diff --git a/Matrix.sln b/Matrix.sln new file mode 100644 index 0000000..04e9f81 --- /dev/null +++ b/Matrix.sln @@ -0,0 +1,31 @@ + +Microsoft Visual Studio Solution File, Format Version 12.00 +# Visual Studio 15 +VisualStudioVersion = 15.0.28307.168 +MinimumVisualStudioVersion = 10.0.40219.1 +Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "Matrix", "Matrix\Matrix.vcxproj", "{81FE2BDF-BB5B-443D-BFB5-7B031ABADA3F}" +EndProject +Global + GlobalSection(SolutionConfigurationPlatforms) = preSolution + Debug|x64 = Debug|x64 + Debug|x86 = Debug|x86 + Release|x64 = Release|x64 + Release|x86 = Release|x86 + EndGlobalSection + GlobalSection(ProjectConfigurationPlatforms) = postSolution + {81FE2BDF-BB5B-443D-BFB5-7B031ABADA3F}.Debug|x64.ActiveCfg = Debug|x64 + {81FE2BDF-BB5B-443D-BFB5-7B031ABADA3F}.Debug|x64.Build.0 = Debug|x64 + {81FE2BDF-BB5B-443D-BFB5-7B031ABADA3F}.Debug|x86.ActiveCfg = Debug|Win32 + {81FE2BDF-BB5B-443D-BFB5-7B031ABADA3F}.Debug|x86.Build.0 = Debug|Win32 + {81FE2BDF-BB5B-443D-BFB5-7B031ABADA3F}.Release|x64.ActiveCfg = Release|x64 + {81FE2BDF-BB5B-443D-BFB5-7B031ABADA3F}.Release|x64.Build.0 = Release|x64 + {81FE2BDF-BB5B-443D-BFB5-7B031ABADA3F}.Release|x86.ActiveCfg = Release|Win32 + {81FE2BDF-BB5B-443D-BFB5-7B031ABADA3F}.Release|x86.Build.0 = Release|Win32 + EndGlobalSection + GlobalSection(SolutionProperties) = preSolution + HideSolutionNode = FALSE + EndGlobalSection + GlobalSection(ExtensibilityGlobals) = postSolution + SolutionGuid = {791856A8-9BB3-4350-AB29-E197CB9391CD} + EndGlobalSection +EndGlobal diff --git a/Matrix/Matrix.hpp b/Matrix/Matrix.hpp new file mode 100644 index 0000000..04c4ccf --- /dev/null +++ b/Matrix/Matrix.hpp @@ -0,0 +1,615 @@ +#pragma once + +#ifndef MATRIX_H +#define MATRIX_H + +#include +#include +#include +#include + +#define CHECK_BOUNDS(_row, _col) if(!InBounds(_row, _col)) return + +#define _VOID +#define _BOOL false +#define _INT 0 + +typedef std::deque> doubleMatrix; +typedef unsigned int uint; + +class Matrix { +public: + Matrix(uint rows, uint cols); + Matrix(const Matrix& other); + + ~Matrix(); + + void PrintMatrix(); + friend bool Delta(uint right, uint left); + + + // Constructional functions + friend void Zero(Matrix& mat); + friend void Identity(Matrix& mat); + + + // Setters / Getters + + void SetNumber(uint row, uint col, double val); + double GetNumber(uint row, uint col) const; + + uint GetRows() const; + uint GetColumns() const; + + bool IsInvertable(); + bool IsSquare(); + + + // Transformation / arithmetic functions + + void Transpose(); + void MultiplyRow(uint row, double factor); + void SwapRows(uint left, uint right); + void AddMultiplesToRow(uint base, uint target, double factor); + + void TransformToEchelonForm(); + void TransformToReducedEchelonForm(); + + friend double det(const Matrix& mat); + friend Matrix mul(const Matrix& left, const Matrix& right); + + // Operator overloads + + Matrix operator+(const Matrix& other); + Matrix operator-(const Matrix& other); + Matrix operator*(const double& other); + Matrix operator/(const double& other); + + void operator+=(const Matrix& other); + void operator-=(const Matrix& other); + void operator*=(const double& other); + void operator/=(const double& other); + + Matrix operator*(const Matrix& other); + void operator*=(const Matrix& other); + + friend std::ostream& operator<<(std::ostream& stream, const Matrix& other); +private: + doubleMatrix m_matrix; + uint m_rows, m_cols; + + bool InBounds(uint rows, uint cols) const; + bool DimensionsFitting(const Matrix& left, const Matrix& right); + void Resize(uint rows, uint cols, doubleMatrix& matrix); + + +}; + + +//////////////////////////////////////////////////// +/// \brief Constructs the matrix by setting the dimensions and filling it up with zeros +/// +/// \param rows