15F::analogWrite0(uint16_t value)
{
usart.writeByte(RQ_AA0);
usart.writeInt(value);
uint8_t aw = usart.readByte();
return aw == MSG_OK;
}
bool B15F::analogWrite1(uint16_t value)
{
usart.writeByte(RQ_AA1);
usart.writeInt(value);
uint8_t aw = usart.readByte();
return aw == MSG_OK;
}
uint16_t B15F::analogRead(uint8_t channel)
{
usart.writeByte(RQ_ADC);
usart.writeByte(channel);
return usart.readInt();
}
bool B15F::analogSequence(uint8_t channel_a, uint16_t* buffer_a, uint32_t offset_a, uint8_t channel_b, uint16_t* buffer_b, uint32_t offset_b, uint16_t start, int16_t delta, uint16_t count)
{
usart.writeByte(RQ_ADC_DAC_STROKE);
usart.writeByte(channel_a);
usart.writeByte(channel_b);
usart.writeInt(start);
usart.writeInt(static_cast<uint16_t>(delta));
usart.writeInt(count);
uint8_t aw = usart.readByte();
if(aw != MSG_OK)
{
throw DriverException("Out of sync");
}
uint8_t block[5]; // 4 Datenbyte + crc
for(uint16_t i = 0; i < count; i++)
{
bool crc_ok = usart.readBlock(&block[0], 0);
if (!crc_ok)
{
std::cout << PRE << "bad crc" << std::endl;
return analogSequence(channel_a, buffer_a, offset_a, channel_b, buffer_b, offset_b, start, delta, count);
}
buffer_a[offset_a + i] = ((uint16_t) block[0]) | (((uint16_t) block[1]) << 8);
buffer_b[offset_b + i] = ((uint16_t) block[2]) | (((uint16_t) block[3]) << 8);
}
aw = usart.readByte();
if(aw == MSG_OK)
return aw;
std::cout << PRE << "Da ging etwas verloren" << std::endl;
}
void B15F::delay_ms(uint16_t ms)
{
std::this_thread::sleep_for(std::chrono::milliseconds(ms));
}
void B15F::delay_us(uint16_t us)
{
std::this_thread::sleep_for(std::chrono::microseconds(us));
}
B15F& B15F::getInstance(void)
{
if(!instance)
instance = new B15F();
return *instance;
}