Merge branch 'drawables'

This commit is contained in:
Laurent Gomila 2011-12-25 23:08:02 +01:00
commit f55da8d8bc
81 changed files with 5671 additions and 3805 deletions

View file

@ -5,9 +5,9 @@ set(SRCROOT ${PROJECT_SOURCE_DIR}/src/SFML/Graphics)
# all source files
set(SRC
${SRCROOT}/Arial.hpp
${INCROOT}/BlendMode.hpp
${SRCROOT}/Color.cpp
${INCROOT}/Color.hpp
${SRCROOT}/Drawable.cpp
${INCROOT}/Drawable.hpp
${SRCROOT}/Font.cpp
${INCROOT}/Font.hpp
@ -18,13 +18,11 @@ set(SRC
${INCROOT}/Image.hpp
${SRCROOT}/ImageLoader.cpp
${SRCROOT}/ImageLoader.hpp
${SRCROOT}/Matrix3.cpp
${INCROOT}/Matrix3.hpp
${INCROOT}/Matrix3.inl
${INCROOT}/PrimitiveType.hpp
${INCROOT}/Rect.hpp
${INCROOT}/Rect.inl
${SRCROOT}/Renderer.cpp
${INCROOT}/Renderer.hpp
${SRCROOT}/RenderStates.cpp
${INCROOT}/RenderStates.hpp
${SRCROOT}/RenderTexture.cpp
${INCROOT}/RenderTexture.hpp
${SRCROOT}/RenderTextureImpl.cpp
@ -41,14 +39,30 @@ set(SRC
${INCROOT}/Shader.hpp
${SRCROOT}/Shape.cpp
${INCROOT}/Shape.hpp
${SRCROOT}/CircleShape.cpp
${INCROOT}/CircleShape.hpp
${SRCROOT}/RectangleShape.cpp
${INCROOT}/RectangleShape.hpp
${SRCROOT}/ConvexShape.cpp
${INCROOT}/ConvexShape.hpp
${SRCROOT}/Sprite.cpp
${INCROOT}/Sprite.hpp
${SRCROOT}/Text.cpp
${INCROOT}/Text.hpp
${SRCROOT}/Texture.cpp
${INCROOT}/Texture.hpp
${SRCROOT}/TextureSaver.cpp
${SRCROOT}/TextureSaver.hpp
${SRCROOT}/Transform.cpp
${INCROOT}/Transform.hpp
${SRCROOT}/Transformable.cpp
${INCROOT}/Transformable.hpp
${SRCROOT}/View.cpp
${INCROOT}/View.hpp
${SRCROOT}/Vertex.cpp
${INCROOT}/Vertex.hpp
${SRCROOT}/VertexArray.cpp
${INCROOT}/VertexArray.hpp
${SRCROOT}/stb_image/stb_image.h
${SRCROOT}/stb_image/stb_image_write.h
)

View file

@ -0,0 +1,84 @@
////////////////////////////////////////////////////////////
//
// SFML - Simple and Fast Multimedia Library
// Copyright (C) 2007-2009 Laurent Gomila (laurent.gom@gmail.com)
//
// This software is provided 'as-is', without any express or implied warranty.
// In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it freely,
// subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented;
// you must not claim that you wrote the original software.
// If you use this software in a product, an acknowledgment
// in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such,
// and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
//
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// Headers
////////////////////////////////////////////////////////////
#include <SFML/Graphics/CircleShape.hpp>
#include <cmath>
namespace sf
{
////////////////////////////////////////////////////////////
CircleShape::CircleShape(float radius, unsigned int pointsCount) :
myRadius (radius),
myPointsCount(pointsCount)
{
Update();
}
////////////////////////////////////////////////////////////
void CircleShape::SetRadius(float radius)
{
myRadius = radius;
Update();
}
////////////////////////////////////////////////////////////
float CircleShape::GetRadius() const
{
return myRadius;
}
////////////////////////////////////////////////////////////
void CircleShape::SetPointsCount(unsigned int count)
{
myPointsCount = count;
Update();
}
////////////////////////////////////////////////////////////
unsigned int CircleShape::GetPointsCount() const
{
return myPointsCount;
}
////////////////////////////////////////////////////////////
Vector2f CircleShape::GetPoint(unsigned int index) const
{
static const float pi = 3.141592654f;
float angle = index * 2 * pi / myPointsCount - pi / 2;
float x = std::cos(angle) * myRadius;
float y = std::sin(angle) * myRadius;
return Vector2f(myRadius + x, myRadius + y);
}
} // namespace sf

View file

@ -42,6 +42,7 @@ const Color Color::Blue(0, 0, 255);
const Color Color::Yellow(255, 255, 0);
const Color Color::Magenta(255, 0, 255);
const Color Color::Cyan(0, 255, 255);
const Color Color::Transparent(0, 0, 0, 0);
////////////////////////////////////////////////////////////

View file

@ -0,0 +1,69 @@
////////////////////////////////////////////////////////////
//
// SFML - Simple and Fast Multimedia Library
// Copyright (C) 2007-2009 Laurent Gomila (laurent.gom@gmail.com)
//
// This software is provided 'as-is', without any express or implied warranty.
// In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it freely,
// subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented;
// you must not claim that you wrote the original software.
// If you use this software in a product, an acknowledgment
// in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such,
// and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
//
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// Headers
////////////////////////////////////////////////////////////
#include <SFML/Graphics/ConvexShape.hpp>
namespace sf
{
////////////////////////////////////////////////////////////
ConvexShape::ConvexShape(unsigned int pointsCount)
{
SetPointsCount(pointsCount);
}
////////////////////////////////////////////////////////////
void ConvexShape::SetPointsCount(unsigned int count)
{
myPoints.resize(count);
Update();
}
////////////////////////////////////////////////////////////
unsigned int ConvexShape::GetPointsCount() const
{
return myPoints.size();
}
////////////////////////////////////////////////////////////
void ConvexShape::SetPoint(unsigned int index, const Vector2f& point)
{
myPoints[index] = point;
Update();
}
////////////////////////////////////////////////////////////
Vector2f ConvexShape::GetPoint(unsigned int index) const
{
return myPoints[index];
}
} // namespace sf

View file

@ -1,314 +0,0 @@
////////////////////////////////////////////////////////////
//
// SFML - Simple and Fast Multimedia Library
// Copyright (C) 2007-2009 Laurent Gomila (laurent.gom@gmail.com)
//
// This software is provided 'as-is', without any express or implied warranty.
// In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it freely,
// subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented;
// you must not claim that you wrote the original software.
// If you use this software in a product, an acknowledgment
// in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such,
// and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
//
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// Headers
////////////////////////////////////////////////////////////
#include <SFML/Graphics/Drawable.hpp>
#include <SFML/Graphics/Renderer.hpp>
#include <SFML/Graphics/RenderTarget.hpp>
#include <cmath>
namespace sf
{
////////////////////////////////////////////////////////////
Drawable::~Drawable()
{
// Nothing to do
}
////////////////////////////////////////////////////////////
void Drawable::SetPosition(float x, float y)
{
SetX(x);
SetY(y);
}
////////////////////////////////////////////////////////////
void Drawable::SetPosition(const Vector2f& position)
{
SetX(position.x);
SetY(position.y);
}
////////////////////////////////////////////////////////////
void Drawable::SetX(float x)
{
myPosition.x = x;
myMatrixUpdated = false;
myInvMatrixUpdated = false;
}
////////////////////////////////////////////////////////////
void Drawable::SetY(float y)
{
myPosition.y = y;
myMatrixUpdated = false;
myInvMatrixUpdated = false;
}
////////////////////////////////////////////////////////////
void Drawable::SetScale(float factorX, float factorY)
{
SetScaleX(factorX);
SetScaleY(factorY);
}
////////////////////////////////////////////////////////////
void Drawable::SetScale(const Vector2f& factors)
{
SetScaleX(factors.x);
SetScaleY(factors.y);
}
////////////////////////////////////////////////////////////
void Drawable::SetScaleX(float factor)
{
if (factor > 0)
{
myScale.x = factor;
myMatrixUpdated = false;
myInvMatrixUpdated = false;
}
}
////////////////////////////////////////////////////////////
void Drawable::SetScaleY(float factor)
{
if (factor > 0)
{
myScale.y = factor;
myMatrixUpdated = false;
myInvMatrixUpdated = false;
}
}
////////////////////////////////////////////////////////////
void Drawable::SetOrigin(float x, float y)
{
myOrigin.x = x;
myOrigin.y = y;
myMatrixUpdated = false;
myInvMatrixUpdated = false;
}
////////////////////////////////////////////////////////////
void Drawable::SetOrigin(const Vector2f& origin)
{
SetOrigin(origin.x, origin.y);
}
////////////////////////////////////////////////////////////
void Drawable::SetRotation(float angle)
{
myRotation = static_cast<float>(std::fmod(angle, 360));
if (myRotation < 0)
myRotation += 360.f;
myMatrixUpdated = false;
myInvMatrixUpdated = false;
}
////////////////////////////////////////////////////////////
void Drawable::SetColor(const Color& color)
{
myColor = color;
}
////////////////////////////////////////////////////////////
void Drawable::SetBlendMode(Blend::Mode mode)
{
myBlendMode = mode;
}
////////////////////////////////////////////////////////////
const Vector2f& Drawable::GetPosition() const
{
return myPosition;
}
////////////////////////////////////////////////////////////
const Vector2f& Drawable::GetScale() const
{
return myScale;
}
////////////////////////////////////////////////////////////
const Vector2f& Drawable::GetOrigin() const
{
return myOrigin;
}
////////////////////////////////////////////////////////////
float Drawable::GetRotation() const
{
return myRotation;
}
////////////////////////////////////////////////////////////
const Color& Drawable::GetColor() const
{
return myColor;
}
////////////////////////////////////////////////////////////
Blend::Mode Drawable::GetBlendMode() const
{
return myBlendMode;
}
////////////////////////////////////////////////////////////
void Drawable::Move(float offsetX, float offsetY)
{
SetPosition(myPosition.x + offsetX, myPosition.y + offsetY);
}
////////////////////////////////////////////////////////////
void Drawable::Move(const Vector2f& offset)
{
SetPosition(myPosition + offset);
}
////////////////////////////////////////////////////////////
void Drawable::Scale(float factorX, float factorY)
{
SetScale(myScale.x * factorX, myScale.y * factorY);
}
////////////////////////////////////////////////////////////
void Drawable::Scale(const Vector2f& factor)
{
SetScale(myScale.x * factor.x, myScale.y * factor.y);
}
////////////////////////////////////////////////////////////
void Drawable::Rotate(float angle)
{
SetRotation(myRotation + angle);
}
////////////////////////////////////////////////////////////
Vector2f Drawable::TransformToLocal(const Vector2f& point) const
{
return GetInverseMatrix().Transform(point);
}
////////////////////////////////////////////////////////////
Vector2f Drawable::TransformToGlobal(const Vector2f& point) const
{
return GetMatrix().Transform(point);
}
////////////////////////////////////////////////////////////
Drawable::Drawable() :
myPosition (0, 0),
myScale (1, 1),
myOrigin (0, 0),
myRotation (0),
myColor (255, 255, 255, 255),
myBlendMode (Blend::Alpha),
myMatrixUpdated (false),
myInvMatrixUpdated(false)
{
}
////////////////////////////////////////////////////////////
const Matrix3& Drawable::GetMatrix() const
{
// First recompute it if needed
if (!myMatrixUpdated)
{
myMatrix = Matrix3::Transformation(myOrigin, myPosition, myRotation, myScale);
myMatrixUpdated = true;
}
return myMatrix;
}
////////////////////////////////////////////////////////////
const Matrix3& Drawable::GetInverseMatrix() const
{
// First recompute it if needed
if (!myInvMatrixUpdated)
{
myInvMatrix = GetMatrix().GetInverse();
myInvMatrixUpdated = true;
}
return myInvMatrix;
}
////////////////////////////////////////////////////////////
void Drawable::Draw(RenderTarget& target, Renderer& renderer) const
{
// Set the current model-view matrix
renderer.ApplyModelView(GetMatrix());
// Set the current global color
renderer.ApplyColor(myColor);
// Set the current alpha-blending mode
renderer.SetBlendMode(myBlendMode);
// Let the derived class render the object geometry
Render(target, renderer);
}
} // namespace sf

View file

@ -451,7 +451,7 @@ Glyph Font::LoadGlyph(Uint32 codePoint, unsigned int characterSize, bool bold) c
Page& page = myPages[characterSize];
// Find a good position for the new glyph into the texture
glyph.SubRect = FindGlyphRect(page, width + 2 * padding, height + 2 * padding);
glyph.TextureRect = FindGlyphRect(page, width + 2 * padding, height + 2 * padding);
// Compute the glyph's bounding box
glyph.Bounds.Left = bitmapGlyph->left - padding;
@ -492,10 +492,10 @@ Glyph Font::LoadGlyph(Uint32 codePoint, unsigned int characterSize, bool bold) c
}
// Write the pixels to the texture
unsigned int x = glyph.SubRect.Left + padding;
unsigned int y = glyph.SubRect.Top + padding;
unsigned int width = glyph.SubRect.Width - 2 * padding;
unsigned int height = glyph.SubRect.Height - 2 * padding;
unsigned int x = glyph.TextureRect.Left + padding;
unsigned int y = glyph.TextureRect.Top + padding;
unsigned int width = glyph.TextureRect.Width - 2 * padding;
unsigned int height = glyph.TextureRect.Height - 2 * padding;
page.Texture.Update(&myPixelBuffer[0], width, height, x, y);
}

View file

@ -44,7 +44,7 @@ namespace priv
#ifdef SFML_DEBUG
// In debug mode, perform a test on every OpenGL call
#define GLCheck(call) ((call), sf::priv::GLCheckError(__FILE__, __LINE__))
#define GLCheck(call) ((call), sf::priv::GLCheckError(__FILE__, __LINE__))
#else

View file

@ -0,0 +1,76 @@
////////////////////////////////////////////////////////////
//
// SFML - Simple and Fast Multimedia Library
// Copyright (C) 2007-2009 Laurent Gomila (laurent.gom@gmail.com)
//
// This software is provided 'as-is', without any express or implied warranty.
// In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it freely,
// subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented;
// you must not claim that you wrote the original software.
// If you use this software in a product, an acknowledgment
// in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such,
// and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
//
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// Headers
////////////////////////////////////////////////////////////
#include <SFML/Graphics/RectangleShape.hpp>
#include <cmath>
namespace sf
{
////////////////////////////////////////////////////////////
RectangleShape::RectangleShape(const Vector2f& size)
{
SetSize(size);
}
////////////////////////////////////////////////////////////
void RectangleShape::SetSize(const Vector2f& size)
{
mySize = size;
Update();
}
////////////////////////////////////////////////////////////
const Vector2f& RectangleShape::GetSize() const
{
return mySize;
}
////////////////////////////////////////////////////////////
unsigned int RectangleShape::GetPointsCount() const
{
return 4;
}
////////////////////////////////////////////////////////////
Vector2f RectangleShape::GetPoint(unsigned int index) const
{
switch (index)
{
default:
case 0: return Vector2f(0, 0);
case 1: return Vector2f(mySize.x, 0);
case 2: return Vector2f(mySize.x, mySize.y);
case 3: return Vector2f(0, mySize.y);
}
}
} // namespace sf

