From 20e3e8c172bdcea5baf0d5954279d8fe700bd97f Mon Sep 17 00:00:00 2001 From: Lauchmelder23 Date: Fri, 12 Oct 2018 00:04:03 +0200 Subject: [PATCH] Added Problem 18 --- Problem_018.py | 79 ++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 79 insertions(+) create mode 100644 Problem_018.py diff --git a/Problem_018.py b/Problem_018.py new file mode 100644 index 0000000..b5f86fc --- /dev/null +++ b/Problem_018.py @@ -0,0 +1,79 @@ +###################################################################### +# By starting at the top of the triangle below and moving to adjacent numbers on the +# row below, the maximum total from top to bottom is 23. +# +# 3 +# 7 4 +# 2 4 6 +# 8 5 9 3 +# +# That is, 3 + 7 + 4 + 9 = 23. +# +# Find the maximum total from top to bottom of the triangle below: +# +# 75 +# 95 64 +# 17 47 82 +# 18 35 87 10 +# 20 04 82 47 65 +# 19 01 23 75 03 34 +# 88 02 77 73 07 63 67 +# 99 65 04 28 06 16 70 92 +# 41 41 26 56 83 40 80 70 33 +# 41 48 72 33 47 32 37 16 94 29 +# 53 71 44 65 25 43 91 52 97 51 14 +# 70 11 33 28 77 73 17 78 39 68 17 57 +# 91 71 52 38 17 14 91 43 58 50 27 29 48 +# 63 66 04 68 89 53 67 30 73 16 69 87 40 31 +# 04 62 98 27 23 09 70 98 73 93 38 53 60 04 23 +# +# NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. +# However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved +# by brute force, and requires a clever method! ;o) +###################################################################### + +triangle = "75 \n\ +95 64 \n\ +17 47 82 \n\ +18 35 87 10 \n\ +20 04 82 47 65 \n\ +19 01 23 75 03 34 \n\ +88 02 77 73 07 63 67 \n\ +99 65 04 28 06 16 70 92 \n\ +41 41 26 56 83 40 80 70 33 \n\ +41 48 72 33 47 32 37 16 94 29 \n\ +53 71 44 65 25 43 91 52 97 51 14 \n\ +70 11 33 28 77 73 17 78 39 68 17 57 \n\ +91 71 52 38 17 14 91 43 58 50 27 29 48 \n\ +63 66 04 68 89 53 67 30 73 16 69 87 40 31 \n\ +04 62 98 27 23 09 70 98 73 93 38 53 60 04 23 \n" + +other = "3 \n\ +7 4 \n\ +2 4 6 \n\ +8 5 9 3 \n" + +tri = [] +temp = [] +tempstr = '' + +for c in triangle: + if c is " ": + temp.append(int(tempstr)) + tempstr = "" + elif c is "\n": + tri.append(temp) + temp = [] + else: + tempstr += c + +tri.reverse() + +for row in range(1, len(tri)): + for number in range(0, len(tri[row])): + tri[row][number] += max(tri[row - 1][number], tri[row - 1][number + 1]) + +tri.reverse() + +print(tri[0][0]) +# Solution: 1074