NESemu/src/Bus.cpp
2022-03-06 23:31:52 +01:00

255 lines
3.8 KiB
C++

#include "Bus.hpp"
#include "Log.hpp"
#include <stdexcept>
#include "controllers/StandardController.hpp"
Bus::Bus(Screen* screen) :
cpu(this), ppu(this, screen), apu(this), cartridge(this)
{
LOG_CORE_INFO("Allocating RAM");
RAM = std::vector<Byte>(0x800);
LOG_CORE_INFO("Allocating VRAM");
VRAM = std::vector<Byte>(0x800);
palettes = std::vector<Byte>(0x20, 0);
LOG_CORE_INFO("Inserting cartridge");
cartridge.Load("roms/mario.nes");
LOG_CORE_INFO("Powering up CPU");
cpu.Powerup();
LOG_CORE_INFO("Powering up PPU");
ppu.Powerup();
LOG_CORE_INFO("Powering up APU");
apu.Powerup();
controllerPort.PlugInController<StandardController>(0);
}
void Bus::Reboot()
{
cpu.Powerup();
ppu.Powerup();
apu.Powerup();
}
void Bus::Reset()
{
cpu.Reset();
ppu.Reset();
apu.Reset();
}
uint8_t Bus::Tick()
{
controllerPort.Tick();
uint8_t result = 0x00;
if (DMACyclesLeft == 0)
{
result = cpu.Tick();
}
else
{
DMATick();
result = DMACyclesLeft;
}
// 3 ppu ticks per cpu tick
ppu.Tick();
ppu.Tick();
ppu.Tick();
// APU is only ticked every 2 cycles, but that logic
// is handled inside the APU class
apu.Tick();
return result;
}
void Bus::DMATick()
{
if (preDMACycles > 0)
{
preDMACycles--;
return;
}
if (DMALatch != 0)
{
Byte data = ReadCPU(((Word)DMAPage << 8) | (0xFF - DMACyclesLeft));
ppu.WriteRegister(0x2004, data);
DMACyclesLeft--;
}
DMALatch = 1 - DMALatch;
}
void Bus::PPUTick()
{
if (ppuClock == 0)
{
cpu.Tick();
apu.Tick();
}
ppu.Tick();
ppuClock = (ppuClock + 1) % 3;
}
bool Bus::Instruction()
{
try
{
while (Tick());
}
catch (const std::runtime_error& err)
{
LOG_CORE_FATAL("Fatal Bus error: {0}", err.what());
cpu.Halt();
return true;
}
return true;
}
bool Bus::Frame()
{
try
{
while (!ppu.IsFrameDone())
Tick();
}
catch (const std::runtime_error& err)
{
LOG_CORE_FATAL("Fatal Bus error: {0}", err.what());
cpu.Halt();
return true;
}
return true;
}
Byte Bus::ReadCPU(Word addr)
{
if (0x0000 <= addr && addr < 0x2000)
{
return RAM[addr & 0x7FF];
}
else if (0x2000 <= addr && addr < 0x4000)
{
return ppu.ReadRegister(addr & 0x7);
}
else if (0x8000 <= addr && addr <= 0xFFFF)
{
return cartridge.ReadCPU(addr);
}
else if (0x4000 <= addr && addr <= 0x4017)
{
switch (addr)
{
case 0x4014:
return 0x00;
case 0x4016:
case 0x4017:
return controllerPort.Read(addr);
}
}
return 0x00;
}
Byte Bus::ReadPPU(Word addr)
{
addr &= 0x3FFF;
if (0x0000 <= addr && addr < 0x2000)
{
return cartridge.ReadPPU(addr);
}
else if(0x2000 <= addr && addr < 0x3F00)
{
if (cartridge.MapCIRAM(addr))
return cartridge.ReadVRAM(addr);
return VRAM[addr & 0xFFF];
}
else if (0x3F00 <= addr && addr < 0x4000)
{
if ((addr & 0x3) == 0x00)
addr &= 0xF;
return palettes[addr & 0x1F];
}
return 0x00;
}
void Bus::WriteCPU(Word addr, Byte val)
{
if (0x0000 <= addr && addr < 0x2000)
{
if (addr == 0x0348)
volatile int jdfkdf = 3;
RAM[addr & 0x7FF] = val;
}
else if (0x2000 <= addr && addr < 0x4000)
{
ppu.WriteRegister(addr & 0x7, val);
}
else if (0x8000 <= addr && addr <= 0xFFFF)
{
cartridge.WriteCPU(addr, val);
}
else if (0x4000 <= addr && addr <= 0x4017)
{
switch (addr)
{
case 0x4014:
DMAPage = val;
DMACyclesLeft = 0xFF;
preDMACycles = 1 + (cpu.GetTotalCycles() % 2);
return;
case 0x4016:
controllerPort.Write(addr, val);
break;
case 0x4017:
apu.WriteRegister(addr, val);
break;
}
}
}
void Bus::WritePPU(Word addr, Byte val)
{
addr &= 0x3FFF;
if (0x0000 <= addr && addr < 0x2000)
{
cartridge.WritePPU(addr, val);
}
else if (0x2000 <= addr && addr < 0x3F00)
{
if (cartridge.MapCIRAM(addr))
cartridge.WriteVRAM(addr, val);
VRAM[addr & 0xFFF] = val;
}
else if (0x3F00 <= addr && addr < 0x4000)
{
if ((addr & 0x3) == 0x00)
addr &= 0xF;
palettes[addr & 0x1F] = val;
}
}