View file

@ -0,0 +1,98 @@
////////////////////////////////////////////////////////////
//
// SFML - Simple and Fast Multimedia Library
// Copyright (C) 2007-2009 Laurent Gomila (laurent.gom@gmail.com)
//
// This software is provided 'as-is', without any express or implied warranty.
// In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it freely,
// subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented;
// you must not claim that you wrote the original software.
// If you use this software in a product, an acknowledgment
// in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such,
// and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
//
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// Headers
////////////////////////////////////////////////////////////
#include <SFML/Graphics/RenderStates.hpp>
#include <cstddef>
namespace sf
{
////////////////////////////////////////////////////////////
const RenderStates RenderStates::Default;
////////////////////////////////////////////////////////////
RenderStates::RenderStates() :
BlendMode(BlendAlpha),
Transform(),
Texture (NULL),
Shader (NULL)
{
}
////////////////////////////////////////////////////////////
RenderStates::RenderStates(const sf::Transform& transform) :
BlendMode(BlendAlpha),
Transform(transform),
Texture (NULL),
Shader (NULL)
{
}
////////////////////////////////////////////////////////////
RenderStates::RenderStates(sf::BlendMode blendMode) :
BlendMode(blendMode),
Transform(),
Texture (NULL),
Shader (NULL)
{
}
////////////////////////////////////////////////////////////
RenderStates::RenderStates(const sf::Texture* texture) :
BlendMode(BlendAlpha),
Transform(),
Texture (texture),
Shader (NULL)
{
}
////////////////////////////////////////////////////////////
RenderStates::RenderStates(const sf::Shader* shader) :
BlendMode(BlendAlpha),
Transform(),
Texture (NULL),
Shader (shader)
{
}
////////////////////////////////////////////////////////////
RenderStates::RenderStates(sf::BlendMode blendMode, const sf::Transform& transform,
const sf::Texture* texture, const sf::Shader* shader) :
BlendMode(blendMode),
Transform(transform),
Texture (texture),
Shader (shader)
{
}
} // namespace sf

View file

@ -27,96 +27,37 @@
////////////////////////////////////////////////////////////
#include <SFML/Graphics/RenderTarget.hpp>
#include <SFML/Graphics/Drawable.hpp>
#include <SFML/Graphics/Shader.hpp>
#include <SFML/Graphics/Texture.hpp>
#include <SFML/Graphics/VertexArray.hpp>
#include <SFML/Graphics/GLCheck.hpp>
#include <iostream>
#ifdef _MSC_VER
#pragma warning(disable : 4355) // "'this' : used in base member initializer list"
#endif
namespace sf
{
////////////////////////////////////////////////////////////
RenderTarget::RenderTarget() :
myRenderer (*this),
myStatesSaved (false),
myViewHasChanged(false)
myDefaultView(),
myView (),
myCache ()
{
}
////////////////////////////////////////////////////////////
RenderTarget::~RenderTarget()
{
// Nothing to do
}
////////////////////////////////////////////////////////////
void RenderTarget::Clear(const Color& color)
{
if (Activate(true))
myRenderer.Clear(color);
}
////////////////////////////////////////////////////////////
void RenderTarget::Draw(const Drawable& object)
{
if (Activate(true))
{
// Update the projection matrix and viewport if the current view has changed
// Note: we do the changes here and not directly in SetView in order to gather
// rendering commands, which is safer in multithreaded environments
if (myViewHasChanged)
{
myRenderer.SetProjection(myCurrentView.GetMatrix());
myRenderer.SetViewport(GetViewport(myCurrentView));
myViewHasChanged = false;
}
// Save the current render states
myRenderer.PushStates();
// Setup the shader
myRenderer.SetShader(NULL);
// Let the object draw itself
object.Draw(*this, myRenderer);
// Restore the previous render states
myRenderer.PopStates();
}
}
////////////////////////////////////////////////////////////
void RenderTarget::Draw(const Drawable& object, const Shader& shader)
{
if (Activate(true))
{
// Update the projection matrix and viewport if the current view has changed
// Note: we do the changes here and not directly in SetView in order to gather
// rendering commands, which is safer in multithreaded environments
if (myViewHasChanged)
{
myRenderer.SetProjection(myCurrentView.GetMatrix());
myRenderer.SetViewport(GetViewport(myCurrentView));
myViewHasChanged = false;
}
// Save the current render states
myRenderer.PushStates();
// Setup the shader
myRenderer.SetShader(&shader);
// Let the object draw itself
object.Draw(*this, myRenderer);
// Restore the previous render states
myRenderer.PopStates();
GLCheck(glClearColor(color.r / 255.f, color.g / 255.f, color.b / 255.f, color.a / 255.f));
GLCheck(glClear(GL_COLOR_BUFFER_BIT));
}
}
@ -124,16 +65,15 @@ void RenderTarget::Draw(const Drawable& object, const Shader& shader)
////////////////////////////////////////////////////////////
void RenderTarget::SetView(const View& view)
{
// Save it for later use
myCurrentView = view;
myViewHasChanged = true;
myView = view;
myCache.ViewChanged = true;
}
////////////////////////////////////////////////////////////
const View& RenderTarget::GetView() const
{
return myCurrentView;
return myView;
}
@ -175,35 +115,166 @@ Vector2f RenderTarget::ConvertCoords(unsigned int x, unsigned int y, const View&
coords.y = 1.f - 2.f * (static_cast<int>(y) - viewport.Top) / viewport.Height;
// Then transform by the inverse of the view matrix
return view.GetInverseMatrix().Transform(coords);
return view.GetInverseTransform().TransformPoint(coords);
}
////////////////////////////////////////////////////////////
void RenderTarget::SaveGLStates()
void RenderTarget::Draw(const Drawable& drawable, const RenderStates& states)
{
drawable.Draw(*this, states);
}
////////////////////////////////////////////////////////////
void RenderTarget::Draw(const Vertex* vertices, unsigned int verticesCount,
PrimitiveType type, const RenderStates& states)
{
// Nothing to draw?
if (!vertices || (verticesCount == 0))
return;
if (Activate(true))
{
myRenderer.SaveGLStates();
myStatesSaved = true;
// Check if the vertex count is low enough so that we can pre-transform them
bool useVertexCache = (verticesCount <= StatesCache::VertexCacheSize);
if (useVertexCache)
{
// Pre-transform the vertices and store them into the vertex cache
for (unsigned int i = 0; i < verticesCount; ++i)
{
Vertex& vertex = myCache.VertexCache[i];
vertex.Position = states.Transform * vertices[i].Position;
vertex.Color = vertices[i].Color;
vertex.TexCoords = vertices[i].TexCoords;
}
// Restore the render states and the current view, for SFML rendering
myRenderer.Initialize();
SetView(GetView());
// Since vertices are transformed, we must use an identity transform to render them
if (!myCache.UseVertexCache)
ApplyTransform(Transform::Identity);
}
else
{
ApplyTransform(states.Transform);
}
// Apply the view
if (myCache.ViewChanged)
ApplyCurrentView();
// Apply the blend mode
if (states.BlendMode != myCache.LastBlendMode)
ApplyBlendMode(states.BlendMode);
// Apply the texture
Uint64 textureId = states.Texture ? states.Texture->myCacheId : 0;
if (textureId != myCache.LastTextureId)
ApplyTexture(states.Texture);
// Apply the shader
if (states.Shader)
ApplyShader(states.Shader);
// If we pre-transform the vertices, we must use our internal vertex cache
if (useVertexCache)
{
// ... and if we already used it previously, we don't need to set the pointers again
if (!myCache.UseVertexCache)
vertices = myCache.VertexCache;
else
vertices = NULL;
}
// Setup the pointers to the vertices' components
if (vertices)
{
const char* data = reinterpret_cast<const char*>(vertices);
GLCheck(glVertexPointer(2, GL_FLOAT, sizeof(Vertex), data + 0));
GLCheck(glColorPointer(4, GL_UNSIGNED_BYTE, sizeof(Vertex), data + 8));
GLCheck(glTexCoordPointer(2, GL_FLOAT, sizeof(Vertex), data + 12));
}
// Find the OpenGL primitive type
static const GLenum modes[] = {GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_TRIANGLES,
GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_QUADS};
GLenum mode = modes[type];
// Draw the primitives
GLCheck(glDrawArrays(mode, 0, verticesCount));
// Unbind the shader, if any
if (states.Shader)
ApplyShader(NULL);
// Update the cache
myCache.UseVertexCache = useVertexCache;
}
}
////////////////////////////////////////////////////////////
void RenderTarget::RestoreGLStates()
void RenderTarget::PushGLStates()
{
if (myStatesSaved)
if (Activate(true))
{
if (Activate(true))
{
myRenderer.RestoreGLStates();
myStatesSaved = false;
}
GLCheck(glPushAttrib(GL_ALL_ATTRIB_BITS));
GLCheck(glMatrixMode(GL_MODELVIEW));
GLCheck(glPushMatrix());
GLCheck(glMatrixMode(GL_PROJECTION));
GLCheck(glPushMatrix());
GLCheck(glMatrixMode(GL_TEXTURE));
GLCheck(glPushMatrix());
}
ResetGLStates();
}
////////////////////////////////////////////////////////////
void RenderTarget::PopGLStates()
{
if (Activate(true))
{
GLCheck(glPopAttrib());
GLCheck(glMatrixMode(GL_PROJECTION));
GLCheck(glPopMatrix());
GLCheck(glMatrixMode(GL_MODELVIEW));
GLCheck(glPopMatrix());
GLCheck(glMatrixMode(GL_TEXTURE));
GLCheck(glPopMatrix());
}
}
////////////////////////////////////////////////////////////
void RenderTarget::ResetGLStates()
{
if (Activate(true))
{
// Make sure that GLEW is initialized
priv::EnsureGlewInit();
// Define the default OpenGL states
GLCheck(glDisable(GL_LIGHTING));
GLCheck(glDisable(GL_DEPTH_TEST));
GLCheck(glEnable(GL_TEXTURE_2D));
GLCheck(glEnable(GL_ALPHA_TEST));
GLCheck(glEnable(GL_BLEND));
GLCheck(glAlphaFunc(GL_GREATER, 0));
GLCheck(glMatrixMode(GL_MODELVIEW));
GLCheck(glEnableClientState(GL_VERTEX_ARRAY));
GLCheck(glEnableClientState(GL_COLOR_ARRAY));
GLCheck(glEnableClientState(GL_TEXTURE_COORD_ARRAY));
// Apply the default SFML states
ApplyBlendMode(BlendAlpha);
ApplyTransform(Transform::Identity);
ApplyTexture(NULL);
ApplyShader(NULL);
myCache.UseVertexCache = false;
// Set the default view
SetView(GetView());
}
}
@ -211,13 +282,135 @@ void RenderTarget::RestoreGLStates()
////////////////////////////////////////////////////////////
void RenderTarget::Initialize()
{
// Setup the default view
// Setup the default and current views
myDefaultView.Reset(FloatRect(0, 0, static_cast<float>(GetWidth()), static_cast<float>(GetHeight())));
SetView(myDefaultView);
myView = myDefaultView;
// Initialize the renderer
if (Activate(true))
myRenderer.Initialize();
// Initialize the default OpenGL render-states
ResetGLStates();
}
////////////////////////////////////////////////////////////
void RenderTarget::ApplyCurrentView()
{
// Set the viewport
IntRect viewport = GetViewport(myView);
int top = GetHeight() - (viewport.Top + viewport.Height);
GLCheck(glViewport(viewport.Left, top, viewport.Width, viewport.Height));
// Set the projection matrix
GLCheck(glMatrixMode(GL_PROJECTION));
GLCheck(glLoadMatrixf(myView.GetTransform().GetMatrix()));
// Go back to model-view mode
GLCheck(glMatrixMode(GL_MODELVIEW));
myCache.ViewChanged = false;
}
////////////////////////////////////////////////////////////
void RenderTarget::ApplyBlendMode(BlendMode mode)
{
switch (mode)
{
// Alpha blending
// glBlendFuncSeparateEXT is used when available to avoid an incorrect alpha value when the target
// is a RenderTexture -- in this case the alpha value must be written directly to the target buffer
default :
case BlendAlpha :
if (GLEW_EXT_blend_func_separate)
GLCheck(glBlendFuncSeparateEXT(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA));
else
GLCheck(glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA));
break;
// Additive blending
case BlendAdd :
GLCheck(glBlendFunc(GL_SRC_ALPHA, GL_ONE));
break;
// Multiplicative blending
case BlendMultiply :
GLCheck(glBlendFunc(GL_DST_COLOR, GL_ZERO));
break;
// No blending
case BlendNone :
GLCheck(glBlendFunc(GL_ONE, GL_ZERO));
break;
}
myCache.LastBlendMode = mode;
}
////////////////////////////////////////////////////////////
void RenderTarget::ApplyTransform(const Transform& transform)
{
// No need to call glMatrixMode(GL_MODELVIEW), it is always the
// current mode (for optimization purpose, since it's the most used)
GLCheck(glLoadMatrixf(transform.GetMatrix()));
}
////////////////////////////////////////////////////////////
void RenderTarget::ApplyTexture(const Texture* texture)
{
if (texture)
texture->Bind(Texture::Pixels);
else
GLCheck(glBindTexture(GL_TEXTURE_2D, 0));
myCache.LastTextureId = texture ? texture->myCacheId : 0;
}
////////////////////////////////////////////////////////////
void RenderTarget::ApplyShader(const Shader* shader)
{
if (shader)
shader->Bind();
else
GLCheck(glUseProgramObjectARB(0));
}
} // namespace sf
////////////////////////////////////////////////////////////
// Render states caching strategies
//
// * View
// If SetView was called since last draw, the projection
// matrix is updated. We don't need more, the view doesn't
// change frequently.
//
// * Transform
// The transform matrix is usually expensive because each
// entity will most likely use a different transform. This can
// lead, in worst case, to changing it every 4 vertices.
// To avoid that, when the vertex count is low enough, we
// pre-transform them and therefore use an identity transform
// to render them.
//
// * Blending mode
// It's a simple integral value, so we can easily check
// whether the value to apply is the same as before or not.
//
// * Texture
// Storing the pointer or OpenGL ID of the last used texture
// is not enough; if the sf::Texture instance is destroyed,
// both the pointer and the OpenGL ID might be recycled in
// a new texture instance. We need to use our own unique
// identifier system to ensure consistent caching.
//
// * Shader
// Shaders are very hard to optimize, because they have
// parameters that can be hard (if not impossible) to track,
// like matrices or textures. The only optimization that we
// do is that we avoid setting a null shader if there was
// already none for the previous draw.
//
////////////////////////////////////////////////////////////

View file

@ -27,6 +27,7 @@
////////////////////////////////////////////////////////////
#include <SFML/Graphics/RenderTextureImplDefault.hpp>
#include <SFML/Graphics/GLCheck.hpp>
#include <SFML/Graphics/TextureSaver.hpp>
#include <SFML/Window/Context.hpp>
#include <SFML/System/Err.hpp>
@ -77,6 +78,9 @@ bool RenderTextureImplDefault::Activate(bool active)
////////////////////////////////////////////////////////////
void RenderTextureImplDefault::UpdateTexture(unsigned int textureId)
{
// Make sure that the current texture binding will be preserved
priv::TextureSaver save;
// Copy the rendered pixels to the texture
GLCheck(glBindTexture(GL_TEXTURE_2D, textureId));
GLCheck(glCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, 0, 0, myWidth, myHeight));

View file

@ -83,7 +83,7 @@ bool RenderTextureImplFBO::IsAvailable()
////////////////////////////////////////////////////////////
bool RenderTextureImplFBO::Create(unsigned int width, unsigned int height, unsigned int textureId, bool depthBuffer)
{
//Create the context
// Create the context
myContext = new Context;
// Create the framebuffer object

