From ba3f65ded202907d171727e7d9b2d0c62c9d2f05 Mon Sep 17 00:00:00 2001 From: Robert Altner Date: Sat, 23 Feb 2019 02:54:25 +0100 Subject: [PATCH] Added Problem 021 --- Problem_20.py => Problem_020.py | 0 Problem_021.py | 38 +++++++++++++++++++++++++++++++++ 2 files changed, 38 insertions(+) rename Problem_20.py => Problem_020.py (100%) create mode 100644 Problem_021.py diff --git a/Problem_20.py b/Problem_020.py similarity index 100% rename from Problem_20.py rename to Problem_020.py diff --git a/Problem_021.py b/Problem_021.py new file mode 100644 index 0000000..21d361b --- /dev/null +++ b/Problem_021.py @@ -0,0 +1,38 @@ +########################################################################## +# Let d(n) be defined as the sum of proper divisors of n +# (numbers less than n which divide evenly into n). +# If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable +# pair and each of a and b are called amicable numbers. +# +# For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; +# therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220. +# +# Evaluate the sum of all the amicable numbers under 10000. +########################################################################## + + +def sumDivisors(x): + divisor_sum = 0 + for j in range(1, int(x / 2) + 2): + if (x % j) is 0: + divisor_sum += j + + return divisor_sum + + +amicable_number = [] +for i in range(1, 10000): + if i in amicable_number: + continue + + testing_number = sumDivisors(i) + if (i == sumDivisors(testing_number)) and (testing_number != i): + amicable_number.append(i) + + if testing_number not in amicable_number: + amicable_number.append(testing_number) + +sum_of_numbers = sum(amicable_number) +print(sum_of_numbers) + +# Solution: 31626