Initial commit
This commit is contained in:
parent
0889e4de0d
commit
10bc916711
456 changed files with 119668 additions and 0 deletions
84
vendor/include/glm/gtx/matrix_factorisation.inl
vendored
Normal file
84
vendor/include/glm/gtx/matrix_factorisation.inl
vendored
Normal file
|
@ -0,0 +1,84 @@
|
|||
/// @ref gtx_matrix_factorisation
|
||||
|
||||
namespace glm
|
||||
{
|
||||
template <length_t C, length_t R, typename T, qualifier Q>
|
||||
GLM_FUNC_QUALIFIER mat<C, R, T, Q> flipud(mat<C, R, T, Q> const& in)
|
||||
{
|
||||
mat<R, C, T, Q> tin = transpose(in);
|
||||
tin = fliplr(tin);
|
||||
mat<C, R, T, Q> out = transpose(tin);
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
template <length_t C, length_t R, typename T, qualifier Q>
|
||||
GLM_FUNC_QUALIFIER mat<C, R, T, Q> fliplr(mat<C, R, T, Q> const& in)
|
||||
{
|
||||
mat<C, R, T, Q> out;
|
||||
for (length_t i = 0; i < C; i++)
|
||||
{
|
||||
out[i] = in[(C - i) - 1];
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
template <length_t C, length_t R, typename T, qualifier Q>
|
||||
GLM_FUNC_QUALIFIER void qr_decompose(mat<C, R, T, Q> const& in, mat<(C < R ? C : R), R, T, Q>& q, mat<C, (C < R ? C : R), T, Q>& r)
|
||||
{
|
||||
// Uses modified Gram-Schmidt method
|
||||
// Source: https://en.wikipedia.org/wiki/Gram–Schmidt_process
|
||||
// And https://en.wikipedia.org/wiki/QR_decomposition
|
||||
|
||||
//For all the linearly independs columns of the input...
|
||||
// (there can be no more linearly independents columns than there are rows.)
|
||||
for (length_t i = 0; i < (C < R ? C : R); i++)
|
||||
{
|
||||
//Copy in Q the input's i-th column.
|
||||
q[i] = in[i];
|
||||
|
||||
//j = [0,i[
|
||||
// Make that column orthogonal to all the previous ones by substracting to it the non-orthogonal projection of all the previous columns.
|
||||
// Also: Fill the zero elements of R
|
||||
for (length_t j = 0; j < i; j++)
|
||||
{
|
||||
q[i] -= dot(q[i], q[j])*q[j];
|
||||
r[j][i] = 0;
|
||||
}
|
||||
|
||||
//Now, Q i-th column is orthogonal to all the previous columns. Normalize it.
|
||||
q[i] = normalize(q[i]);
|
||||
|
||||
//j = [i,C[
|
||||
//Finally, compute the corresponding coefficients of R by computing the projection of the resulting column on the other columns of the input.
|
||||
for (length_t j = i; j < C; j++)
|
||||
{
|
||||
r[j][i] = dot(in[j], q[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <length_t C, length_t R, typename T, qualifier Q>
|
||||
GLM_FUNC_QUALIFIER void rq_decompose(mat<C, R, T, Q> const& in, mat<(C < R ? C : R), R, T, Q>& r, mat<C, (C < R ? C : R), T, Q>& q)
|
||||
{
|
||||
// From https://en.wikipedia.org/wiki/QR_decomposition:
|
||||
// The RQ decomposition transforms a matrix A into the product of an upper triangular matrix R (also known as right-triangular) and an orthogonal matrix Q. The only difference from QR decomposition is the order of these matrices.
|
||||
// QR decomposition is Gram–Schmidt orthogonalization of columns of A, started from the first column.
|
||||
// RQ decomposition is Gram–Schmidt orthogonalization of rows of A, started from the last row.
|
||||
|
||||
mat<R, C, T, Q> tin = transpose(in);
|
||||
tin = fliplr(tin);
|
||||
|
||||
mat<R, (C < R ? C : R), T, Q> tr;
|
||||
mat<(C < R ? C : R), C, T, Q> tq;
|
||||
qr_decompose(tin, tq, tr);
|
||||
|
||||
tr = fliplr(tr);
|
||||
r = transpose(tr);
|
||||
r = fliplr(r);
|
||||
|
||||
tq = fliplr(tq);
|
||||
q = transpose(tq);
|
||||
}
|
||||
} //namespace glm
|
Loading…
Add table
Add a link
Reference in a new issue