View file

@ -1,348 +0,0 @@
////////////////////////////////////////////////////////////
//
// SFML - Simple and Fast Multimedia Library
// Copyright (C) 2007-2009 Laurent Gomila (laurent.gom@gmail.com)
//
// This software is provided 'as-is', without any express or implied warranty.
// In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it freely,
// subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented;
// you must not claim that you wrote the original software.
// If you use this software in a product, an acknowledgment
// in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such,
// and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
//
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// Headers
////////////////////////////////////////////////////////////
#include <SFML/Graphics/Renderer.hpp>
#include <SFML/Graphics/RenderTarget.hpp>
#include <SFML/Graphics/Texture.hpp>
#include <SFML/Graphics/Shader.hpp>
#include <SFML/Graphics/GLCheck.hpp>
namespace sf
{
////////////////////////////////////////////////////////////
Renderer::Renderer(RenderTarget& target) :
myTarget (target),
myTextureIsValid (false),
myShaderIsValid (false),
myBlendModeIsValid(false),
myViewportIsValid (false)
{
myStates = &myStatesStack[0];
}
////////////////////////////////////////////////////////////
void Renderer::Initialize()
{
// Default render states
GLCheck(glDisable(GL_LIGHTING));
GLCheck(glDisable(GL_DEPTH_TEST));
GLCheck(glEnable(GL_TEXTURE_2D));
GLCheck(glEnable(GL_ALPHA_TEST));
GLCheck(glAlphaFunc(GL_GREATER, 0));
// Default transform matrices
GLCheck(glMatrixMode(GL_MODELVIEW));
GLCheck(glLoadIdentity());
GLCheck(glMatrixMode(GL_PROJECTION));
GLCheck(glLoadIdentity());
// Invalidate the cached SFML states
myTextureIsValid = false;
myShaderIsValid = false;
myBlendModeIsValid = false;
myViewportIsValid = false;
}
////////////////////////////////////////////////////////////
void Renderer::SaveGLStates()
{
// Save render states
GLCheck(glPushAttrib(GL_ALL_ATTRIB_BITS));
// Save matrices
GLCheck(glMatrixMode(GL_MODELVIEW));
GLCheck(glPushMatrix());
GLCheck(glMatrixMode(GL_PROJECTION));
GLCheck(glPushMatrix());
}
////////////////////////////////////////////////////////////
void Renderer::RestoreGLStates()
{
// Restore render states
GLCheck(glPopAttrib());
// Restore matrices
GLCheck(glMatrixMode(GL_PROJECTION));
GLCheck(glPopMatrix());
GLCheck(glMatrixMode(GL_MODELVIEW));
GLCheck(glPopMatrix());
}
////////////////////////////////////////////////////////////
void Renderer::Clear(const Color& color)
{
GLCheck(glClearColor(color.r / 255.f, color.g / 255.f, color.b / 255.f, color.a / 255.f));
GLCheck(glClear(GL_COLOR_BUFFER_BIT));
}
////////////////////////////////////////////////////////////
void Renderer::PushStates()
{
myStates++;
*myStates = *(myStates - 1);
}
////////////////////////////////////////////////////////////
void Renderer::PopStates()
{
myStates--;
}
////////////////////////////////////////////////////////////
void Renderer::SetModelView(const Matrix3& matrix)
{
myStates->modelView = matrix;
}
////////////////////////////////////////////////////////////
void Renderer::ApplyModelView(const Matrix3& matrix)
{
myStates->modelView = myStates->modelView * matrix;
}
////////////////////////////////////////////////////////////
void Renderer::SetProjection(const Matrix3& matrix)
{
// Apply it immediately (this one is not critical for performances)
GLCheck(glMatrixMode(GL_PROJECTION));
GLCheck(glLoadMatrixf(matrix.Get4x4Elements()));
}
////////////////////////////////////////////////////////////
void Renderer::SetColor(const Color& color)
{
myStates->r = color.r / 255.f;
myStates->g = color.g / 255.f;
myStates->b = color.b / 255.f;
myStates->a = color.a / 255.f;
}
////////////////////////////////////////////////////////////
void Renderer::ApplyColor(const Color& color)
{
myStates->r *= color.r / 255.f;
myStates->g *= color.g / 255.f;
myStates->b *= color.b / 255.f;
myStates->a *= color.a / 255.f;
}
////////////////////////////////////////////////////////////
void Renderer::SetViewport(const IntRect& viewport)
{
if ((viewport.Left != myViewport.Left) || (viewport.Width != myViewport.Width) ||
(viewport.Top != myViewport.Top) || (viewport.Height != myViewport.Height) ||
!myViewportIsValid)
{
// Revert the Y axis to match the OpenGL convention
int top = myTarget.GetHeight() - (viewport.Top + viewport.Height);
// Apply the new viewport
GLCheck(glViewport(viewport.Left, top, viewport.Width, viewport.Height));
// Store it
myViewport = viewport;
myViewportIsValid = true;
}
}
////////////////////////////////////////////////////////////
void Renderer::SetBlendMode(Blend::Mode mode)
{
if ((mode != myBlendMode) || !myBlendModeIsValid)
{
// Apply the new blending mode
if (mode == Blend::None)
{
GLCheck(glDisable(GL_BLEND));
}
else
{
GLCheck(glEnable(GL_BLEND));
switch (mode)
{
// Alpha blending
// glBlendFuncSeparateEXT is used when available to avoid an incorrect alpha value when the target
// is a RenderTexture -- in this case the alpha value must be written directly to the target buffer
default :
case Blend::Alpha :
if (GLEW_EXT_blend_func_separate)
GLCheck(glBlendFuncSeparateEXT(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_ONE_MINUS_SRC_ALPHA));
else
GLCheck(glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA));
break;
// Additive blending
case Blend::Add :
GLCheck(glBlendFunc(GL_SRC_ALPHA, GL_ONE));
break;
// Multiplicative blending
case Blend::Multiply :
GLCheck(glBlendFunc(GL_DST_COLOR, GL_ZERO));
break;
}
}
// Store it
myBlendMode = mode;
myBlendModeIsValid = true;
}
}
////////////////////////////////////////////////////////////
void Renderer::SetTexture(const Texture* texture)
{
if ((texture != myTexture) || (texture && (texture->myTexture != myTextureId)) || !myTextureIsValid)
{
// Apply the new texture
if (texture)
texture->Bind();
else
GLCheck(glBindTexture(GL_TEXTURE_2D, 0));
// Store it
myTexture = texture;
myTextureId = texture ? texture->myTexture : 0;
myTextureIsValid = true;
}
}
////////////////////////////////////////////////////////////
void Renderer::SetShader(const Shader* shader)
{
if ((shader != myShader) || !myShaderIsValid)
{
if (Shader::IsAvailable()) // to avoid calling possibly unsupported functions
{
// Apply the new shader
if (shader)
shader->Bind();
else
GLCheck(glUseProgramObjectARB(0));
// Store it
myShader = shader;
myShaderIsValid = true;
}
}
else if (shader && myShaderIsValid)
{
// If the shader was already the current one, make sure that
// it is synchronized (in case it was modified since last use)
shader->Use();
}
}
////////////////////////////////////////////////////////////
void Renderer::Begin(PrimitiveType type)
{
// Begin rendering
switch (type)
{
case TriangleList : glBegin(GL_TRIANGLES); break;
case TriangleStrip : glBegin(GL_TRIANGLE_STRIP); break;
case TriangleFan : glBegin(GL_TRIANGLE_FAN); break;
case QuadList : glBegin(GL_QUADS); break;
default: break;
}
}
////////////////////////////////////////////////////////////
void Renderer::End()
{
// End rendering
glEnd();
}
////////////////////////////////////////////////////////////
void Renderer::AddVertex(float x, float y)
{
ProcessVertex(x, y, 0.f, 0.f, 1.f, 1.f, 1.f, 1.f);
}
////////////////////////////////////////////////////////////
void Renderer::AddVertex(float x, float y, float u, float v)
{
ProcessVertex(x, y, u, v, 1.f, 1.f, 1.f, 1.f);
}
////////////////////////////////////////////////////////////
void Renderer::AddVertex(float x, float y, const Color& color)
{
ProcessVertex(x, y, 0.f, 0.f, color.r / 255.f, color.g / 255.f, color.b / 255.f, color.a / 255.f);
}
////////////////////////////////////////////////////////////
void Renderer::AddVertex(float x, float y, float u, float v, const Color& color)
{
ProcessVertex(x, y, u, v, color.r / 255.f, color.g / 255.f, color.b / 255.f, color.a / 255.f);
}
////////////////////////////////////////////////////////////
void Renderer::ProcessVertex(float x, float y, float u, float v, float r, float g, float b, float a)
{
// Transform the vertex position by the current model-view matrix
Vector2f position = myStates->modelView.Transform(Vector2f(x, y));
// Modulate the vertex color with the current global color
r *= myStates->r;
g *= myStates->g;
b *= myStates->b;
a *= myStates->a;
// Render the vertex
glColor4f(r, g, b, a);
glTexCoord2f(u, v);
glVertex2f(position.x, position.y);
}
} // namespace sf

