129 lines
5.7 KiB
TeX
129 lines
5.7 KiB
TeX
% !TeX root = ../../script.tex
|
|
\documentclass[../../script.tex]{subfiles}
|
|
|
|
\begin{document}
|
|
\section{Adjoint Operators}
|
|
|
|
\begin{thm}[Riesz Representation Theorem]\label{thm:riesz}
|
|
Let $H$ be a Hilbert space. Then every bounded linear functional $f$ on $H$ can be written as an inner product
|
|
\[
|
|
f(x) = \innerproduct{x}{z}
|
|
\]
|
|
where $z$ is a uniquely determined element of $H$, and $\norm{f} = \norm{z}$.
|
|
\end{thm}
|
|
\begin{proof}
|
|
\noproof
|
|
\end{proof}
|
|
|
|
\begin{defi}
|
|
Let $H_1$ and $H_2$ be Hilbert spaces, and $T: H_1 \rightarrow H_2$ a bounded linear operator.
|
|
Then the adjoint operator $T^*$ of $T$ is the operator $T^*: H_2 \rightarrow H_1$ such that
|
|
\[
|
|
\forall x \in H_1, y \in H_2: \quad \innerproduct{Tx}{y} = \innerproduct{x}{T^*y}
|
|
\]
|
|
\end{defi}
|
|
|
|
\begin{thm}
|
|
The adjoint operator $T^*$ of $T$ exists, is unique, and is bounded with $\norm{T^*} = \norm{T}$
|
|
\end{thm}
|
|
\begin{proof}
|
|
The existence of $T^*$ follows from \Cref{thm:riesz}. Specifically, consider for a fixed $y \in H_2$ the map
|
|
\begin{equation}
|
|
f(x) = \innerproduct{Tx}{y}, \quad x \in H_1
|
|
\end{equation}
|
|
Then $f: H_1 \rightarrow \field$ is a bounded linear functional with
|
|
\begin{equation}
|
|
\abs{f(x)} = \abs{\innerproduct{Tx}{y}} \le \norm{Tx}\norm{y} \le \norm{T}\norm{x}\norm{y} = C\norm{x}
|
|
\end{equation}
|
|
By \Cref{thm:riesz}, there exists a $z \in H_1$ such that $f(x) = \innerproduct{x}{z}$. Then we can just set
|
|
\begin{equation}
|
|
T^* y := z
|
|
\end{equation}
|
|
\end{proof}
|
|
|
|
\begin{thm}
|
|
Let $H_1$ and $H_2$ be Hilbert spaces, and $T, S: H_1 \rightarrow H_2$ bounded linear operators. Then
|
|
\begin{enumerate}[(i)]
|
|
\item $\innerproduct{T^* y}{x} = \innerproduct{y}{Tx}, \quad x \in H_1, ~y \in H_2$
|
|
\item $(S + T)^* = S^* + T^*$
|
|
\item $(\alpha T)^* = \conj{\alpha} T^*, \quad \alpha \in \field$
|
|
\item $(T^*)^* = T$
|
|
\item $\norm{T^* T} = \norm{TT^*} = \norm{T}^2$
|
|
\item $T^* T = 0 \iff T = 0$
|
|
\item $(ST)^* = T^* S^*$ (if $H_1 = H_2$)
|
|
\end{enumerate}
|
|
\end{thm}
|
|
|
|
\begin{defi}
|
|
A bounded linear operator $T: H \rightarrow H$ on a Hilbert space $H$ is said to be
|
|
\begin{itemize}
|
|
\item self-adjoint if $T^* = T$
|
|
\item unitary if $T$ is bijective and $T^* = T^{-1}$
|
|
\item normal if $TT^* = T^*T$
|
|
\end{itemize}
|
|
If $T$ is self-adjoint or unitary, then it is also normal. The inverse is not generally true.
|
|
\end{defi}
|
|
|
|
\begin{eg}
|
|
Consider $T = 2i I$, where $I$ is the identity operator. Then $T^* = -2i I$. We can see that $TT^* = T^*T$, but $T^* \ne T^{-1} = -\frac{1}{2} i I$ and $T \ne T^*$.