Rows of the matrix +/// \param cols Cols of the matrix +/// +//////////////////////////////////////////////////// +inline Matrix::Matrix(uint rows, uint cols) : + m_rows(rows), + m_cols(cols) +{ + Resize(rows, cols, m_matrix); +} + + +//////////////////////////////////////////////////// +/// \brief Copy constructor +/// +/// \param other The matrix to set this one to +/// +//////////////////////////////////////////////////// +inline Matrix::Matrix(const Matrix& other) +{ + *this = other; +} + + +Matrix::~Matrix() { /* EMPTY */ } + + +//////////////////////////////////////////////////// +/// \brief Fills the matrix up with zeros +/// +//////////////////////////////////////////////////// +inline void Zero(Matrix& mat) +{ + mat = Matrix(mat.m_rows, mat.m_cols); +} + +//////////////////////////////////////////////////// +/// \brief Tries to create the identity matrix +/// The matrix must be square, or it will not work +/// +//////////////////////////////////////////////////// +inline void Identity(Matrix& mat) +{ + if (!mat.IsSquare()) + return; + + Zero(mat); + for (uint k = 0; k < mat.m_cols; k++) + mat.m_matrix[k][k] = 1; +} + + +//////////////////////////////////////////////////// +/// \brief Sets the number at a given position to a given value +/// +/// \param row The row of the number to change +/// \param col The column of the number to change +/// \param val The new value of the number +/// +//////////////////////////////////////////////////// +inline void Matrix::SetNumber(uint row, uint col, double val) +{ + CHECK_BOUNDS(row, col) _VOID; + + m_matrix[row][col] = val; +} + + +//////////////////////////////////////////////////// +/// \brief Gets the number at a given position to a given value +/// +/// \return The number at the position +/// +//////////////////////////////////////////////////// +inline double Matrix::GetNumber(uint row, uint col) const +{ + CHECK_BOUNDS(row, col) _INT; + + return m_matrix[row][col]; +} + + +//////////////////////////////////////////////////// +/// \brief Returns the number of rows the matrix has +/// +//////////////////////////////////////////////////// +uint Matrix::GetRows() const +{ + return m_rows; +} + +//////////////////////////////////////////////////// +/// \brief Returns the number of columns the matrix has +/// +//////////////////////////////////////////////////// +uint Matrix::GetColumns() const +{ + return m_cols; +} + +//////////////////////////////////////////////////// +/// \brief Returns wether you could invert the matrix or not +/// +//////////////////////////////////////////////////// +bool Matrix::IsInvertable() +{ + return det(*this) == 0 ? false : true; +} + +//////////////////////////////////////////////////// +/// \brief Returns wether the columns and rows match +/// +//////////////////////////////////////////////////// +bool Matrix::IsSquare() +{ + return m_rows == m_cols; +} + + +//////////////////////////////////////////////////// +/// \brief Prints the whole matrix to the console +/// +//////////////////////////////////////////////////// +inline void Matrix::PrintMatrix() +{ + for (uint row = 0; row < m_rows; row++) + { + for (uint col = 0; col < m_cols; col++) + { + std::cout << m_matrix[row][col]; + std::cout << " "; + } + + std::cout << std::endl; + } +} + + +inline bool Delta(uint right, uint left) +{ + return (right == left); +} + + +//////////////////////////////////////////////////// +/// \brief Transposes the matrix +/// +//////////////////////////////////////////////////// +inline void Matrix::Transpose() +{ + doubleMatrix transposed; + Resize(m_cols, m_rows, transposed); + + for (int row = 0; row < m_rows; row++) + for (int col = 0; col < m_cols; col++) + transposed[col][row] = m_matrix[row][col]; + + m_matrix = transposed; + + std::swap(m_rows, m_cols); +} + + +//////////////////////////////////////////////////// +/// \brief Multiplies each value of a given row by a given factor +/// +/// \param row The row that the multiplication should be applied to +/// \param factor The factor to multiply the row by +/// +//////////////////////////////////////////////////// +inline void Matrix::MultiplyRow(uint row, double factor) +{ + CHECK_BOUNDS(row, 0) _VOID; + + for (int col = 0; col < m_cols; col++) + m_matrix[row][col] *= factor; +} + + +//////////////////////////////////////////////////// +/// \brief Swaps two rows in the matrix +/// +/// \param left One row +/// \param right The other row +/// +//////////////////////////////////////////////////// +inline void Matrix::SwapRows(uint left, uint right) +{ + CHECK_BOUNDS(left, right) _VOID; + + std::swap(m_matrix[left], m_matrix[right]); +} + + +//////////////////////////////////////////////////// +/// \brief Swaps two rows in the matrix +/// +/// \param left One row +/// \param right The other row +/// +//////////////////////////////////////////////////// +inline void Matrix::AddMultiplesToRow(uint base, uint target, double factor) +{ + int djfids = 1; + + CHECK_BOUNDS(base, 0) _VOID; + CHECK_BOUNDS(target, 0) _VOID; + + for(int col = 0; col < m_cols; col++) + m_matrix[target][col] += m_matrix[base][col] * factor; +} + + +inline double det(const Matrix& mat) +{ + Matrix holder = mat; + holder.TransformToEchelonForm(); + + double det = 1; + + for (int col = 0; col < mat.m_cols; col++) { + for (int row = col; row < mat.m_rows; row++) { + if (holder.m_matrix[row][col] != 0) { + det *= holder.m_matrix[row][col]; + break; + } + } + } + + return det; +} + + +//////////////////////////////////////////////////// +/// \brief Performs matrix multiplication +/// +/// \param Two matrices to multiply +/// +/// \return A multiplied matrix when success. An empty matrix if failed +/// +//////////////////////////////////////////////////// +inline Matrix mul(const Matrix& right, const Matrix& left) +{ + if (right.m_cols != left.m_rows) + return Matrix(0, 0); + + Matrix returnMatrix = Matrix(right.m_rows, left.m_cols); + + for (uint row = 0; row < returnMatrix.m_rows; row++) + for (uint col = 0; col < returnMatrix.m_cols; col++) + for (uint k = 0; k < right.m_cols; k++) + returnMatrix.m_matrix[row][col] += right.m_matrix[row][k] * left.m_matrix[k][col]; + + return returnMatrix; +} + + +//////////////////////////////////////////////////// +/// \brief Transforms a matrix to reduced row echelon form py performing Gaussian elemination +/// +//////////////////////////////////////////////////// +inline void Matrix::TransformToEchelonForm() +{ + // Quick description of the algorithm used: + // + // When using the Gaussian algorithm you start in the first column. + // The first number of the upper row must be a non-zero value, so if it happens to be a zero, + // swap this row with any other row starting with a non-zero integer. + // After that you must make any values BELOW the upper row equal zero, by adding fitting multiples + // of the upper row to each row. As soon as the upper row is the only row in the column to have a non-zero + // value, continue on to the next colum, but "cross out" the upper row (the second row now becomes the upper row) + // Repeat until every column has been transformed. + // + // After that, the matrix should be in "echelon form", which means that the matrix looks something like this: + // + // [ 3 4 9 2 8 ] + // [ 0 4 1 8 2 ] + // [ 0 0 8 3 5 ] + // [ 0 0 0 0 9 ] + // [ 0 0 0 0 0 ] + // + // PROS to using this algorithm: + // - It's the only one I know (yet) + // + // CONS to using this algorithm: + // - Probably slow and hideous + + int currentRow = 0; + + // The algorithm will move through each column + for (int col = 0; col < m_cols; col++) + { + if (currentRow > m_rows) + break; + + // Check if some value in the first column is zero and count how many + int nonZeroRow = -1; + bool allZeros = true; + for (int row = currentRow; row < m_rows; row++) + { + // If one is found, set rowWithZero to it and zeros++ + if (m_matrix[row][col] != 0) + { + nonZeroRow = row; + allZeros = false; + } + } + + // If all rows are zeros, then skip + if(allZeros) + { + continue; + } + + // If no row is zero, make all except the current one to zero! + else if (nonZeroRow < 0) + { + for (int row = currentRow + 1; row < m_rows; row++) + { + AddMultiplesToRow(currentRow, row, -(m_matrix[row][col] / m_matrix[currentRow][col])); + } + } + + // If current row is zero, swap a nonZero row with it, then make them all zero + else if(nonZeroRow != currentRow) + { + // Swap rows + std::swap(m_matrix[nonZeroRow], m_matrix[currentRow]); + + // Make all rows non-zero + for (int row = currentRow + 1; row < m_rows; row++) + { + if (m_matrix[row][col] == 0) { + + continue; + } + + AddMultiplesToRow(currentRow, row, -(m_matrix[row][col] / m_matrix[currentRow][col])); + } + } + + for (int row = currentRow + 1; row < m_rows; row++) + { + if (m_matrix[row][col] == 0) { + + continue; + } + + AddMultiplesToRow(currentRow, row, -(m_matrix[row][col] / m_matrix[currentRow][col])); + } + + currentRow++; + } +} + +inline void Matrix::TransformToReducedEchelonForm() +{ + TransformToEchelonForm(); + + + + // The matrix is now in echelon form. It would be better if it was in reduced echelon form. + // + // This means that all the first numbers in each row must be equal to one, and all first + // values in each row must be the only non-zero value in their column. + // It looks like this: + // + // [ 1 0 0 2 0 ] + // [ 0 1 0 8 0 ] + // [ 0 0 1 3 0 ] + // [ 0 0 0 0 1 ] + // [ 0 0 0 0 0 ] + + // Starting from the right, add fitting multiples of the first non-zero row to all the ones above + for (int col = m_cols - 1; col >= 0; col--) + { + // Find first non-zero number (starting from the bottom) + int nonZeroRow = m_rows - 1; + for (int row = m_rows - 1; row >= 0; row--) + { + if (m_matrix[row][col] != 0) + { + nonZeroRow = row; + break; + } + } + + // Divide the bottom-most row by itself to make it = 1 + MultiplyRow(nonZeroRow, 1 / m_matrix[nonZeroRow][col]); + + // Add fitting multiples of that row to all the others + for (int row = nonZeroRow - 1; row >= 0; row--) + { + AddMultiplesToRow(nonZeroRow, row, -(m_matrix[row][col] / m_matrix[nonZeroRow][col])); + } + } + + // Convert all the "-0" to "0" (idk why c++ does this) + for (int row = 0; row < m_rows; row++) + for (int col = 0; col < m_cols; col++) + if (m_matrix[row][col] == -0) m_matrix[row][col] = 0; +} + + +inline bool Matrix::InBounds(uint row, uint col) const +{ + return ((row < m_rows) && (col < m_cols)) ? true : false; +} + +inline bool Matrix::DimensionsFitting(const Matrix& right, const Matrix& left) +{ + return (right.GetRows() == left.GetRows()) && (right.GetColumns() == left.GetColumns()); +} + +inline void Matrix::Resize(uint rows, uint cols, doubleMatrix& matrix) +{ + rows = rows == 0 ? 1 : rows; + cols = cols == 0 ? 1 : cols; + + matrix.resize(rows); + for (int row = 0; row < rows; row++) + matrix[row].resize(cols); +} + + + + +////////////////////// OPERATOR OVERLOADING ////////////////////////// + +Matrix Matrix::operator+(const Matrix& other) +{ + if (!DimensionsFitting(*this, other)) + return Matrix(0, 0); + + Matrix returnMatrix(m_rows, m_cols); + + for (int row = 0; row < m_rows; row++) + for (int col = 0; col < m_cols; col++) + returnMatrix.SetNumber(row, col, m_matrix[row][col] + other.GetNumber(row, col)); + + return returnMatrix; +} + + +Matrix Matrix::operator-(const Matrix& other) +{ + if (!DimensionsFitting(*this, other)) + return