View file

@ -27,6 +27,7 @@
// Headers
////////////////////////////////////////////////////////////
#include <SFML/Graphics/Shader.hpp>
#include <SFML/Graphics/Texture.hpp>
#include <SFML/Graphics/GLCheck.hpp>
#include <SFML/System/InputStream.hpp>
#include <SFML/System/Err.hpp>
@ -46,30 +47,50 @@ namespace
GLCheck(glGetIntegerv(GL_MAX_TEXTURE_COORDS_ARB, &maxUnits));
return maxUnits;
}
// Read the contents of a file into an array of char
bool GetFileContents(const std::string& filename, std::vector<char>& buffer)
{
std::ifstream file(filename.c_str(), std::ios_base::binary);
if (file)
{
file.seekg(0, std::ios_base::end);
std::streamsize size = file.tellg();
file.seekg(0, std::ios_base::beg);
buffer.resize(size);
file.read(&buffer[0], size);
buffer.push_back('\0');
return true;
}
else
{
return false;
}
}
// Read the contents of a stream into an array of char
bool GetStreamContents(sf::InputStream& stream, std::vector<char>& buffer)
{
sf::Int64 size = stream.GetSize();
buffer.resize(static_cast<std::size_t>(size));
sf::Int64 read = stream.Read(&buffer[0], size);
buffer.push_back('\0');
return read == size;
}
}
namespace sf
{
////////////////////////////////////////////////////////////
Shader::CurrentTextureType Shader::CurrentTexture;
////////////////////////////////////////////////////////////
Shader::Shader() :
myShaderProgram (0),
myCurrentTexture(-1)
{
}
////////////////////////////////////////////////////////////
Shader::Shader(const Shader& copy) :
myShaderProgram (0),
myCurrentTexture(copy.myCurrentTexture),
myTextures (copy.myTextures),
myFragmentShader(copy.myFragmentShader)
{
// Create the shaders and the program
if (copy.myShaderProgram)
CompileProgram();
}
@ -85,48 +106,107 @@ Shader::~Shader()
////////////////////////////////////////////////////////////
bool Shader::LoadFromFile(const std::string& filename)
bool Shader::LoadFromFile(const std::string& filename, Type type)
{
// Open the file
std::ifstream file(filename.c_str());
if (!file)
// Read the file
std::vector<char> shader;
if (!GetFileContents(filename, shader))
{
Err() << "Failed to open shader file \"" << filename << "\"" << std::endl;
return false;
}
// Read the shader code from the file
myFragmentShader.clear();
std::string line;
while (std::getline(file, line))
myFragmentShader += line + "\n";
// Create the shaders and the program
return CompileProgram();
// Compile the shader program
if (type == Vertex)
return CompileProgram(&shader[0], NULL);
else
return CompileProgram(NULL, &shader[0]);
}
////////////////////////////////////////////////////////////
bool Shader::LoadFromMemory(const std::string& shader)
bool Shader::LoadFromFile(const std::string& vertexShaderFilename, const std::string& fragmentShaderFilename)
{
// Save the shader code
myFragmentShader = shader;
// Read the vertex shader file
std::vector<char> vertexShader;
if (!GetFileContents(vertexShaderFilename, vertexShader))
{
Err() << "Failed to open vertex shader file \"" << vertexShaderFilename << "\"" << std::endl;
return false;
}
// Create the shaders and the program
return CompileProgram();
// Read the fragment shader file
std::vector<char> fragmentShader;
if (!GetFileContents(fragmentShaderFilename, fragmentShader))
{
Err() << "Failed to open fragment shader file \"" << fragmentShaderFilename << "\"" << std::endl;
return false;
}
// Compile the shader program
return CompileProgram(&vertexShader[0], &fragmentShader[0]);
}
////////////////////////////////////////////////////////////
bool Shader::LoadFromStream(InputStream& stream)
bool Shader::LoadFromMemory(const std::string& shader, Type type)
{
// Compile the shader program
if (type == Vertex)
return CompileProgram(shader.c_str(), NULL);
else
return CompileProgram(NULL, shader.c_str());
}
////////////////////////////////////////////////////////////
bool Shader::LoadFromMemory(const std::string& vertexShader, const std::string& fragmentShader)
{
// Compile the shader program
return CompileProgram(vertexShader.c_str(), fragmentShader.c_str());
}
////////////////////////////////////////////////////////////
bool Shader::LoadFromStream(InputStream& stream, Type type)
{
// Read the shader code from the stream
std::vector<char> buffer(static_cast<std::size_t>(stream.GetSize()));
Int64 read = stream.Read(&buffer[0], buffer.size());
myFragmentShader.assign(&buffer[0], &buffer[0] + read);
std::vector<char> shader;
if (!GetStreamContents(stream, shader))
{
Err() << "Failed to read shader from stream" << std::endl;
return false;
}
// Create the shaders and the program
return CompileProgram();
// Compile the shader program
if (type == Vertex)
return CompileProgram(&shader[0], NULL);
else
return CompileProgram(NULL, &shader[0]);
}
////////////////////////////////////////////////////////////
bool Shader::LoadFromStream(InputStream& vertexShaderStream, InputStream& fragmentShaderStream)
{
// Read the vertex shader code from the stream
std::vector<char> vertexShader;
if (!GetStreamContents(vertexShaderStream, vertexShader))
{
Err() << "Failed to read vertex shader from stream" << std::endl;
return false;
}
// Read the fragment shader code from the stream
std::vector<char> fragmentShader;
if (!GetStreamContents(fragmentShaderStream, fragmentShader))
{
Err() << "Failed to read fragment shader from stream" << std::endl;
return false;
}
// Compile the shader program
return CompileProgram(&vertexShader[0], &fragmentShader[0]);
}
@ -241,7 +321,38 @@ void Shader::SetParameter(const std::string& name, const Vector3f& v)
////////////////////////////////////////////////////////////
void Shader::SetTexture(const std::string& name, const Texture& texture)
void Shader::SetParameter(const std::string& name, const Color& color)
{
SetParameter(name, color.r / 255.f, color.g / 255.f, color.b / 255.f, color.a / 255.f);
}
////////////////////////////////////////////////////////////
void Shader::SetParameter(const std::string& name, const sf::Transform& transform)
{
if (myShaderProgram)
{
EnsureGlContext();
// Enable program
GLhandleARB program = glGetHandleARB(GL_PROGRAM_OBJECT_ARB);
GLCheck(glUseProgramObjectARB(myShaderProgram));
// Get parameter location and assign it new values
GLint location = glGetUniformLocationARB(myShaderProgram, name.c_str());
if (location != -1)
GLCheck(glUniformMatrix4fvARB(location, 1, GL_FALSE, transform.GetMatrix()));
else
Err() << "Parameter \"" << name << "\" not found in shader" << std::endl;
// Disable program
GLCheck(glUseProgramObjectARB(program));
}
}
////////////////////////////////////////////////////////////
void Shader::SetParameter(const std::string& name, const Texture& texture)
{
if (myShaderProgram)
{
@ -279,7 +390,7 @@ void Shader::SetTexture(const std::string& name, const Texture& texture)
////////////////////////////////////////////////////////////
void Shader::SetCurrentTexture(const std::string& name)
void Shader::SetParameter(const std::string& name, CurrentTextureType)
{
if (myShaderProgram)
{
@ -322,20 +433,6 @@ void Shader::Unbind() const
}
////////////////////////////////////////////////////////////
Shader& Shader::operator =(const Shader& right)
{
Shader temp(right);
std::swap(myShaderProgram, temp.myShaderProgram);
std::swap(myCurrentTexture, temp.myCurrentTexture);
std::swap(myTextures, temp.myTextures);
std::swap(myFragmentShader, temp.myFragmentShader);
return *this;
}
////////////////////////////////////////////////////////////
bool Shader::IsAvailable()
{
@ -352,7 +449,7 @@ bool Shader::IsAvailable()
////////////////////////////////////////////////////////////
bool Shader::CompileProgram()
bool Shader::CompileProgram(const char* vertexShaderCode, const char* fragmentShaderCode)
{
EnsureGlContext();
@ -368,74 +465,73 @@ bool Shader::CompileProgram()
if (myShaderProgram)
GLCheck(glDeleteObjectARB(myShaderProgram));
// Define the vertex shader source (we provide it directly as it doesn't have to change)
static const char* vertexSrc =
"void main()"
"{"
" gl_TexCoord[0] = gl_MultiTexCoord0;"
" gl_FrontColor = gl_Color;"
" gl_Position = ftransform();"
"}";
// Create the program
myShaderProgram = glCreateProgramObjectARB();
// Create the shaders
GLhandleARB vertexShader = glCreateShaderObjectARB(GL_VERTEX_SHADER_ARB);
GLhandleARB fragmentShader = glCreateShaderObjectARB(GL_FRAGMENT_SHADER_ARB);
// Compile them
const char* fragmentSrc = myFragmentShader.c_str();
GLCheck(glShaderSourceARB(vertexShader, 1, &vertexSrc, NULL));
GLCheck(glShaderSourceARB(fragmentShader, 1, &fragmentSrc, NULL));
GLCheck(glCompileShaderARB(vertexShader));
GLCheck(glCompileShaderARB(fragmentShader));
// Check the compile logs
GLint success;
GLCheck(glGetObjectParameterivARB(vertexShader, GL_OBJECT_COMPILE_STATUS_ARB, &success));
if (success == GL_FALSE)
// Create the vertex shader if needed
if (vertexShaderCode)
{
char log[1024];
GLCheck(glGetInfoLogARB(vertexShader, sizeof(log), 0, log));
Err() << "Failed to compile shader:" << std::endl
<< log << std::endl;
// Create and compile the shader
GLhandleARB vertexShader = glCreateShaderObjectARB(GL_VERTEX_SHADER_ARB);
GLCheck(glShaderSourceARB(vertexShader, 1, &vertexShaderCode, NULL));
GLCheck(glCompileShaderARB(vertexShader));
// Check the compile log
GLint success;
GLCheck(glGetObjectParameterivARB(vertexShader, GL_OBJECT_COMPILE_STATUS_ARB, &success));
if (success == GL_FALSE)
{
char log[1024];
GLCheck(glGetInfoLogARB(vertexShader, sizeof(log), 0, log));
Err() << "Failed to compile vertex shader:" << std::endl
<< log << std::endl;
GLCheck(glDeleteObjectARB(vertexShader));
GLCheck(glDeleteObjectARB(myShaderProgram));
myShaderProgram = 0;
return false;
}
// Attach the shader to the program, and delete it (not needed anymore)
GLCheck(glAttachObjectARB(myShaderProgram, vertexShader));
GLCheck(glDeleteObjectARB(vertexShader));
GLCheck(glDeleteObjectARB(fragmentShader));
GLCheck(glDeleteObjectARB(myShaderProgram));
myShaderProgram = 0;
return false;
}
GLCheck(glGetObjectParameterivARB(fragmentShader, GL_OBJECT_COMPILE_STATUS_ARB, &success));
if (success == GL_FALSE)
{
char log[1024];
GLCheck(glGetInfoLogARB(fragmentShader, sizeof(log), 0, log));
Err() << "Failed to compile shader:" << std::endl
<< log << std::endl;
GLCheck(glDeleteObjectARB(vertexShader));
GLCheck(glDeleteObjectARB(fragmentShader));
GLCheck(glDeleteObjectARB(myShaderProgram));
myShaderProgram = 0;
return false;
}
// Attach the shaders to the program
GLCheck(glAttachObjectARB(myShaderProgram, vertexShader));
GLCheck(glAttachObjectARB(myShaderProgram, fragmentShader));
// Create the fragment shader if needed
if (fragmentShaderCode)
{
// Create and compile the shader
GLhandleARB fragmentShader = glCreateShaderObjectARB(GL_FRAGMENT_SHADER_ARB);
GLCheck(glShaderSourceARB(fragmentShader, 1, &fragmentShaderCode, NULL));
GLCheck(glCompileShaderARB(fragmentShader));
// We can now delete the shaders
GLCheck(glDeleteObjectARB(vertexShader));
GLCheck(glDeleteObjectARB(fragmentShader));
// Check the compile log
GLint success;
GLCheck(glGetObjectParameterivARB(fragmentShader, GL_OBJECT_COMPILE_STATUS_ARB, &success));
if (success == GL_FALSE)
{
char log[1024];
GLCheck(glGetInfoLogARB(fragmentShader, sizeof(log), 0, log));
Err() << "Failed to compile fragment shader:" << std::endl
<< log << std::endl;
GLCheck(glDeleteObjectARB(fragmentShader));
GLCheck(glDeleteObjectARB(myShaderProgram));
myShaderProgram = 0;
return false;
}
// Attach the shader to the program, and delete it (not needed anymore)
GLCheck(glAttachObjectARB(myShaderProgram, fragmentShader));
GLCheck(glDeleteObjectARB(fragmentShader));
}
// Link the program
GLCheck(glLinkProgramARB(myShaderProgram));
// Get link log
// Check the link log
GLint success;
GLCheck(glGetObjectParameterivARB(myShaderProgram, GL_OBJECT_LINK_STATUS_ARB, &success));
if (success == GL_FALSE)
{
// Oops... link errors
char log[1024];
GLCheck(glGetInfoLogARB(myShaderProgram, sizeof(log), 0, log));
Err() << "Failed to link shader:" << std::endl
@ -466,11 +562,4 @@ void Shader::BindTextures() const
GLCheck(glActiveTextureARB(GL_TEXTURE0_ARB));
}
////////////////////////////////////////////////////////////
void Shader::Use() const
{
BindTextures();
}
} // namespace sf

View file

@ -26,365 +26,270 @@
// Headers
////////////////////////////////////////////////////////////
#include <SFML/Graphics/Shape.hpp>
#include <SFML/Graphics/Renderer.hpp>
#include <SFML/Graphics/RenderTarget.hpp>
#include <SFML/Graphics/Texture.hpp>
#include <SFML/System/Err.hpp>
#include <cmath>
////////////////////////////////////////////////////////////
// Private data
////////////////////////////////////////////////////////////
namespace
{
// Compute the normal of a segment
sf::Vector2f ComputeNormal(const sf::Vector2f& p1, const sf::Vector2f& p2)
{
sf::Vector2f normal(p1.y - p2.y, p2.x - p1.x);
float length = std::sqrt(normal.x * normal.x + normal.y * normal.y);
if (length != 0.f)
normal /= length;
return normal;
}
}
namespace sf
{
////////////////////////////////////////////////////////////
Shape::Shape() :
myOutline (0.f),
myIsFillEnabled (true),
myIsOutlineEnabled(true),
myIsCompiled (false)
Shape::~Shape()
{
// Put a placeholder for the center of the shape
myPoints.push_back(Point());
}
////////////////////////////////////////////////////////////
void Shape::AddPoint(float x, float y, const Color& color, const Color& outlineColor)
void Shape::SetTexture(const Texture* texture, bool resetRect)
{
AddPoint(Vector2f(x, y), color, outlineColor);
// Recompute the texture area if requested, or if there was no texture before
if (texture && (resetRect || !myTexture))
SetTextureRect(IntRect(0, 0, texture->GetWidth(), texture->GetHeight()));
// Assign the new texture
myTexture = texture;
}
////////////////////////////////////////////////////////////
void Shape::AddPoint(const Vector2f& position, const Color& color, const Color& outlineColor)
const Texture* Shape::GetTexture() const
{
myPoints.push_back(Point(position, color, outlineColor));
myIsCompiled = false;
return myTexture;
}
////////////////////////////////////////////////////////////
unsigned int Shape::GetPointsCount() const
void Shape::SetTextureRect(const IntRect& rect)
{
return static_cast<unsigned int>(myPoints.size() - 1);
myTextureRect = rect;
UpdateTexCoords();
}
////////////////////////////////////////////////////////////
void Shape::EnableFill(bool enable)
const IntRect& Shape::GetTextureRect() const
{
myIsFillEnabled = enable;
return myTextureRect;
}
////////////////////////////////////////////////////////////
void Shape::EnableOutline(bool enable)
void Shape::SetFillColor(const Color& color)
{
myIsOutlineEnabled = enable;
myFillColor = color;
UpdateFillColors();
}
////////////////////////////////////////////////////////////
void Shape::SetPointPosition(unsigned int index, const Vector2f& position)
const Color& Shape::GetFillColor() const
{
myPoints[index + 1].Position = position;
myIsCompiled = false;
return myFillColor;
}
////////////////////////////////////////////////////////////
void Shape::SetPointPosition(unsigned int index, float x, float y)
void Shape::SetOutlineColor(const Color& color)
{
SetPointPosition(index, Vector2f(x, y));
myOutlineColor = color;
UpdateOutlineColors();
}
////////////////////////////////////////////////////////////
void Shape::SetPointColor(unsigned int index, const Color& color)
const Color& Shape::GetOutlineColor() const
{
myPoints[index + 1].Col = color;
myIsCompiled = false;
}
////////////////////////////////////////////////////////////
void Shape::SetPointOutlineColor(unsigned int index, const Color& color)
{
myPoints[index + 1].OutlineCol = color;
myIsCompiled = false;
return myOutlineColor;
}
////////////////////////////////////////////////////////////
void Shape::SetOutlineThickness(float thickness)
{
myOutline = thickness;
}
////////////////////////////////////////////////////////////
const Vector2f& Shape::GetPointPosition(unsigned int index) const
{
return myPoints[index + 1].Position;
}
////////////////////////////////////////////////////////////
const Color& Shape::GetPointColor(unsigned int index) const
{
return myPoints[index + 1].Col;
}
////////////////////////////////////////////////////////////
const Color& Shape::GetPointOutlineColor(unsigned int index) const
{
return myPoints[index + 1].OutlineCol;
myOutlineThickness = thickness;
Update(); // recompute everything because the whole shape must be offset
}
////////////////////////////////////////////////////////////
float Shape::GetOutlineThickness() const
{
return myOutline;
return myOutlineThickness;
}
////////////////////////////////////////////////////////////
Shape Shape::Line(float p1x, float p1y, float p2x, float p2y, float thickness, const Color& color, float outline, const Color& outlineColor)
FloatRect Shape::GetLocalBounds() const
{
Vector2f p1(p1x, p1y);
Vector2f p2(p2x, p2y);
return Shape::Line(p1, p2, thickness, color, outline, outlineColor);
return myBounds;
}
////////////////////////////////////////////////////////////
Shape Shape::Line(const Vector2f& p1, const Vector2f& p2, float thickness, const Color& color, float outline, const Color& outlineColor)
FloatRect Shape::GetGlobalBounds() const
{
// Compute the extrusion direction
Vector2f normal;
ComputeNormal(p1, p2, normal);
normal *= thickness / 2;
// Create the shape's points
Shape shape;
shape.AddPoint(p1 - normal, color, outlineColor);
shape.AddPoint(p2 - normal, color, outlineColor);
shape.AddPoint(p2 + normal, color, outlineColor);
shape.AddPoint(p1 + normal, color, outlineColor);
shape.SetOutlineThickness(outline);
// Compile it
shape.Compile();
return shape;
return GetTransform().TransformRect(GetLocalBounds());
}
////////////////////////////////////////////////////////////
Shape Shape::Rectangle(float left, float top, float width, float height, const Color& color, float outline, const Color& outlineColor)
Shape::Shape() :
myTexture (NULL),
myTextureRect (),
myFillColor (255, 255, 255),
myOutlineColor (255, 255, 255),
myOutlineThickness(0),
myVertices (TrianglesFan),
myOutlineVertices (TrianglesStrip),
myInsideBounds (),
myBounds ()
{
// Create the shape's points
Shape shape;
shape.AddPoint(Vector2f(left, top), color, outlineColor);
shape.AddPoint(Vector2f(left + width, top), color, outlineColor);
shape.AddPoint(Vector2f(left + width, top + height), color, outlineColor);
shape.AddPoint(Vector2f(left, top + height), color, outlineColor);
shape.SetOutlineThickness(outline);
// Compile it
shape.Compile();
return shape;
}
////////////////////////////////////////////////////////////
Shape Shape::Rectangle(const FloatRect& rectangle, const Color& color, float outline, const Color& outlineColor)
void Shape::Update()
{
return Shape::Rectangle(rectangle.Left, rectangle.Top, rectangle.Width, rectangle.Height, color, outline, outlineColor);
}
////////////////////////////////////////////////////////////
Shape Shape::Circle(float x, float y, float radius, const Color& color, float outline, const Color& outlineColor)
{
return Shape::Circle(Vector2f(x, y), radius, color, outline, outlineColor);
}
////////////////////////////////////////////////////////////
Shape Shape::Circle(const Vector2f& center, float radius, const Color& color, float outline, const Color& outlineColor)
{
static const int nbSegments = 40;
// Create the points set
Shape shape;
for (int i = 0; i < nbSegments; ++i)
// Get the total number of points of the shape
unsigned int count = GetPointsCount();
if (count < 3)
{
float angle = i * 2 * 3.141592654f / nbSegments;
Vector2f offset(std::cos(angle), std::sin(angle));
shape.AddPoint(center + offset * radius, color, outlineColor);
}
// Compile it
shape.SetOutlineThickness(outline);
shape.Compile();
return shape;
}
////////////////////////////////////////////////////////////
void Shape::Render(RenderTarget&, Renderer& renderer) const
{
// Make sure the shape has at least 3 points (4 if we count the center)
if (myPoints.size() < 4)
myVertices.Resize(0);
myOutlineVertices.Resize(0);
return;
// Make sure the shape is compiled
if (!myIsCompiled)
const_cast<Shape*>(this)->Compile();
// Shapes only use color, no texture
renderer.SetTexture(NULL);
// Draw the shape
if (myIsFillEnabled)
{
if (myPoints.size() == 4)
{
// Special case of a triangle
renderer.Begin(Renderer::TriangleList);
renderer.AddVertex(myPoints[1].Position.x, myPoints[1].Position.y, myPoints[1].Col);
renderer.AddVertex(myPoints[2].Position.x, myPoints[2].Position.y, myPoints[2].Col);
renderer.AddVertex(myPoints[3].Position.x, myPoints[3].Position.y, myPoints[3].Col);
renderer.End();
}
else if (myPoints.size() == 5)
{
// Special case of a quad
renderer.Begin(Renderer::TriangleStrip);
renderer.AddVertex(myPoints[1].Position.x, myPoints[1].Position.y, myPoints[1].Col);
renderer.AddVertex(myPoints[2].Position.x, myPoints[2].Position.y, myPoints[2].Col);
renderer.AddVertex(myPoints[4].Position.x, myPoints[4].Position.y, myPoints[4].Col);
renderer.AddVertex(myPoints[3].Position.x, myPoints[3].Position.y, myPoints[3].Col);
renderer.End();
}
else
{
renderer.Begin(Renderer::TriangleFan);
// General case of a convex polygon
for (std::vector<Point>::const_iterator i = myPoints.begin(); i != myPoints.end(); ++i)
renderer.AddVertex(i->Position.x, i->Position.y, i->Col);
// Close the shape by duplicating the first point at the end
const Point& first = myPoints[1];
renderer.AddVertex(first.Position.x, first.Position.y, first.Col);
renderer.End();
}
}
// Draw the outline
if (myIsOutlineEnabled && (myOutline != 0))
myVertices.Resize(count + 2); // + 2 for center and repeated first point
// Position
for (unsigned int i = 0; i < count; ++i)
myVertices[i + 1].Position = GetPoint(i);
myVertices[count + 1].Position = myVertices[1].Position;
// Update the bounding rectangle
myVertices[0] = myVertices[1]; // so that the result of GetBounds() is correct
myInsideBounds = myVertices.GetBounds();
// Compute the center and make it the first vertex
myVertices[0].Position.x = myInsideBounds.Left + myInsideBounds.Width / 2;
myVertices[0].Position.y = myInsideBounds.Top + myInsideBounds.Height / 2;
// Color
UpdateFillColors();
// Texture coordinates
UpdateTexCoords();
// Outline
UpdateOutline();
}
////////////////////////////////////////////////////////////
void Shape::Draw(RenderTarget& target, RenderStates states) const
{
states.Transform *= GetTransform();
// Render the inside
if (myFillColor.a > 0)
{
renderer.Begin(Renderer::TriangleStrip);
states.Texture = myTexture;
target.Draw(myVertices, states);
}
for (std::vector<Point>::const_iterator i = myPoints.begin() + 1; i != myPoints.end(); ++i)
{
Vector2f point1 = i->Position;
Vector2f point2 = i->Position + i->Normal * myOutline;
renderer.AddVertex(point1.x, point1.y, i->OutlineCol);
renderer.AddVertex(point2.x, point2.y, i->OutlineCol);
}
// Close the shape by duplicating the first point at the end
const Point& first = myPoints[1];
Vector2f point1 = first.Position;
Vector2f point2 = first.Position + first.Normal * myOutline;
renderer.AddVertex(point1.x, point1.y, first.OutlineCol);
renderer.AddVertex(point2.x, point2.y, first.OutlineCol);
renderer.End();
// Render the outline
if ((myOutlineColor.a > 0) && (myOutlineThickness > 0))
{
states.Texture = NULL;
target.Draw(myOutlineVertices, states);
}
}
////////////////////////////////////////////////////////////
void Shape::Compile()
void Shape::UpdateFillColors()
{
// Compute the center
float nbPoints = static_cast<float>(myPoints.size() - 1);
float r = 0, g = 0, b = 0, a = 0;
Point center(Vector2f(0, 0), Color(0, 0, 0, 0));
for (std::size_t i = 1; i < myPoints.size(); ++i)
{
center.Position += myPoints[i].Position;
r += myPoints[i].Col.r;
g += myPoints[i].Col.g;
b += myPoints[i].Col.b;
a += myPoints[i].Col.a;
}
center.Position /= nbPoints;
center.Col.r = static_cast<Uint8>(r / nbPoints);
center.Col.g = static_cast<Uint8>(g / nbPoints);
center.Col.b = static_cast<Uint8>(b / nbPoints);
center.Col.a = static_cast<Uint8>(a / nbPoints);
myPoints[0] = center;
for (unsigned int i = 0; i < myVertices.GetVerticesCount(); ++i)
myVertices[i].Color = myFillColor;
}
// Compute the outline
for (std::size_t i = 1; i < myPoints.size(); ++i)
////////////////////////////////////////////////////////////
void Shape::UpdateTexCoords()
{
for (unsigned int i = 0; i < myVertices.GetVerticesCount(); ++i)
{
float xratio = (myVertices[i].Position.x - myInsideBounds.Left) / myInsideBounds.Width;
float yratio = (myVertices[i].Position.y - myInsideBounds.Top) / myInsideBounds.Height;
myVertices[i].TexCoords.x = myTextureRect.Left + myTextureRect.Width * xratio;
myVertices[i].TexCoords.y = myTextureRect.Top + myTextureRect.Height * yratio;
}
}
////////////////////////////////////////////////////////////
void Shape::UpdateOutline()
{
unsigned int count = myVertices.GetVerticesCount() - 2;
myOutlineVertices.Resize((count + 1) * 2);
for (unsigned int i = 0; i < count; ++i)
{
unsigned int index = i + 1;
// Get the two segments shared by the current point
Point& p0 = (i == 1) ? myPoints[myPoints.size() - 1] : myPoints[i - 1];
Point& p1 = myPoints[i];
Point& p2 = (i == myPoints.size() - 1) ? myPoints[1] : myPoints[i + 1];
Vector2f p0 = (i == 0) ? myVertices[count].Position : myVertices[index - 1].Position;
Vector2f p1 = myVertices[index].Position;
Vector2f p2 = myVertices[index + 1].Position;
// Compute their normal
Vector2f normal1, normal2;
if (!ComputeNormal(p0.Position, p1.Position, normal1) || !ComputeNormal(p1.Position, p2.Position, normal2))
continue;
Vector2f n1 = ComputeNormal(p0, p1);
Vector2f n2 = ComputeNormal(p1, p2);
// Add them to get the extrusion direction
float factor = 1.f + (normal1.x * normal2.x + normal1.y * normal2.y);
p1.Normal = (normal1 + normal2) / factor;
// Combine them to get the extrusion direction
float factor = 1.f + (n1.x * n2.x + n1.y * n2.y);
Vector2f normal = -(n1 + n2) / factor;
// Make sure it points towards the outside of the shape
float dot = (p1.Position.x - center.Position.x) * p1.Normal.x + (p1.Position.y - center.Position.y) * p1.Normal.y;
if (dot < 0)
p1.Normal = -p1.Normal;
// Update the outline points
myOutlineVertices[i * 2 + 0].Position = p1;
myOutlineVertices[i * 2 + 1].Position = p1 + normal * myOutlineThickness;
}
myIsCompiled = true;
// Duplicate the first point at the end, to close the outline
myOutlineVertices[count * 2 + 0].Position = myOutlineVertices[0].Position;
myOutlineVertices[count * 2 + 1].Position = myOutlineVertices[1].Position;
// Update outline colors
UpdateOutlineColors();
// Update the shape's bounds
myBounds = myOutlineVertices.GetBounds();
}
////////////////////////////////////////////////////////////
bool Shape::ComputeNormal(const Vector2f& p1, const Vector2f& p2, Vector2f& normal)
void Shape::UpdateOutlineColors()
{
normal.x = p1.y - p2.y;
normal.y = p2.x - p1.x;
float len = std::sqrt(normal.x * normal.x + normal.y * normal.y);
if (len == 0.f)
return false;
normal.x /= len;
normal.y /= len;
return true;
}
////////////////////////////////////////////////////////////
Shape::Point::Point(const Vector2f& position, const Color& color, const Color& outlineColor) :
Position (position),
Normal (0.f, 0.f),
Col (color),
OutlineCol(outlineColor)
{
for (unsigned int i = 0; i < myOutlineVertices.GetVerticesCount(); ++i)
myOutlineVertices[i].Color = myOutlineColor;
}
} // namespace sf

