323 lines
12 KiB
TeX
323 lines
12 KiB
TeX
\documentclass[../../script.tex]{subfiles}
|
|
% !TEX root = ../../script.tex
|
|
|
|
\begin{document}
|
|
\section{Convergence of Function sequences}
|
|
|
|
\begin{defi}[Pointwise convergence]
|
|
Let $M$ be a set, $f_n: M \rightarrow \field ~~\forall n \in \natn$ and $f: M \rightarrow \field$.
|
|
The sequence $\seq{f}$ is said to be pointwise convergent to $f$ if
|
|
\[
|
|
\limn f_n(x) = f(x) ~~\forall x \in M
|
|
\]
|
|
\end{defi}
|
|
|
|
\begin{eg}
|
|
Consider
|
|
\begin{align*}
|
|
f_n: [0, 1] &\longrightarrow \realn \\
|
|
x &\longmapsto \begin{cases}
|
|
1 - nx, & x \in [0, \frac{1}{n}] \\
|
|
0, & \text{else}
|
|
\end{cases}
|
|
\end{align*}
|
|
|
|
\begin{center}
|
|
\begin{tikzpicture}[domain=0:1]
|
|
\begin{axis}[xmin=0, ymin=0, xmax=1, ymax=1, samples=50]
|
|
\addplot[black, thick] {1-x} node[above right, pos=0.6] {$f_1$};
|
|
\addplot[black, thick] {1-2*x} node[above right, pos=0.4] {$f_2$};
|
|
\addplot[black, thick] {1-3*x} node[right, pos=0.3] {$f_3$};
|
|
\addplot[black, thick] {1-4*x} node[left, pos=0.23] {$f_4$};
|
|
\end{axis}
|
|
\end{tikzpicture}
|
|
\end{center}
|
|
The $f_n$ are continuous for all $n \in \natn$ and converge pointwise to
|
|
\begin{align*}
|
|
f: [0, 1] &\longrightarrow \realn \\
|
|
x &\longmapsto \begin{cases}
|
|
1, & x = 0 \\
|
|
0, & x \ne 0
|
|
\end{cases}
|
|
\end{align*}
|
|
$f$ is not continuous.
|
|
\end{eg}
|
|
|
|
\begin{rem}
|
|
Let $M$ be a set. Then
|
|
\[
|
|
B(M) = \set[\exists K \in \realn: ~~|f(x)| < K ~~\forall x \in M]{f_n: M \longrightarrow \field}
|
|
\]
|
|
is a linear subspace of the space of all functions $M \rightarrow \field$. We can define the supremum norm
|
|
\begin{align*}
|
|
\supnorm{\cdot}: B(M) &\longrightarrow \realn \\
|
|
f &\longmapsto \sup_{x \in M}\set{\abs{f(x)}}
|
|
\end{align*}
|
|
\end{rem}
|
|
\begin{proof}
|
|
We will now proof that $\supnorm{\cdot}$ is a norm.
|
|
It is defined, because
|
|
\begin{equation}
|
|
\supnorm{f} = 0 \implies \abs{f(x)} = 0 ~~\forall x \in M
|
|
\end{equation}
|
|
This implies
|
|
\begin{equation}
|
|
f(x) = 0 ~~\forall x \in M \implies f = 0
|
|
\end{equation}
|
|
The triangle inequality is proven by first considering
|
|
\begin{equation}
|
|
\abs{f(x)} \le \supnorm{f} ~~\forall f \in B(M) ~\forall x \in M
|
|
\end{equation}
|
|
Let $f, g \in B(M)$, then
|
|
\begin{equation}
|
|
\abs{f(x) + g(x)} \le \abs{f(x)} + \abs{g(x)} \le \supnorm{f} + \supnorm{g} ~~\forall x \in M
|
|
\end{equation}
|
|
Which implies
|
|
\begin{equation}
|
|
\supnorm{f + g} = \sup_{x \in M} \abs{f(x) + g(x)} \le \supnorm{f} + \supnorm{g}
|
|
\end{equation}
|
|
\end{proof}
|
|
|
|
\begin{defi}[Uniform convergence]
|
|
A sequence of bounded functions $\seq{f}$,
|
|
\[
|
|
f_n: M \longrightarrow \field
|
|
\]
|
|
is said to be uniformly convergent to $f: M \rightarrow \field$ if its norm converges.
