###################################################################### # By starting at the top of the triangle below and moving to adjacent numbers on the # row below, the maximum total from top to bottom is 23. # # 3 # 7 4 # 2 4 6 # 8 5 9 3 # # That is, 3 + 7 + 4 + 9 = 23. # # Find the maximum total from top to bottom of the triangle below: # # 75 # 95 64 # 17 47 82 # 18 35 87 10 # 20 04 82 47 65 # 19 01 23 75 03 34 # 88 02 77 73 07 63 67 # 99 65 04 28 06 16 70 92 # 41 41 26 56 83 40 80 70 33 # 41 48 72 33 47 32 37 16 94 29 # 53 71 44 65 25 43 91 52 97 51 14 # 70 11 33 28 77 73 17 78 39 68 17 57 # 91 71 52 38 17 14 91 43 58 50 27 29 48 # 63 66 04 68 89 53 67 30 73 16 69 87 40 31 # 04 62 98 27 23 09 70 98 73 93 38 53 60 04 23 # # NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. # However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved # by brute force, and requires a clever method! ;o) ###################################################################### triangle = "75 \n\ 95 64 \n\ 17 47 82 \n\ 18 35 87 10 \n\ 20 04 82 47 65 \n\ 19 01 23 75 03 34 \n\ 88 02 77 73 07 63 67 \n\ 99 65 04 28 06 16 70 92 \n\ 41 41 26 56 83 40 80 70 33 \n\ 41 48 72 33 47 32 37 16 94 29 \n\ 53 71 44 65 25 43 91 52 97 51 14 \n\ 70 11 33 28 77 73 17 78 39 68 17 57 \n\ 91 71 52 38 17 14 91 43 58 50 27 29 48 \n\ 63 66 04 68 89 53 67 30 73 16 69 87 40 31 \n\ 04 62 98 27 23 09 70 98 73 93 38 53 60 04 23 \n" tri = [] temp = [] tempstr = '' for c in triangle: if c is " ": temp.append(int(tempstr)) tempstr = "" elif c is "\n": tri.append(temp) temp = [] else: tempstr += c tri.reverse() for row in range(1, len(tri)): for number in range(0, len(tri[row])): tri[row][number] += max(tri[row - 1][number], tri[row - 1][number + 1]) tri.reverse() print(tri[0][0]) # Solution: 1074