View file

@ -27,48 +27,44 @@
////////////////////////////////////////////////////////////
#include <SFML/Graphics/Sprite.hpp>
#include <SFML/Graphics/Texture.hpp>
#include <SFML/Graphics/Renderer.hpp>
#include <utility>
#include <SFML/Graphics/RenderTarget.hpp>
namespace sf
{
////////////////////////////////////////////////////////////
Sprite::Sprite() :
Drawable (),
myTexture (NULL),
mySubRect (0, 0, 1, 1),
myIsFlippedX(false),
myIsFlippedY(false)
myTexture (NULL),
myTextureRect(0, 0, 0, 0)
{
}
////////////////////////////////////////////////////////////
Sprite::Sprite(const Texture& texture) :
Drawable (),
myTexture (NULL),
mySubRect (0, 0, 1, 1),
myIsFlippedX(false),
myIsFlippedY(false)
myTexture (NULL),
myTextureRect(0, 0, 0, 0)
{
SetTexture(texture);
}
////////////////////////////////////////////////////////////
void Sprite::SetTexture(const Texture& texture, bool adjustToNewSize)
Sprite::Sprite(const Texture& texture, const IntRect& rectangle) :
myTexture (NULL),
myTextureRect(0, 0, 0, 0)
{
// If there was no valid texture before, force adjusting to the new texture size
if (!myTexture)
adjustToNewSize = true;
SetTexture(texture);
SetTextureRect(rectangle);
}
// If we want to adjust the size and the new texture is valid, we adjust the source rectangle
if (adjustToNewSize && (texture.GetWidth() > 0) && (texture.GetHeight() > 0))
{
SetSubRect(IntRect(0, 0, texture.GetWidth(), texture.GetHeight()));
}
////////////////////////////////////////////////////////////
void Sprite::SetTexture(const Texture& texture, bool resetRect)
{
// Recompute the texture area if requested, or if there was no valid texture before
if (resetRect || !myTexture)
SetTextureRect(IntRect(0, 0, texture.GetWidth(), texture.GetHeight()));
// Assign the new texture
myTexture = &texture;
@ -76,38 +72,25 @@ void Sprite::SetTexture(const Texture& texture, bool adjustToNewSize)
////////////////////////////////////////////////////////////
void Sprite::SetSubRect(const IntRect& rectangle)
void Sprite::SetTextureRect(const IntRect& rectangle)
{
mySubRect = rectangle;
if (rectangle != myTextureRect)
{
myTextureRect = rectangle;
UpdatePositions();
UpdateTexCoords();
}
}
////////////////////////////////////////////////////////////
void Sprite::Resize(float width, float height)
void Sprite::SetColor(const Color& color)
{
if ((mySubRect.Width > 0) && (mySubRect.Height > 0))
SetScale(width / mySubRect.Width, height / mySubRect.Height);
}
////////////////////////////////////////////////////////////
void Sprite::Resize(const Vector2f& size)
{
Resize(size.x, size.y);
}
////////////////////////////////////////////////////////////
void Sprite::FlipX(bool flipped)
{
myIsFlippedX = flipped;
}
////////////////////////////////////////////////////////////
void Sprite::FlipY(bool flipped)
{
myIsFlippedY = flipped;
// Update the vertices' color
myVertices[0].Color = color;
myVertices[1].Color = color;
myVertices[2].Color = color;
myVertices[3].Color = color;
}
@ -119,49 +102,73 @@ const Texture* Sprite::GetTexture() const
////////////////////////////////////////////////////////////
const IntRect& Sprite::GetSubRect() const
const IntRect& Sprite::GetTextureRect() const
{
return mySubRect;
return myTextureRect;
}
////////////////////////////////////////////////////////////
Vector2f Sprite::GetSize() const
const Color& Sprite::GetColor() const
{
return Vector2f(mySubRect.Width * GetScale().x, mySubRect.Height * GetScale().y);
return myVertices[0].Color;
}
////////////////////////////////////////////////////////////
void Sprite::Render(RenderTarget&, Renderer& renderer) const
FloatRect Sprite::GetLocalBounds() const
{
// Get the sprite size
float width = static_cast<float>(mySubRect.Width);
float height = static_cast<float>(mySubRect.Height);
float width = static_cast<float>(myTextureRect.Width);
float height = static_cast<float>(myTextureRect.Height);
// Check if the texture is valid, and calculate the texture coordinates
FloatRect coords;
return FloatRect(0.f, 0.f, width, height);
}
////////////////////////////////////////////////////////////
FloatRect Sprite::GetGlobalBounds() const
{
return GetTransform().TransformRect(GetLocalBounds());
}
////////////////////////////////////////////////////////////
void Sprite::Draw(RenderTarget& target, RenderStates states) const
{
if (myTexture)
coords = myTexture->GetTexCoords(mySubRect);
{
states.Transform *= GetTransform();
states.Texture = myTexture;
target.Draw(myVertices, 4, Quads, states);
}
}
// Compute the texture coordinates
float left = coords.Left;
float top = coords.Top;
float right = coords.Left + coords.Width;
float bottom = coords.Top + coords.Height;
if (myIsFlippedX) std::swap(left, right);
if (myIsFlippedY) std::swap(top, bottom);
// Bind the texture
renderer.SetTexture(myTexture);
////////////////////////////////////////////////////////////
void Sprite::UpdatePositions()
{
float width = static_cast<float>(myTextureRect.Width);
float height = static_cast<float>(myTextureRect.Height);
// Draw the sprite's geometry
renderer.Begin(Renderer::TriangleStrip);
renderer.AddVertex(0, 0, left, top);
renderer.AddVertex(width, 0, right, top);
renderer.AddVertex(0, height, left, bottom);
renderer.AddVertex(width, height, right, bottom);
renderer.End();
myVertices[0].Position = Vector2f(0, 0);
myVertices[1].Position = Vector2f(0, height);
myVertices[2].Position = Vector2f(width, height);
myVertices[3].Position = Vector2f(width, 0);
}
////////////////////////////////////////////////////////////
void Sprite::UpdateTexCoords()
{
float left = static_cast<float>(myTextureRect.Left);
float right = left + myTextureRect.Width;
float top = static_cast<float>(myTextureRect.Top);
float bottom = top + myTextureRect.Height;
myVertices[0].TexCoords = Vector2f(left, top);
myVertices[1].TexCoords = Vector2f(left, bottom);
myVertices[2].TexCoords = Vector2f(right, bottom);
myVertices[3].TexCoords = Vector2f(right, top);
}
} // namespace sf