|
|
\[
|
|
\supnorm{f_n - f} \conv{n \rightarrow \infty} 0
|
|
\]
|
|
\end{defi}
|
|
|
|
\begin{rem}
|
|
Formally, pointwise convergence means
|
|
\[
|
|
\forall \epsilon > 0 ~\forall x \in M ~\exists N \in \natn ~\forall n \ge N: ~~\abs{f_n(x) - f(x)} < \epsilon
|
|
\]
|
|
and uniform convergence means
|
|
\[
|
|
\forall \epsilon > 0 ~\exists N \in \natn ~\forall x \in M ~\forall n \ge N: ~~\abs{f_n(x) - f(x)} < \epsilon
|
|
\]
|
|
\end{rem}
|
|
|
|
\begin{thm}
|
|
The function space $B(M)$ is complete.
|
|
\end{thm}
|
|
\begin{proof}
|
|
Let $\anyseqdef[f]{B(M)}$ be a Cauchy sequence in terms of $\supnorm{\cdot}$. Firstly, we have for some fixed $x \in M$
|
|
\begin{equation}
|
|
\abs{f_n(x) - f_m(x)} \le \supnorm{f_n - f_m}
|
|
\end{equation}
|
|
Since $\seq{f}$ is a Cauchy sequence, $(f_n(x))$ is also a Cauchy sequence in $\field_0$. Because $\field$ is complete,
|
|
$(f_n(x))$ converges, and we define
|
|
\begin{equation}
|
|
f(x) = \limn f_n(x)
|
|
\end{equation}
|
|
thus $\seq{f}$ converges pointwise to $f$. Let $\epsilon > 0$. Then
|
|
\begin{equation}
|
|
\exists N \in \natn: ~~\supnorm{f_n \cdot f_m} < \epsilon ~~\forall n, m \ge N
|
|
\end{equation}
|
|
Then $\forall x \in M, ~\forall n, m \ge N$ we have
|
|
\begin{equation}
|
|
\abs{f_n(x) - f_m(x)} \le \supnorm{f_n - f_m} < \epsilon
|
|
\end{equation}
|
|
We can find the limit for $m \rightarrow \infty$
|
|
\begin{equation}
|
|
\abs{f(x) - f_n(x)} \le \epsilon
|
|
\end{equation}
|
|
and
|
|
\begin{equation}
|
|
\supnorm{f} = \sup_{x \in M}\abs{f} \le \sup_{x \in M} \abs{f(x) - f_n(x)} + \sup_{x \in M} \abs{f_n(x)} = \epsilon + \supnorm{f_n}
|
|
\end{equation}
|
|
Thus, $f$ is bounded. Furthermore
|
|
\begin{equation}
|
|
\supnorm{f - f_n} = \sup_{x \in M} \abs{f(x) - f_n(x)} \le \epsilon
|
|
\end{equation}
|
|
which in turn implies
|
|
\begin{equation}
|
|
\supnorm{f - f_n} \conv{n \rightarrow \infty} 0
|
|
\end{equation}
|
|
\end{proof}
|
|
|
|
\begin{defi}
|
|
Let $\metric$ be a metric space, then $C_b(X)$ is said to be the space of all continuous bounded functions.
|
|
\end{defi}
|
|
|
|
\begin{rem}
|
|
If $X$ is compact (e.g. a bounded, closed subset of $\realn^n$) then all continuous functions are bounded. We then write $C(X)$ for $C_b(X)$.
|
|
\end{rem}
|
|
|
|
\begin{thm}
|
|
Let $\metric$ be a metric space. $C_b(X)$ is closed in $B(X)$. In other words, every uniformly convergent sequence of continuous functions converges to a continuous function.
|
|
\end{thm}
|
|
\begin{proof}
|
|
Let $\anyseqdef[f]{C_b(X)}$ be a sequence that uniformly converges to $f \in B(X)$.
|
|
Let $x \in X$ and $\epsilon > 0$, then
|
|
\begin{equation}
|
|
\exists N \in \natn: ~~\supnorm{f - f_n} y \frac{\epsilon}{3} ~~\forall n \ge N
|
|
\end{equation}
|
|
Choose a fixed $n \ge N$. Since $f_n$ is continuous, this means that
|
|
\begin{equation}
|
|
\exists \delta > 0: ~~\abs{f_n(x) - f_n(y)} < \frac{\epsilon}{3} ~~\forall y \in \oball[\delta](x)
|
|
\end{equation}
|
|
Then we have for all such $y$
|
|
\begin{equation}
|
|
\begin{split}
|
|
\abs{f(x) - f(y)} &\le \abs{f(x) - f_n(x)} + \abs{f_n(x) - f_n(y)} + \abs{f_n(y) - f(y)} \\
|
|
&\le 2 \cdot \supnorm{f - f_n} + f_n(x) - f_n(y) < \epsilon
|
|
\end{split}
|
|
\end{equation}
|
|
This proves the continuity of $f$ in $x$. Since $x \in X$ was chosen arbitrarily, $f$ is continuous everywhere.