|
|
\end{eg}
|
|
|
|
\begin{eg}
|
|
Consider $\cmpln^n$ with the inner product
|
|
\[
|
|
\innerproduct{x}{y} = \sum_{k=1}^n \xi_k \conj{\eta_k}, \quad x = (\xi_k), ~y = (\eta_k)
|
|
\]
|
|
Any bounded linear operator $T: \cmpln^n \rightarrow \cmpln^n$ can be represented by a square matrix $M_T$. Or in other words, $y = Tx$ can be expressed as
|
|
\[
|
|
\begin{pmatrix}
|
|
\eta_1 \\ \vdots \\ \eta_n
|
|
\end{pmatrix}
|
|
=
|
|
\begin{pmatrix}
|
|
a_{11} & \cdots & a_{1n} \\
|
|
\vdots & \ddots & \vdots \\
|
|
a_{n1} & \cdots & a_{nn}
|
|
\end{pmatrix}
|
|
\begin{pmatrix}
|
|
\xi_1 \\ \vdots \\ \xi_n
|
|
\end{pmatrix}
|
|
\]
|
|
If $M_T$ is the matrix of $T$, then $M_{T^*}$ (the matrix of $T^*$) is the conjugate transpose of $M_T$.
|
|
\end{eg}
|
|
|
|
\begin{thm}
|
|
Let $H$ be a Hilbert space and $T: H \rightarrow H$ a bounded linear operator. Then
|
|
\begin{enumerate}[(i)]
|
|
\item If $T$ is self-adjoint, then $\innerproduct{Tx}{x}$ is real for all $x \in H$
|
|
\item If $H$ is complex ($\field = \cmpln$) and $\innerproduct{Tx}{x}$ is real, then $T$ is self-adjoint
|
|
\end{enumerate}
|
|
\end{thm}
|
|
\begin{proof}
|
|
To prove the first statement, assume $T$ is self-adjoint. Then
|
|
\begin{equation}
|
|
\conj{\innerproduct{Tx}{x}} = \innerproduct{x}{Tx} = \innerproduct{T^*x}{x} = \innerproduct{Tx}{x} \implies \innerproduct{Tx}{x} \in \realn
|
|
\end{equation}
|
|
For the second statement, assume $\innerproduct{Tx}{x}$ to be real. This means
|
|
\begin{equation}
|
|
\innerproduct{Tx}{x} = \conj{\innerproduct{Tx}{x}} = \conj{\innerproduct{x}{T^* x}} = \innerproduct{T^* x}{x}
|
|
\end{equation}
|
|
Thus
|
|
\begin{equation}
|
|
0 = \innerproduct{Tx}{x} - \innerproduct{T^*x}{x} = \innerproduct{Tx - T^*x}{x} = \innerproduct{(T - T^*)x}{x} \implies T = T^*
|
|
\end{equation}
|
|
\end{proof}
|
|
|
|
\begin{thm}
|
|
\begin{enumerate}[(i)]
|
|
\item The product of two bounded, self-adjoint operators $S$ and $T$ is self-adjoint, if and only if $ST = TS$.
|
|
\item Let $(T_n)$ be a sequence of self-adjoint operators on a Hilbert space $H$, such that $T_n \conv{n \rightarrow \infty} T$ in $B(H, H)$. Then $T$ is self-adjoint.
|
|
\end{enumerate}
|
|
\end{thm}
|
|
\begin{proof}
|
|
We will only prove the second statement. We need to show that $T = T^*$. Consider
|
|
\begin{equation}
|
|
\norm{T_n^* - T^*} = \norm{(T_n - T)^*} = \norm{T_n - T} \conv{n \rightarrow \infty} 0
|
|
\end{equation}
|
|
So $T_n^* \conv{n \rightarrow \infty} T^*$, and since $T_n = T_n^*$ this also means that $T_n \conv{n \rightarrow \infty} T^*$. This implies $T = T^*$.
|
|
\end{proof}
|
|
\end{document} |