View file

@ -27,17 +27,20 @@
////////////////////////////////////////////////////////////
#include <SFML/Graphics/Text.hpp>
#include <SFML/Graphics/Texture.hpp>
#include <SFML/Graphics/Renderer.hpp>
#include <SFML/Graphics/RenderTarget.hpp>
#include <cassert>
namespace sf
{
////////////////////////////////////////////////////////////
Text::Text() :
myString (),
myFont (&Font::GetDefaultFont()),
myCharacterSize(30),
myStyle (Regular),
myRectUpdated (true)
myVertices (Quads),
myBounds ()
{
}
@ -45,12 +48,14 @@ myRectUpdated (true)
////////////////////////////////////////////////////////////
Text::Text(const String& string, const Font& font, unsigned int characterSize) :
myString (string),
myFont (&font),
myCharacterSize(characterSize),
myStyle (Regular),
myRectUpdated (true)
myVertices (Quads),
myBounds ()
{
SetString(string);
UpdateGeometry();
}
@ -58,7 +63,7 @@ myRectUpdated (true)
void Text::SetString(const String& string)
{
myString = string;
myRectUpdated = false;
UpdateGeometry();
}
@ -68,7 +73,7 @@ void Text::SetFont(const Font& font)
if (myFont != &font)
{
myFont = &font;
myRectUpdated = false;
UpdateGeometry();
}
}
@ -79,7 +84,7 @@ void Text::SetCharacterSize(unsigned int size)
if (myCharacterSize != size)
{
myCharacterSize = size;
myRectUpdated = false;
UpdateGeometry();
}
}
@ -90,7 +95,19 @@ void Text::SetStyle(Uint32 style)
if (myStyle != style)
{
myStyle = style;
myRectUpdated = false;
UpdateGeometry();
}
}
////////////////////////////////////////////////////////////
void Text::SetColor(const Color& color)
{
if (color != myColor)
{
myColor = color;
for (unsigned int i = 0; i < myVertices.GetVerticesCount(); ++i)
myVertices[i].Color = myColor;
}
}
@ -105,6 +122,7 @@ const String& Text::GetString() const
////////////////////////////////////////////////////////////
const Font& Text::GetFont() const
{
assert(myFont != NULL); // can never be NULL, always &Font::GetDefaultFont() by default
return *myFont;
}
@ -124,24 +142,29 @@ Uint32 Text::GetStyle() const
////////////////////////////////////////////////////////////
Vector2f Text::GetCharacterPos(std::size_t index) const
const Color& Text::GetColor() const
{
// Make sure that we have a valid font
if (!myFont)
return Vector2f(0, 0);
return myColor;
}
////////////////////////////////////////////////////////////
Vector2f Text::FindCharacterPos(std::size_t index) const
{
assert(myFont != NULL);
// Adjust the index if it's out of range
if (index > myString.GetSize())
index = myString.GetSize();
// We'll need this a lot
bool bold = (myStyle & Bold) != 0;
float space = static_cast<float>(myFont->GetGlyph(L' ', myCharacterSize, bold).Advance);
// Precompute the variables needed by the algorithm
bool bold = (myStyle & Bold) != 0;
float hspace = static_cast<float>(myFont->GetGlyph(L' ', myCharacterSize, bold).Advance);
float vspace = static_cast<float>(myFont->GetLineSpacing(myCharacterSize));
// Compute the position
Vector2f position;
Uint32 prevChar = 0;
float lineSpacing = static_cast<float>(myFont->GetLineSpacing(myCharacterSize));
for (std::size_t i = 0; i < index; ++i)
{
Uint32 curChar = myString[i];
@ -153,69 +176,75 @@ Vector2f Text::GetCharacterPos(std::size_t index) const
// Handle special characters
switch (curChar)
{
case L' ' : position.x += space; continue;
case L'\t' : position.x += space * 4; continue;
case L'\v' : position.y += lineSpacing * 4; continue;
case L'\n' : position.y += lineSpacing; position.x = 0; continue;
case L' ' : position.x += hspace; continue;
case L'\t' : position.x += hspace * 4; continue;
case L'\n' : position.y += vspace; position.x = 0; continue;
case L'\v' : position.y += vspace * 4; continue;
}
// For regular characters, add the advance offset of the glyph
position.x += static_cast<float>(myFont->GetGlyph(curChar, myCharacterSize, bold).Advance);
}
// Transform the position to global coordinates
position = GetTransform().TransformPoint(position);
return position;
}
////////////////////////////////////////////////////////////
FloatRect Text::GetRect() const
FloatRect Text::GetLocalBounds() const
{
UpdateRect();
FloatRect rect;
rect.Left = (myBaseRect.Left - GetOrigin().x) * GetScale().x + GetPosition().x;
rect.Top = (myBaseRect.Top - GetOrigin().y) * GetScale().y + GetPosition().y;
rect.Width = myBaseRect.Width * GetScale().x;
rect.Height = myBaseRect.Height * GetScale().y;
return rect;
return myBounds;
}
////////////////////////////////////////////////////////////
void Text::Render(RenderTarget&, Renderer& renderer) const
FloatRect Text::GetGlobalBounds() const
{
// No text or not font: nothing to render
if (!myFont || myString.IsEmpty())
return GetTransform().TransformRect(GetLocalBounds());
}
////////////////////////////////////////////////////////////
void Text::Draw(RenderTarget& target, RenderStates states) const
{
assert(myFont != NULL);
states.Transform *= GetTransform();
states.BlendMode = BlendAlpha; // alpha blending is mandatory for proper text rendering
states.Texture = &myFont->GetTexture(myCharacterSize);
target.Draw(myVertices, states);
}
////////////////////////////////////////////////////////////
void Text::UpdateGeometry()
{
assert(myFont != NULL);
// Clear the previous geometry
myVertices.Clear();
// No text: nothing to draw
if (myString.IsEmpty())
return;
// Bind the font texture
const Texture& texture = myFont->GetTexture(myCharacterSize);
renderer.SetTexture(&texture);
// Compute values related to the text style
bool bold = (myStyle & Bold) != 0;
bool underlined = (myStyle & Underlined) != 0;
float italic = (myStyle & Italic) ? 0.208f : 0.f; // 12 degrees
float underlineOffset = myCharacterSize * 0.1f;
float underlineThickness = myCharacterSize * (bold ? 0.1f : 0.07f);
// Computes values related to the text style
bool bold = (myStyle & Bold) != 0;
bool underlined = (myStyle & Underlined) != 0;
float italicCoeff = (myStyle & Italic) ? 0.208f : 0.f; // 12 degrees
float underlineOffset = myCharacterSize * 0.1f;
float underlineThickness = myCharacterSize * (bold ? 0.1f : 0.07f);
FloatRect underlineCoords = texture.GetTexCoords(IntRect(1, 1, 1, 1));
float underlineLeft = underlineCoords.Left;
float underlineTop = underlineCoords.Top;
float underlineRight = underlineCoords.Left + underlineCoords.Width;
float underlineBottom = underlineCoords.Top + underlineCoords.Height;
// Precompute the variables needed by the algorithm
float hspace = static_cast<float>(myFont->GetGlyph(L' ', myCharacterSize, bold).Advance);
float vspace = static_cast<float>(myFont->GetLineSpacing(myCharacterSize));
float x = 0.f;
float y = static_cast<float>(myCharacterSize);
// Initialize the rendering coordinates
float space = static_cast<float>(myFont->GetGlyph(L' ', myCharacterSize, bold).Advance);
float lineSpacing = static_cast<float>(myFont->GetLineSpacing(myCharacterSize));
float x = 0.f;
float y = static_cast<float>(myCharacterSize);
// Note:
// Here we use a Begin/End pair for each quad because
// the font's texture may change in a call to GetGlyph
// Draw one quad for each character
// Create one quad for each character
Uint32 prevChar = 0;
for (std::size_t i = 0; i < myString.GetSize(); ++i)
{
@ -231,44 +260,42 @@ void Text::Render(RenderTarget&, Renderer& renderer) const
float top = y + underlineOffset;
float bottom = top + underlineThickness;
renderer.Begin(Renderer::QuadList);
renderer.AddVertex(0, top, underlineLeft, underlineTop);
renderer.AddVertex(x, top, underlineRight, underlineTop);
renderer.AddVertex(x, bottom, underlineRight, underlineBottom);
renderer.AddVertex(0, bottom, underlineLeft, underlineBottom);
renderer.End();
myVertices.Append(Vertex(Vector2f(0, top), myColor, Vector2f(1, 1)));
myVertices.Append(Vertex(Vector2f(x, top), myColor, Vector2f(2, 1)));
myVertices.Append(Vertex(Vector2f(x, bottom), myColor, Vector2f(2, 2)));
myVertices.Append(Vertex(Vector2f(0, bottom), myColor, Vector2f(1, 2)));
}
// Handle special characters
switch (curChar)
{
case L' ' : x += space; continue;
case L'\t' : x += space * 4; continue;
case L'\n' : y += lineSpacing; x = 0; continue;
case L'\v' : y += lineSpacing * 4; continue;
case L' ' : x += hspace; continue;
case L'\t' : x += hspace * 4; continue;
case L'\n' : y += vspace; x = 0; continue;
case L'\v' : y += vspace * 4; continue;
}
// Extract the current glyph's description
const Glyph& glyph = myFont->GetGlyph(curChar, myCharacterSize, bold);
int advance = glyph.Advance;
const IntRect& bounds = glyph.Bounds;
FloatRect coords = texture.GetTexCoords(glyph.SubRect);
const Glyph& glyph = myFont->GetGlyph(curChar, myCharacterSize, bold);
int boundsRight = bounds.Left + bounds.Width;
int boundsBottom = bounds.Top + bounds.Height;
float coordsRight = coords.Left + coords.Width;
float coordsBottom = coords.Top + coords.Height;
int left = glyph.Bounds.Left;
int top = glyph.Bounds.Top;
int right = glyph.Bounds.Left + glyph.Bounds.Width;
int bottom = glyph.Bounds.Top + glyph.Bounds.Height;
// Draw a textured quad for the current character
renderer.Begin(Renderer::QuadList);
renderer.AddVertex(x + bounds.Left - italicCoeff * bounds.Top, y + bounds.Top, coords.Left, coords.Top);
renderer.AddVertex(x + boundsRight - italicCoeff * bounds.Top, y + bounds.Top, coordsRight, coords.Top);
renderer.AddVertex(x + boundsRight - italicCoeff * boundsBottom, y + boundsBottom, coordsRight, coordsBottom);
renderer.AddVertex(x + bounds.Left - italicCoeff * boundsBottom, y + boundsBottom, coords.Left, coordsBottom);
renderer.End();
float u1 = static_cast<float>(glyph.TextureRect.Left);
float v1 = static_cast<float>(glyph.TextureRect.Top);
float u2 = static_cast<float>(glyph.TextureRect.Left + glyph.TextureRect.Width);
float v2 = static_cast<float>(glyph.TextureRect.Top + glyph.TextureRect.Height);
// Add a quad for the current character
myVertices.Append(Vertex(Vector2f(x + left - italic * top, y + top), myColor, Vector2f(u1, v1)));
myVertices.Append(Vertex(Vector2f(x + right - italic * top, y + top), myColor, Vector2f(u2, v1)));
myVertices.Append(Vertex(Vector2f(x + right - italic * bottom, y + bottom), myColor, Vector2f(u2, v2)));
myVertices.Append(Vertex(Vector2f(x + left - italic * bottom, y + bottom), myColor, Vector2f(u1, v2)));
// Advance to the next character
x += advance;
x += glyph.Advance;
}
// If we're using the underlined style, add the last line
@ -277,113 +304,14 @@ void Text::Render(RenderTarget&, Renderer& renderer) const
float top = y + underlineOffset;
float bottom = top + underlineThickness;
renderer.Begin(Renderer::QuadList);
renderer.AddVertex(0, top, underlineLeft, underlineTop);
renderer.AddVertex(x, top, underlineRight, underlineTop);
renderer.AddVertex(x, bottom, underlineRight, underlineBottom);
renderer.AddVertex(0, bottom, underlineLeft, underlineBottom);
renderer.End();
}
}
////////////////////////////////////////////////////////////
void Text::UpdateRect() const
{
if (myRectUpdated)
return;
// Reset the previous states
myRectUpdated = true;
myBaseRect = FloatRect(0, 0, 0, 0);
// No text or not font: empty box
if (!myFont || myString.IsEmpty())
return;
// Initial values
bool bold = (myStyle & Bold) != 0;
float charSize = static_cast<float>(myCharacterSize);
float space = static_cast<float>(myFont->GetGlyph(L' ', myCharacterSize, bold).Advance);
float lineSpacing = static_cast<float>(myFont->GetLineSpacing(myCharacterSize));
float curWidth = 0;
float curHeight = 0;
float width = 0;
float height = 0;
Uint32 prevChar = 0;
// Go through each character
for (std::size_t i = 0; i < myString.GetSize(); ++i)
{
Uint32 curChar = myString[i];
// Apply the kerning offset
curWidth += static_cast<float>(myFont->GetKerning(prevChar, curChar, myCharacterSize));
prevChar = curChar;
// Handle special characters
switch (curChar)
{
case L' ' :
curWidth += space;
continue;
case L'\t' :
curWidth += space * 4;
continue;
case L'\v' :
height += lineSpacing * 4;
curHeight = 0;
continue;
case L'\n' :
height += lineSpacing;
curHeight = 0;
if (curWidth > width)
width = curWidth;
curWidth = 0;
continue;
}
// Extract the current glyph's description
const Glyph& curGlyph = myFont->GetGlyph(curChar, myCharacterSize, bold);
// Advance to the next character
curWidth += static_cast<float>(curGlyph.Advance);
// Update the maximum height
float charHeight = charSize + curGlyph.Bounds.Top + curGlyph.Bounds.Height;
if (charHeight > curHeight)
curHeight = charHeight;
myVertices.Append(Vertex(Vector2f(0, top), myColor, Vector2f(1, 1)));
myVertices.Append(Vertex(Vector2f(x, top), myColor, Vector2f(2, 1)));
myVertices.Append(Vertex(Vector2f(x, bottom), myColor, Vector2f(2, 2)));
myVertices.Append(Vertex(Vector2f(0, bottom), myColor, Vector2f(1, 2)));
}
// Update the last line
if (curWidth > width)
width = curWidth;
height += curHeight;
// Add a slight width if we're using the italic style
if (myStyle & Italic)
{
width += 0.208f * charSize;
}
// Add a slight height if we're using the underlined style
if (myStyle & Underlined)
{
float underlineOffset = myCharacterSize * 0.1f;
float underlineThickness = myCharacterSize * (bold ? 0.1f : 0.07f);
if (curHeight < charSize + underlineOffset + underlineThickness)
height += underlineOffset + underlineThickness;
}
// Finally update the rectangle
myBaseRect.Left = 0;
myBaseRect.Top = 0;
myBaseRect.Width = width;
myBaseRect.Height = height;
// Recompute the bounding rectangle
myBounds = myVertices.GetBounds();
}
} // namespace sf