|
|
\end{proof}
|
|
|
|
\begin{defi}
|
|
Let $x_0 \in \field$ and $\anyseqdef[a]{\field}$. Then
|
|
\[
|
|
\series{n} a_n (x - x_0)^n
|
|
\]
|
|
is called a power series around $x_0$. The number
|
|
\[
|
|
\rho := \sup\set[\series{n} a_n (x - x_0)^n \text{ converges}]{\abs{x - x_0}}
|
|
\]
|
|
is the convergence radius.
|
|
|
|
\begin{center}
|
|
\begin{tikzpicture}
|
|
\draw[->, thick] (0, 0) -- (0, 4) node [above] {};
|
|
\draw[->, thick] (0, 0) -- (4, 0) node [right] {};
|
|
|
|
\draw[fill] (2, 2) circle [radius=1pt] node [below right] {$x_0$};
|
|
\draw[dashed] (2, 2) circle [radius=1.2cm];
|
|
|
|
\draw[<->, rotate around={45:(2, 2)}] (2, 2) -- node[above] {$\rho$} (3.2, 2);
|
|
|
|
\draw[fill, rotate around={100:(2, 2)}] (3.2, 2) circle [radius=1pt] node [above] {$x$};
|
|
\end{tikzpicture}
|
|
\end{center}
|
|
\end{defi}
|
|
|
|
\begin{rem}
|
|
All results so far (including proofs) can be extended to $\realn^n$-valued functions, or functions with values in a Banach space in general.
|
|
\end{rem}
|
|
|
|
\begin{thm}
|
|
Let $\series{n} a_n (x - x_0)^n$ be a power series with convergence radius $\rho \in [0, \infty) \cup \set{\infty}$.
|
|
If $\abs{x - x_0} < \rho$ then the series converges absolutely, for $\abs{x - x_0} > \rho$ it diverges.
|
|
\[
|
|
\frac{1}{\rho} = \limsupn \sqrt[n]{\abs{a_n}}
|
|
\]
|
|
\end{thm}
|
|
\begin{proof}
|
|
W.l.o.g. choose $x_0 = 0$:
|
|
For $\abs{x} > \rho$ the series diverges by definition. If $\abs{x} < \rho$ then there exists $y \in \field$ such that
|
|
$\abs{x} < \abs{y} \le \rho$ and $\series{n} a_n y^n$ convergent. Especially, $(a_n y^n)$ is a null sequence.
|
|
This means $\exists C > 0$ such that $\abs{a_n y^n} \le C ~~\forall n \in \natn$
|
|
\begin{equation}
|
|
\series{n} \abs{a_n x^n} = \series{n} \abs{a_n y^n} \abs{\frac{x}{y}}^n \le C \cdot \series{n} \abs{\frac{x}{y}}^n < \infty
|
|
\end{equation}
|
|
This statement only holds for $\rho > 0$.
|
|
\end{proof}
|
|
|
|
\begin{rem}
|
|
\begin{enumerate}[(i)]
|
|
\item We have
|
|
\[
|
|
\rho = \sup \set[\series{n}\abs{a_n}a^n \text{ converges}]{a \in [0, \infty)}
|
|
\]
|
|
|
|
\item If the following limit exists, then
|
|
\[
|
|
\rho = \limn \frac{\abs{a_n}}{\abs{a_{n+1}}}
|
|
\]
|
|
\end{enumerate}
|
|
\end{rem}
|
|
|
|
\begin{eg}
|
|
The series
|
|
\[
|
|
\series{n} x^n
|
|
\]
|
|
is convergent on $(-1, 1)$, so $\rho = 1$. The limit function is
|
|
\[
|
|
x \longmapsto \frac{1}{1 - x}
|
|
\]
|
|
\end{eg}
|
|
|
|
\begin{thm}
|
|
Let $\series{n} a_n (x - x_0)^n$ be a power series with convergence radius $\rho > 0$.