Matrix(0, 0); + + Matrix returnMatrix(m_rows, m_cols); + + for (int row = 0; row < m_rows; row++) + for (int col = 0; col < m_cols; col++) + returnMatrix.SetNumber(row, col, m_matrix[row][col] - other.GetNumber(row, col)); + + return returnMatrix; +} + + +Matrix Matrix::operator*(const double& other) +{ + Matrix returnMatrix(m_rows, m_cols); + + for (int row = 0; row < m_rows; row++) + for (int col = 0; col < m_cols; col++) + returnMatrix.SetNumber(row, col, m_matrix[row][col] * other); + + return returnMatrix; +} + + +Matrix Matrix::operator/(const double& other) +{ + return (*this * (1 / other)); +} + + +void Matrix::operator+=(const Matrix& other) +{ + *this = *this + other; +} + +void Matrix::operator-=(const Matrix& other) +{ + *this = *this - other; +} + +void Matrix::operator*=(const double& other) +{ + *this = *this * other; +} + +void Matrix::operator/=(const double& other) +{ + *this = *this / other; +} + + +Matrix Matrix::operator*(const Matrix& other) +{ + return mul(*this, other); +} + +void Matrix::operator*=(const Matrix& other) +{ + *this = mul(*this, other); +} + + +std::ostream& operator<<(std::ostream& stream, const Matrix& other) +{ + for (uint row = 0; row < other.m_rows; row++) + { + for (uint col = 0; col < other.m_cols; col++) + { + stream << other.m_matrix[row][col] << " "; + } + + stream << std::endl; + } + + return stream; +} +#endif // MATRIX_h \ No newline at end of file diff --git a/Matrix/Matrix.vcxproj b/Matrix/Matrix.vcxproj new file mode 100644 index 0000000..80b09f5 --- /dev/null +++ b/Matrix/Matrix.vcxproj @@ -0,0 +1,126 @@ + + + + + Debug + Win32 + + + Release + Win32 + + + Debug + x64 + + + Release + x64 + + + + 15.0 + {81FE2BDF-BB5B-443D-BFB5-7B031ABADA3F} + Matrix + 10.0.17763.0 + + + + Application + true + v141 + MultiByte + + + Application + false + v141 + true + MultiByte + + + Application + true + v141 + MultiByte + + + Application + false + v141 + true + MultiByte + + + + + + + + + + + + + + + + + + + + + + + Level3 + Disabled + true + true + + + + + Level3 + Disabled + true + true + + + + + Level3 + MaxSpeed + true + true + true + true + + + true + true + + + + + Level3 + MaxSpeed + true + true + true + true + + + true + true + + + + + + + + + + + + \ No newline at end of file diff --git a/Matrix/Matrix.vcxproj.filters b/Matrix/Matrix.vcxproj.filters new file mode 100644 index 0000000..304782d --- /dev/null +++ b/Matrix/Matrix.vcxproj.filters @@ -0,0 +1,27 @@ + + + + + {4FC737F1-C7A5-4376-A066-2A32D752A2FF} + cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx + + + {93995380-89BD-4b04-88EB-625FBE52EBFB} + h;hh;hpp;hxx;hm;inl;inc;ipp;xsd + + + {67DA6AB6-F800-4c08-8B7A-83BB121AAD01} + rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav;mfcribbon-ms + + + + + Quelldateien + + + + + Headerdateien + + + \ No newline at end of file diff --git a/Matrix/main.cpp b/Matrix/main.cpp new file mode 100644 index 0000000..57c3e99 --- /dev/null +++ b/Matrix/main.cpp @@ -0,0 +1,33 @@ +#include "Matrix.hpp" +#include + +#include + +int main(int argc, char** argv) +{ + std::default_random_engine engine(time(NULL)); + std::uniform_int_distribution range(0, 4); + + Matrix myMatrix(4, 4); + for (int row = 0; row < 3; row++) + for (int col = 0; col < 4; col++) + myMatrix.SetNumber(row, col, range(engine)); + + Matrix otherMatrix(4, 4); + Identity(otherMatrix); + + Matrix addMatrix = myMatrix * otherMatrix; + + std::cout << myMatrix; + std::cout << std::endl << "-" << std::endl << std::endl; + std::cout << otherMatrix; + std::cout << std::endl << "=" << std::endl << std::endl; + std::cout << addMatrix << std::endl; + std::cout << det(addMatrix) << std::endl; + std::cout << addMatrix.IsInvertable() << std::endl; + std::cout << std::endl; + + getchar(); + + return 0; +} \ No newline at end of file