View file

@ -28,12 +28,33 @@
#include <SFML/Graphics/Texture.hpp>
#include <SFML/Graphics/Image.hpp>
#include <SFML/Graphics/GLCheck.hpp>
#include <SFML/Graphics/TextureSaver.hpp>
#include <SFML/Window/Window.hpp>
#include <SFML/System/Mutex.hpp>
#include <SFML/System/Lock.hpp>
#include <SFML/System/Err.hpp>
#include <cassert>
#include <cstring>
////////////////////////////////////////////////////////////
// Private data
////////////////////////////////////////////////////////////
namespace
{
// Thread-safe unique identifier generator,
// is used for states cache (see RenderTarget)
sf::Uint64 GetUniqueId()
{
static sf::Uint64 id = 1; // start at 1, zero is "no texture"
static sf::Mutex mutex;
sf::Lock lock(mutex);
return id++;
}
}
namespace sf
{
////////////////////////////////////////////////////////////
@ -44,7 +65,9 @@ myTextureWidth (0),
myTextureHeight(0),
myTexture (0),
myIsSmooth (false),
myPixelsFlipped(false)
myIsRepeated (false),
myPixelsFlipped(false),
myCacheId (GetUniqueId())
{
}
@ -58,7 +81,9 @@ myTextureWidth (0),
myTextureHeight(0),
myTexture (0),
myIsSmooth (copy.myIsSmooth),
myPixelsFlipped(false)
myIsRepeated (copy.myIsRepeated),
myPixelsFlipped(false),
myCacheId (GetUniqueId())
{
if (copy.myTexture)
LoadFromImage(copy.CopyToImage());
@ -121,13 +146,17 @@ bool Texture::Create(unsigned int width, unsigned int height)
myTexture = static_cast<unsigned int>(texture);
}
// Make sure that the current texture binding will be preserved
priv::TextureSaver save;
// Initialize the texture
GLCheck(glBindTexture(GL_TEXTURE_2D, myTexture));
GLCheck(glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, myTextureWidth, myTextureHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL));
GLCheck(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE));
GLCheck(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE));
GLCheck(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, myIsRepeated ? GL_REPEAT : GL_CLAMP_TO_EDGE));
GLCheck(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, myIsRepeated ? GL_REPEAT : GL_CLAMP_TO_EDGE));
GLCheck(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, myIsSmooth ? GL_LINEAR : GL_NEAREST));
GLCheck(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, myIsSmooth ? GL_LINEAR : GL_NEAREST));
myCacheId = GetUniqueId();
return true;
}
@ -193,6 +222,9 @@ bool Texture::LoadFromImage(const Image& image, const IntRect& area)
// Create the texture and upload the pixels
if (Create(rectangle.Width, rectangle.Height))
{
// Make sure that the current texture binding will be preserved
priv::TextureSaver save;
// Copy the pixels to the texture, row by row
const Uint8* pixels = image.GetPixelsPtr() + 4 * (rectangle.Left + (width * rectangle.Top));
GLCheck(glBindTexture(GL_TEXTURE_2D, myTexture));
@ -235,6 +267,9 @@ Image Texture::CopyToImage() const
EnsureGlContext();
// Make sure that the current texture binding will be preserved
priv::TextureSaver save;
// Create an array of pixels
std::vector<Uint8> pixels(myWidth * myHeight * 4);
@ -300,10 +335,14 @@ void Texture::Update(const Uint8* pixels, unsigned int width, unsigned int heigh
{
EnsureGlContext();
// Make sure that the current texture binding will be preserved
priv::TextureSaver save;
// Copy pixels from the given array to the texture
GLCheck(glBindTexture(GL_TEXTURE_2D, myTexture));
GLCheck(glTexSubImage2D(GL_TEXTURE_2D, 0, x, y, width, height, GL_RGBA, GL_UNSIGNED_BYTE, pixels));
myPixelsFlipped = false;
myCacheId = GetUniqueId();
}
}
@ -338,18 +377,54 @@ void Texture::Update(const Window& window, unsigned int x, unsigned int y)
if (myTexture && window.SetActive(true))
{
// Make sure that the current texture binding will be preserved
priv::TextureSaver save;
// Copy pixels from the back-buffer to the texture
GLCheck(glBindTexture(GL_TEXTURE_2D, myTexture));
GLCheck(glCopyTexSubImage2D(GL_TEXTURE_2D, 0, x, y, 0, 0, window.GetWidth(), window.GetHeight()));
myPixelsFlipped = true;
myCacheId = GetUniqueId();
}
}
////////////////////////////////////////////////////////////
void Texture::Bind() const
void Texture::Bind(CoordinateType coordinateType) const
{
// Bind the texture
GLCheck(glBindTexture(GL_TEXTURE_2D, myTexture));
// Check if we need to define a special texture matrix
if ((coordinateType == Pixels) || myPixelsFlipped)
{
GLfloat matrix[16] = {1.f, 0.f, 0.f, 0.f,
0.f, 1.f, 0.f, 0.f,
0.f, 0.f, 1.f, 0.f,
0.f, 0.f, 0.f, 1.f};
// If non-normalized coordinates (= pixels) are requested, we need to
// setup scale factors that convert the range [0 .. size] to [0 .. 1]
if (coordinateType == Pixels)
{
matrix[0] = 1.f / myTextureWidth;
matrix[5] = 1.f / myTextureHeight;
}
// If pixels are flipped we must invert the Y axis
if (myPixelsFlipped)
{
matrix[5] = -matrix[5];
matrix[13] = static_cast<float>(myHeight / myTextureHeight);
}
// Load the matrix
GLCheck(glMatrixMode(GL_TEXTURE));
GLCheck(glLoadMatrixf(matrix));
// Go back to model-view mode (sf::RenderTarget relies on it)
GLCheck(glMatrixMode(GL_MODELVIEW));
}
}
@ -364,6 +439,9 @@ void Texture::SetSmooth(bool smooth)
{
EnsureGlContext();
// Make sure that the current texture binding will be preserved
priv::TextureSaver save;
GLCheck(glBindTexture(GL_TEXTURE_2D, myTexture));
GLCheck(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, myIsSmooth ? GL_LINEAR : GL_NEAREST));
GLCheck(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, myIsSmooth ? GL_LINEAR : GL_NEAREST));
@ -380,32 +458,31 @@ bool Texture::IsSmooth() const
////////////////////////////////////////////////////////////
FloatRect Texture::GetTexCoords(const IntRect& rect) const
void Texture::SetRepeated(bool repeated)
{
if ((myTextureWidth != 0) && (myTextureHeight != 0))
if (repeated != myIsRepeated)
{
float width = static_cast<float>(myTextureWidth);
float height = static_cast<float>(myTextureHeight);
myIsRepeated = repeated;
if (myPixelsFlipped)
if (myTexture)
{
return FloatRect( rect.Left / width,
(myHeight - rect.Top) / height,
rect.Width / width,
-rect.Height / height);
}
else
{
return FloatRect(rect.Left / width,
rect.Top / height,
rect.Width / width,
rect.Height / height);
EnsureGlContext();
// Make sure that the current texture binding will be preserved
priv::TextureSaver save;
GLCheck(glBindTexture(GL_TEXTURE_2D, myTexture));
GLCheck(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, myIsRepeated ? GL_REPEAT : GL_CLAMP_TO_EDGE));
GLCheck(glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, myIsRepeated ? GL_REPEAT : GL_CLAMP_TO_EDGE));
}
}
else
{
return FloatRect(0, 0, 0, 0);
}
}
////////////////////////////////////////////////////////////
bool Texture::IsRepeated() const
{
return myIsRepeated;
}
@ -432,7 +509,9 @@ Texture& Texture::operator =(const Texture& right)
std::swap(myTextureHeight, temp.myTextureHeight);
std::swap(myTexture, temp.myTexture);
std::swap(myIsSmooth, temp.myIsSmooth);
std::swap(myIsRepeated, temp.myIsRepeated);
std::swap(myPixelsFlipped, temp.myPixelsFlipped);
myCacheId = GetUniqueId();
return *this;
}

View file

@ -1,40 +1,50 @@
////////////////////////////////////////////////////////////
//
// SFML - Simple and Fast Multimedia Library
// Copyright (C) 2007-2009 Laurent Gomila (laurent.gom@gmail.com)
//
// This software is provided 'as-is', without any express or implied warranty.
// In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it freely,
// subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented;
// you must not claim that you wrote the original software.
// If you use this software in a product, an acknowledgment
// in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such,
// and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
//
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// Headers
////////////////////////////////////////////////////////////
#include <SFML/Graphics/Matrix3.hpp>
namespace sf
{
////////////////////////////////////////////////////////////
// Static member data
////////////////////////////////////////////////////////////
const Matrix3 Matrix3::Identity(1, 0, 0,
0, 1, 0,
0, 0, 1);
} // namespace sf
////////////////////////////////////////////////////////////
//
// SFML - Simple and Fast Multimedia Library
// Copyright (C) 2007-2009 Laurent Gomila (laurent.gom@gmail.com)
//
// This software is provided 'as-is', without any express or implied warranty.
// In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it freely,
// subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented;
// you must not claim that you wrote the original software.
// If you use this software in a product, an acknowledgment
// in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such,
// and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
//
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// Headers
////////////////////////////////////////////////////////////
#include <SFML/Graphics/TextureSaver.hpp>
namespace sf
{
namespace priv
{
////////////////////////////////////////////////////////////
TextureSaver::TextureSaver()
{
GLCheck(glGetIntegerv(GL_TEXTURE_BINDING_2D, &myTextureBinding));
}
////////////////////////////////////////////////////////////
TextureSaver::~TextureSaver()
{
GLCheck(glBindTexture(GL_TEXTURE_2D, myTextureBinding));
}
} // namespace priv
} // namespace sf

View file

@ -0,0 +1,75 @@
////////////////////////////////////////////////////////////
//
// SFML - Simple and Fast Multimedia Library
// Copyright (C) 2007-2009 Laurent Gomila (laurent.gom@gmail.com)
//
// This software is provided 'as-is', without any express or implied warranty.
// In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it freely,
// subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented;
// you must not claim that you wrote the original software.
// If you use this software in a product, an acknowledgment
// in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such,
// and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
//
////////////////////////////////////////////////////////////
#ifndef SFML_TEXTURESAVER_HPP
#define SFML_TEXTURESAVER_HPP
////////////////////////////////////////////////////////////
// Headers
////////////////////////////////////////////////////////////
#include <SFML/Graphics/GLCheck.hpp>
namespace sf
{
namespace priv
{
////////////////////////////////////////////////////////////
/// \brief Automatic wrapper for saving and restoring the current texture binding
///
////////////////////////////////////////////////////////////
class TextureSaver
{
public :
////////////////////////////////////////////////////////////
/// \brief Default constructor
///
/// The current texture binding is saved.
///
////////////////////////////////////////////////////////////
TextureSaver();
////////////////////////////////////////////////////////////
/// \brief Destructor
///
/// The previous texture binding is restored.
///
////////////////////////////////////////////////////////////
~TextureSaver();
private :
////////////////////////////////////////////////////////////
// Member data
////////////////////////////////////////////////////////////
GLint myTextureBinding; ///< Texture binding to restore
};
} // namespace priv
} // namespace sf
#endif // SFML_TEXTURESAVER_HPP

View file

@ -0,0 +1,270 @@
////////////////////////////////////////////////////////////
//
// SFML - Simple and Fast Multimedia Library
// Copyright (C) 2007-2009 Laurent Gomila (laurent.gom@gmail.com)
//
// This software is provided 'as-is', without any express or implied warranty.
// In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it freely,
// subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented;
// you must not claim that you wrote the original software.
// If you use this software in a product, an acknowledgment
// in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such,
// and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
//
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// Headers
////////////////////////////////////////////////////////////
#include <SFML/Graphics/Transform.hpp>
#include <cmath>
namespace sf
{
////////////////////////////////////////////////////////////
const Transform Transform::Identity;
////////////////////////////////////////////////////////////
Transform::Transform()
{
// Identity matrix
myMatrix[0] = 1.f; myMatrix[4] = 0.f; myMatrix[8] = 0.f; myMatrix[12] = 0.f;
myMatrix[1] = 0.f; myMatrix[5] = 1.f; myMatrix[9] = 0.f; myMatrix[13] = 0.f;
myMatrix[2] = 0.f; myMatrix[6] = 0.f; myMatrix[10] = 1.f; myMatrix[14] = 0.f;
myMatrix[3] = 0.f; myMatrix[7] = 0.f; myMatrix[11] = 0.f; myMatrix[15] = 1.f;
}
////////////////////////////////////////////////////////////
Transform::Transform(float a00, float a01, float a02,
float a10, float a11, float a12,
float a20, float a21, float a22)
{
myMatrix[0] = a00; myMatrix[4] = a01; myMatrix[8] = 0.f; myMatrix[12] = a02;
myMatrix[1] = a10; myMatrix[5] = a11; myMatrix[9] = 0.f; myMatrix[13] = a12;
myMatrix[2] = 0.f; myMatrix[6] = 0.f; myMatrix[10] = 1.f; myMatrix[14] = 0.f;
myMatrix[3] = a20; myMatrix[7] = a21; myMatrix[11] = 0.f; myMatrix[15] = a22;
}
////////////////////////////////////////////////////////////
const float* Transform::GetMatrix() const
{
return myMatrix;
}
////////////////////////////////////////////////////////////
Transform Transform::GetInverse() const
{
// Compute the determinant
float det = myMatrix[0] * (myMatrix[15] * myMatrix[5] - myMatrix[7] * myMatrix[13]) -
myMatrix[1] * (myMatrix[15] * myMatrix[4] - myMatrix[7] * myMatrix[12]) +
myMatrix[3] * (myMatrix[13] * myMatrix[4] - myMatrix[5] * myMatrix[12]);
// Compute the inverse if the determinant is not zero
// (don't use an epsilon because the determinant may *really* be tiny)
if (det != 0.f)
{
return Transform( (myMatrix[15] * myMatrix[5] - myMatrix[7] * myMatrix[13]) / det,
-(myMatrix[15] * myMatrix[4] - myMatrix[7] * myMatrix[12]) / det,
(myMatrix[13] * myMatrix[4] - myMatrix[5] * myMatrix[12]) / det,
-(myMatrix[15] * myMatrix[1] - myMatrix[3] * myMatrix[13]) / det,
(myMatrix[15] * myMatrix[0] - myMatrix[3] * myMatrix[12]) / det,
-(myMatrix[13] * myMatrix[0] - myMatrix[1] * myMatrix[12]) / det,
(myMatrix[7] * myMatrix[1] - myMatrix[3] * myMatrix[5]) / det,
-(myMatrix[7] * myMatrix[0] - myMatrix[3] * myMatrix[4]) / det,
(myMatrix[5] * myMatrix[0] - myMatrix[1] * myMatrix[4]) / det);
}
else
{
return Identity;
}
}
////////////////////////////////////////////////////////////
Vector2f Transform::TransformPoint(float x, float y) const
{
return Vector2f(myMatrix[0] * x + myMatrix[4] * y + myMatrix[12],
myMatrix[1] * x + myMatrix[5] * y + myMatrix[13]);
}
////////////////////////////////////////////////////////////
Vector2f Transform::TransformPoint(const Vector2f& point) const
{
return TransformPoint(point.x, point.y);
}
////////////////////////////////////////////////////////////
FloatRect Transform::TransformRect(const FloatRect& rectangle) const
{
// Transform the 4 corners of the rectangle
const Vector2f points[] =
{
TransformPoint(rectangle.Left, rectangle.Top),
TransformPoint(rectangle.Left, rectangle.Top + rectangle.Height),
TransformPoint(rectangle.Left + rectangle.Width, rectangle.Top),
TransformPoint(rectangle.Left + rectangle.Width, rectangle.Top + rectangle.Height)
};
// Compute the bounding rectangle of the transformed points
float left = points[0].x;
float top = points[0].y;
float right = points[0].x;
float bottom = points[0].y;
for (int i = 1; i < 4; ++i)
{
if (points[i].x < left) left = points[i].x;
else if (points[i].x > right) right = points[i].x;
if (points[i].y < top) top = points[i].y;
else if (points[i].y > bottom) bottom = points[i].y;
}
return FloatRect(left, top, right - left, bottom - top);
}
////////////////////////////////////////////////////////////
Transform Transform::Combine(const Transform& transform) const
{
const float* a = myMatrix;
const float* b = transform.myMatrix;
return Transform(a[0] * b[0] + a[4] * b[1] + a[12] * b[3],
a[0] * b[4] + a[4] * b[5] + a[12] * b[7],
a[0] * b[12] + a[4] * b[13] + a[12] * b[15],
a[1] * b[0] + a[5] * b[1] + a[13] * b[3],
a[1] * b[4] + a[5] * b[5] + a[13] * b[7],
a[1] * b[12] + a[5] * b[13] + a[13] * b[15],
a[3] * b[0] + a[7] * b[1] + a[15] * b[3],
a[3] * b[4] + a[7] * b[5] + a[15] * b[7],
a[3] * b[12] + a[7] * b[13] + a[15] * b[15]);
}
////////////////////////////////////////////////////////////
Transform& Transform::Translate(float x, float y)
{
Transform translation(1, 0, x,
0, 1, y,
0, 0, 1);
return *this = Combine(translation);
}
////////////////////////////////////////////////////////////
Transform& Transform::Translate(const Vector2f& offset)
{
return Translate(offset.x, offset.y);
}
////////////////////////////////////////////////////////////
Transform& Transform::Rotate(float angle)
{
float rad = angle * 3.141592654f / 180.f;
float cos = std::cos(rad);
float sin = std::sin(rad);
Transform rotation(cos, -sin, 0,
sin, cos, 0,
0, 0, 1);
return *this = Combine(rotation);
}
////////////////////////////////////////////////////////////
Transform& Transform::Rotate(float angle, float centerX, float centerY)
{
float rad = angle * 3.141592654f / 180.f;
float cos = std::cos(rad);
float sin = std::sin(rad);
Transform rotation(cos, -sin, centerX * (1 - cos) + centerY * sin,
sin, cos, centerY * (1 - cos) - centerX * sin,
0, 0, 1);
return *this = Combine(rotation);
}
////////////////////////////////////////////////////////////
Transform& Transform::Rotate(float angle, const Vector2f& center)
{
return Rotate(angle, center.x, center.y);
}
////////////////////////////////////////////////////////////
Transform& Transform::Scale(float scaleX, float scaleY)
{
Transform scaling(scaleX, 0, 0,
0, scaleY, 0,
0, 0, 1);
return *this = Combine(scaling);
}
////////////////////////////////////////////////////////////
Transform& Transform::Scale(float scaleX, float scaleY, float centerX, float centerY)
{
Transform scaling(scaleX, 0, centerX * (1 - scaleX),
0, scaleY, centerY * (1 - scaleY),
0, 0, 1);
return *this = Combine(scaling);
}
////////////////////////////////////////////////////////////
Transform& Transform::Scale(const Vector2f& factors)
{
return Scale(factors.x, factors.y);
}
////////////////////////////////////////////////////////////
Transform& Transform::Scale(const Vector2f& factors, const Vector2f& center)
{
return Scale(factors.x, factors.y, center.x, center.y);
}
////////////////////////////////////////////////////////////
Transform operator *(const Transform& left, const Transform& right)
{
return left.Combine(right);
}
////////////////////////////////////////////////////////////
Transform& operator *=(Transform& left, const Transform& right)
{
return left = left.Combine(right);
}
////////////////////////////////////////////////////////////
Vector2f operator *(const Transform& left, const Vector2f& right)
{
return left.TransformPoint(right);
}
} // namespace sf