|
|
Let $0 < a < \rho$. Then this power series converges uniformly on $\cball[a](x_0)$. Especially
|
|
\begin{align*}
|
|
f: \oball[\rho](x_0) &\longrightarrow \realn \\
|
|
x &\longmapsto \series{n} a_n (x_n - x_0)^n
|
|
\end{align*}
|
|
\end{thm}
|
|
\begin{proof}
|
|
W.l.o.g. choose $x_0 = 0$. Let $0 < a < \rho$. We know that $\series{n} a_nx^n$ converges on $\cball[a](0)$.
|
|
|
|
\begin{center}
|
|
\begin{tikzpicture}
|
|
\draw[->, thick] (0, -3) -- (0, 3);
|
|
\draw[->, thick] (-3, 0) -- (3, 0);
|
|
|
|
\draw[fill] (0, 0) circle [radius=1pt];
|
|
|
|
\draw[solid] (0, 0) circle [radius=1.8cm];
|
|
\draw[dashed] (0, 0) circle [radius= 2.4cm] node[above right=2.4cm] {$\rho$};
|
|
|
|
\node at (2, 0.2) {$a$};
|
|
\end{tikzpicture}
|
|
\end{center}
|
|
|
|
Define
|
|
\begin{equation}
|
|
\begin{split}
|
|
f_n: \cball[a](0) &\longrightarrow \field \\
|
|
x &\longmapsto x^n ~~\forall n \in \natn
|
|
\end{split}
|
|
\end{equation}
|
|
We can see that
|
|
\begin{equation}
|
|
\supnorm{f} = \sup_{x \in \cball[a](0)} \abs{f_n} = \sup_{x \in \cball[a](0)} = a^n
|
|
\end{equation}
|
|
and thus
|
|
\begin{equation}
|
|
\series{n} a_n f_n \implies \series{n} \supnorm{a_n f_n} = \series{n} \abs{a_n}^n < \infty
|
|
\end{equation}
|
|
because $a < \rho$. The series $\series{n} a_n f_n$ is absolutely convergent in $C(\cball[a](0))$.
|
|
Since $C(\cball[a](0))$ is complete, $\series{n} a_n f_n$ is convergent because the partial sums $\series[N]{n} a_n f_n$ are continuous $\forall N \in \natn$.
|
|
Therefore $f$ is also continuous on $\cball[a](0)$. Let $x \in \oball[\rho](0)$. Then there exists some $a > 0$ such that $\abs{x} < a < \rho$.
|
|
Thus, $f$ is continuous on $\cball[a](0)$. Since $\cball[a](0)$ contains a neighbourhood of $x$, and continuity is a local property,
|
|
$f$ is also continuous in $x$. Because $x \in \oball[\rho](0)$ was chosen arbitrarily, $f$ is continuous.
|
|
\end{proof}
|
|
|
|
\begin{rem}
|
|
$\exp$, $\sin$, $\cos$ are continuous.
|
|
\end{rem}
|
|
|
|
\begin{eg}
|
|
The statements above can be extended to Banach space-valued power series (e.g. matrix-valued functions).
|
|
The norm on $\realn^{n \times n}$ is
|
|
\[
|
|
\norm{A} = \sup\set[{\forall x \in \oball[1](0)}]{\norm{Ax}}
|
|
\]
|
|
Define
|
|
\[
|
|
\exp(A) := \series{0} \frac{A^n}{n!}
|
|
\]
|
|
This converges $\forall A \in \realn^{n \times n}$, because
|
|
\begin{align*}
|
|
\series{n} \norm{\frac{A^n}{n!}} &= \series{n} \frac{1}{n!} \norm{A^n} \le \series{n} \frac{1}{n!} \norm{A}^n \\
|
|
&= \exp(\norm{A}) < \infty
|
|
\end{align*}
|
|
Thus, $\series{n} \frac{A^n}{n!}$ converges absolutely. Now consider the function
|
|
\begin{align*}
|
|
\realn &\longrightarrow \realn^{n \times n} \\
|
|
t &\longmapsto \exp(At)
|
|
\end{align*}
|
|
This is a matrix-valued power series
|
|
\[
|
|
\exp(At) = \series{n} \frac{(At)^n}{n!} = \series{n} \frac{A^n}{n!} t^n
|
|
\]
|
|
with a convergence radius of $\rho = \infty$. In this case $\exp(A + B)$ doesn't necessarily have to equal $\exp(A) \cdot \exp(B)$.
|
|
\end{eg}
|
|
\end{document} |