View file

@ -0,0 +1,216 @@
////////////////////////////////////////////////////////////
//
// SFML - Simple and Fast Multimedia Library
// Copyright (C) 2007-2009 Laurent Gomila (laurent.gom@gmail.com)
//
// This software is provided 'as-is', without any express or implied warranty.
// In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it freely,
// subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented;
// you must not claim that you wrote the original software.
// If you use this software in a product, an acknowledgment
// in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such,
// and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
//
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// Headers
////////////////////////////////////////////////////////////
#include <SFML/Graphics/Transformable.hpp>
#include <cmath>
namespace sf
{
////////////////////////////////////////////////////////////
Transformable::Transformable() :
myOrigin (0, 0),
myPosition (0, 0),
myRotation (0),
myScale (1, 1),
myTransform (),
myTransformNeedUpdate (true),
myInverseTransform (),
myInverseTransformNeedUpdate(true)
{
}
////////////////////////////////////////////////////////////
Transformable::~Transformable()
{
}
////////////////////////////////////////////////////////////
void Transformable::SetPosition(float x, float y)
{
myPosition.x = x;
myPosition.y = y;
myTransformNeedUpdate = true;
myInverseTransformNeedUpdate = true;
}
////////////////////////////////////////////////////////////
void Transformable::SetPosition(const Vector2f& position)
{
SetPosition(position.x, position.y);
}
////////////////////////////////////////////////////////////
void Transformable::SetRotation(float angle)
{
myRotation = angle;
myTransformNeedUpdate = true;
myInverseTransformNeedUpdate = true;
}
////////////////////////////////////////////////////////////
void Transformable::SetScale(float factorX, float factorY)
{
myScale.x = factorX;
myScale.y = factorY;
myTransformNeedUpdate = true;
myInverseTransformNeedUpdate = true;
}
////////////////////////////////////////////////////////////
void Transformable::SetScale(const Vector2f& factors)
{
SetScale(factors.x, factors.y);
}
////////////////////////////////////////////////////////////
void Transformable::SetOrigin(float x, float y)
{
myOrigin.x = x;
myOrigin.y = y;
myTransformNeedUpdate = true;
myInverseTransformNeedUpdate = true;
}
////////////////////////////////////////////////////////////
void Transformable::SetOrigin(const Vector2f& origin)
{
SetOrigin(origin.x, origin.y);
}
////////////////////////////////////////////////////////////
const Vector2f& Transformable::GetPosition() const
{
return myPosition;
}
////////////////////////////////////////////////////////////
float Transformable::GetRotation() const
{
return myRotation;
}
////////////////////////////////////////////////////////////
const Vector2f& Transformable::GetScale() const
{
return myScale;
}
////////////////////////////////////////////////////////////
const Vector2f& Transformable::GetOrigin() const
{
return myOrigin;
}
////////////////////////////////////////////////////////////
void Transformable::Move(float offsetX, float offsetY)
{
SetPosition(myPosition.x + offsetX, myPosition.y + offsetY);
}
////////////////////////////////////////////////////////////
void Transformable::Move(const Vector2f& offset)
{
SetPosition(myPosition.x + offset.x, myPosition.y + offset.y);
}
////////////////////////////////////////////////////////////
void Transformable::Rotate(float angle)
{
SetRotation(myRotation + angle);
}
////////////////////////////////////////////////////////////
void Transformable::Scale(float factorX, float factorY)
{
SetScale(myScale.x * factorX, myScale.y * factorY);
}
////////////////////////////////////////////////////////////
void Transformable::Scale(const Vector2f& factor)
{
SetScale(myScale.x * factor.x, myScale.y * factor.y);
}
////////////////////////////////////////////////////////////
const Transform& Transformable::GetTransform() const
{
// Recompute the combined transform if needed
if (myTransformNeedUpdate)
{
float angle = -myRotation * 3.141592654f / 180.f;
float cosine = static_cast<float>(std::cos(angle));
float sine = static_cast<float>(std::sin(angle));
float sxc = myScale.x * cosine;
float syc = myScale.y * cosine;
float sxs = myScale.x * sine;
float sys = myScale.y * sine;
float tx = -myOrigin.x * sxc - myOrigin.y * sys + myPosition.x;
float ty = myOrigin.x * sxs - myOrigin.y * syc + myPosition.y;
myTransform = Transform( sxc, sys, tx,
-sxs, syc, ty,
0.f, 0.f, 1.f);
myTransformNeedUpdate = false;
}
return myTransform;
}
////////////////////////////////////////////////////////////
const Transform& Transformable::GetInverseTransform() const
{
// Recompute the inverse transform if needed
if (myInverseTransformNeedUpdate)
{
myInverseTransform = GetTransform().GetInverse();
myInverseTransformNeedUpdate = false;
}
return myInverseTransform;
}
} // namespace sf

View file

@ -0,0 +1,77 @@
////////////////////////////////////////////////////////////
//
// SFML - Simple and Fast Multimedia Library
// Copyright (C) 2007-2009 Laurent Gomila (laurent.gom@gmail.com)
//
// This software is provided 'as-is', without any express or implied warranty.
// In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it freely,
// subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented;
// you must not claim that you wrote the original software.
// If you use this software in a product, an acknowledgment
// in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such,
// and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
//
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// Headers
////////////////////////////////////////////////////////////
#include <SFML/Graphics/Vertex.hpp>
namespace sf
{
////////////////////////////////////////////////////////////
Vertex::Vertex() :
Position (0, 0),
Color (255, 255, 255),
TexCoords(0, 0)
{
}
////////////////////////////////////////////////////////////
Vertex::Vertex(const Vector2f& position) :
Position (position),
Color (255, 255, 255),
TexCoords(0, 0)
{
}
////////////////////////////////////////////////////////////
Vertex::Vertex(const Vector2f& position, const sf::Color& color) :
Position (position),
Color (color),
TexCoords(0, 0)
{
}
////////////////////////////////////////////////////////////
Vertex::Vertex(const Vector2f& position, const Vector2f& texCoords) :
Position (position),
Color (255, 255, 255),
TexCoords(texCoords)
{
}
////////////////////////////////////////////////////////////
Vertex::Vertex(const Vector2f& position, const sf::Color& color, const Vector2f& texCoords) :
Position (position),
Color (color),
TexCoords(texCoords)
{
}
} // namespace sf

View file

@ -0,0 +1,150 @@
////////////////////////////////////////////////////////////
//
// SFML - Simple and Fast Multimedia Library
// Copyright (C) 2007-2009 Laurent Gomila (laurent.gom@gmail.com)
//
// This software is provided 'as-is', without any express or implied warranty.
// In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it freely,
// subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented;
// you must not claim that you wrote the original software.
// If you use this software in a product, an acknowledgment
// in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such,
// and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.
//
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// Headers
////////////////////////////////////////////////////////////
#include <SFML/Graphics/VertexArray.hpp>
#include <SFML/Graphics/RenderTarget.hpp>
namespace sf
{
////////////////////////////////////////////////////////////
VertexArray::VertexArray() :
myVertices (),
myPrimitiveType(Points)
{
}
////////////////////////////////////////////////////////////
VertexArray::VertexArray(PrimitiveType type, unsigned int verticesCount) :
myVertices (verticesCount),
myPrimitiveType(type)
{
}
////////////////////////////////////////////////////////////
unsigned int VertexArray::GetVerticesCount() const
{
return myVertices.size();
}
////////////////////////////////////////////////////////////
Vertex& VertexArray::operator [](unsigned int index)
{
return myVertices[index];
}
////////////////////////////////////////////////////////////
const Vertex& VertexArray::operator [](unsigned int index) const
{
return myVertices[index];
}
////////////////////////////////////////////////////////////
void VertexArray::Clear()
{
myVertices.clear();
}
////////////////////////////////////////////////////////////
void VertexArray::Resize(unsigned int verticesCount)
{
myVertices.resize(verticesCount);
}
////////////////////////////////////////////////////////////
void VertexArray::Append(const Vertex& vertex)
{
myVertices.push_back(vertex);
}
////////////////////////////////////////////////////////////
void VertexArray::SetPrimitiveType(PrimitiveType type)
{
myPrimitiveType = type;
}
////////////////////////////////////////////////////////////
PrimitiveType VertexArray::GetPrimitiveType() const
{
return myPrimitiveType;
}
////////////////////////////////////////////////////////////
FloatRect VertexArray::GetBounds() const
{
if (!myVertices.empty())
{
float left = myVertices[0].Position.x;
float top = myVertices[0].Position.y;
float right = myVertices[0].Position.x;
float bottom = myVertices[0].Position.y;
for (std::size_t i = 0; i < myVertices.size(); ++i)
{
Vector2f position = myVertices[i].Position;
// Update left and right
if (position.x < left)
left = position.x;
else if (position.x > right)
right = position.x;
// Update top and bottom
if (position.y < top)
top = position.y;
else if (position.y > bottom)
bottom = position.y;
}
return FloatRect(left, top, right - left, bottom - top);
}
else
{
// Array is empty
return FloatRect();
}
}
////////////////////////////////////////////////////////////
void VertexArray::Draw(RenderTarget& target, RenderStates states) const
{
if (!myVertices.empty())
target.Draw(&myVertices[0], myVertices.size(), myPrimitiveType, states);
}
} // namespace sf

View file

@ -26,18 +26,19 @@
// Headers
////////////////////////////////////////////////////////////
#include <SFML/Graphics/View.hpp>
#include <cmath>
namespace sf
{
////////////////////////////////////////////////////////////
View::View() :
myCenter (),
mySize (),
myRotation (0),
myViewport (0, 0, 1, 1),
myMatrixUpdated (false),
myInvMatrixUpdated(false)
myCenter (),
mySize (),
myRotation (0),
myViewport (0, 0, 1, 1),
myTransformUpdated (false),
myInvTransformUpdated(false)
{
Reset(FloatRect(0, 0, 1000, 1000));
}
@ -45,12 +46,12 @@ myInvMatrixUpdated(false)
////////////////////////////////////////////////////////////
View::View(const FloatRect& rectangle) :
myCenter (),
mySize (),
myRotation (0),
myViewport (0, 0, 1, 1),
myMatrixUpdated (false),
myInvMatrixUpdated(false)
myCenter (),
mySize (),
myRotation (0),
myViewport (0, 0, 1, 1),
myTransformUpdated (false),
myInvTransformUpdated(false)
{
Reset(rectangle);
}
@ -58,12 +59,12 @@ myInvMatrixUpdated(false)
////////////////////////////////////////////////////////////
View::View(const Vector2f& center, const Vector2f& size) :
myCenter (center),
mySize (size),
myRotation (0),
myViewport (0, 0, 1, 1),
myMatrixUpdated (false),
myInvMatrixUpdated(false)
myCenter (center),
mySize (size),
myRotation (0),
myViewport (0, 0, 1, 1),
myTransformUpdated (false),
myInvTransformUpdated(false)
{
}
@ -74,8 +75,8 @@ void View::SetCenter(float x, float y)
myCenter.x = x;
myCenter.y = y;
myMatrixUpdated = false;
myInvMatrixUpdated = false;
myTransformUpdated = false;
myInvTransformUpdated = false;
}
@ -92,8 +93,8 @@ void View::SetSize(float width, float height)
mySize.x = width;
mySize.y = height;
myMatrixUpdated = false;
myInvMatrixUpdated = false;
myTransformUpdated = false;
myInvTransformUpdated = false;
}
@ -111,8 +112,8 @@ void View::SetRotation(float angle)
if (myRotation < 0)
myRotation += 360.f;
myMatrixUpdated = false;
myInvMatrixUpdated = false;
myTransformUpdated = false;
myInvTransformUpdated = false;
}
@ -132,8 +133,8 @@ void View::Reset(const FloatRect& rectangle)
mySize.y = rectangle.Height;
myRotation = 0;
myMatrixUpdated = false;
myInvMatrixUpdated = false;
myTransformUpdated = false;
myInvTransformUpdated = false;
}
@ -194,30 +195,46 @@ void View::Zoom(float factor)
////////////////////////////////////////////////////////////
const Matrix3& View::GetMatrix() const
const Transform& View::GetTransform() const
{
// Recompute the matrix if needed
if (!myMatrixUpdated)
if (!myTransformUpdated)
{
myMatrix = Matrix3::Projection(myCenter, mySize, myRotation);
myMatrixUpdated = true;
// Rotation components
float angle = myRotation * 3.141592654f / 180.f;
float cosine = static_cast<float>(std::cos(angle));
float sine = static_cast<float>(std::sin(angle));
float tx = -myCenter.x * cosine - myCenter.y * sine + myCenter.x;
float ty = myCenter.x * sine - myCenter.y * cosine + myCenter.y;
// Projection components
float a = 2.f / mySize.x;
float b = -2.f / mySize.y;
float c = -a * myCenter.x;
float d = -b * myCenter.y;
// Rebuild the projection matrix
myTransform = Transform( a * cosine, a * sine, a * tx + c,
-b * sine, b * cosine, b * ty + d,
0.f, 0.f, 1.f);
myTransformUpdated = true;
}
return myMatrix;
return myTransform;
}
////////////////////////////////////////////////////////////
const Matrix3& View::GetInverseMatrix() const
const Transform& View::GetInverseTransform() const
{
// Recompute the matrix if needed
if (!myInvMatrixUpdated)
if (!myInvTransformUpdated)
{
myInverseMatrix = GetMatrix().GetInverse();
myInvMatrixUpdated = true;
myInverseTransform = GetTransform().GetInverse();
myInvTransformUpdated = true;
}
return myInverseMatrix;
return myInverseTransform;
}
} // namespace sf