% !TeX root = ../../script.tex \documentclass[../../script.tex]{subfiles} \begin{document} \section{Contour Integrals} \begin{defi}[Contour integrals] Let $U \subset \cmpln$ be open, $\gamma = C([a, b], U)$ a curve in $U$ and $f: U \rightarrow \cmpln$ continuous. Then \[ \int_{\gamma} f(z) \dd{z} := \int_a^b f(\gamma(t)) \gamma'(t) \dd{t} \] \end{defi} \begin{eg} Consider the path \[ \gamma(t) = re^{it}, ~\quad t \in [0, 2\pi], r > 0 \] we want to take the contout integral along the path $\gamma$ of the function $z^n$ \begin{align*} \int_{\gamma} z^n \dd{z} &= \int_0^{2\pi} (r e^{it})^n ire^{it} \dd{t}\\ &= ir^{n+1} \int_0^{2\pi} e^{it(n+1)} \dd{t} = ir^{n+1} \begin{cases} 2\pi, & n = -1 \\ 0, & n \ne -1 \end{cases} \end{align*} \end{eg} \begin{lem}[Estimation Lemma] For every curve $\gamma \in C([0, 1], U)$ and every continuous function $f: U \rightarrow \cmpln$ we have \[ \abs{\int_{\gamma} f(z) \dd{z}} \le \sup_{z \in \gamma} \abs{f(z)} \int_0^1 \abs{\gamma'(t)} \dd{t} \] \end{lem} \begin{proof} \begin{equation} \begin{split} \abs{\int_{\gamma} f(z) \dd{z}} = \abs{\int_0^1 f(\gamma(t)) \gamma'(t) \dd{t}} &\le \int_0^1 \abs{f(\gamma(t))} \abs{\gamma'(t)} \dd{t} \\ &\le \sup_{t \in [0, 1]} \abs{f(\gamma(t))} \int_0^1 \abs{\gamma'(t)} \dd{t} \end{split} \end{equation} \end{proof} \begin{cor} Let $\gamma \in C([0, 1], U)$ be a simple closed curve, $U \subset \cmpln$, and let $f: U \rightarrow \cmpln$ a holomorphic function with \begin{align*} u = \Re f && v = \Im f \end{align*} Then \[ \oint_{\gamma} f(z) \dd{z} = 0 \] \end{cor} \begin{proof} Let $A \subset U$ be the surface bounded by $\gamma$. Then \begin{equation} \oint_{\gamma} f(z) \dd{z} = \int_0^1 f(\gamma(t)) \gamma'(t) \dd{t} \end{equation} We can split $\gamma$ into a real and an imaginary part, like this \begin{equation} \gamma(t) = \gamma_1(t) + i\gamma_2(t), \quad \gamma_1, \gamma_2: [0, 1] \rightarrow \realn \end{equation} Then we can calculate \begin{equation} \begin{split} \oint_{\gamma} f(z) \dd{z} &= \int_0^1 \left(u(\gamma_1(t), \gamma_2(t)) + iv(\gamma_1(t), \gamma_2(t)) (\gamma_1'(t) + i\gamma_2'(t))\right) \dd{t} \\ &= \int_0^1 u(\gamma_1(t), \gamma_2(t)) \gamma_1'(t) - v(\gamma_1(t), \gamma_2(t)) \gamma_2'(t) \dd{t} \\ &\quad + i\int_0^1 u(\gamma_1(t), \gamma_2(t))\gamma_2'(t) + v(\gamma_1(t), \gamma_2(t))\gamma_1'(t) \dd{t} \\ &= \int_0^1 \begin{pmatrix} u(\gamma(t)) \\ -v(\gamma(t)) \end{pmatrix} \begin{pmatrix} \gamma_1'(t) \\ \gamma_2'(t) \end{pmatrix} \dd{t} + i \int_0^1 \begin{pmatrix} v(\gamma(t)) \\ u(\gamma(t)) \end{pmatrix} \begin{pmatrix} \gamma_1'(t) \\ \gamma_2'(t) \end{pmatrix} \dd{t} \\ &= \oint_{\boundary{A}} \begin{pmatrix} u \\ -v \end{pmatrix} \dd{s} + i \oint_{\boundary{A}} \begin{pmatrix} v \\ u \end{pmatrix} \\ &= \int_A (-\partial_x v - \partial_y u) \dd{\lambda^2} + i \int_A (\partial_x u - \partial_y v) \dd{\lambda^2} \\ \end{split} \end{equation} Because $f$ is holomorphic we can apply the Cauchy-Riemann equation \begin{equation} \oint_{\gamma} f(z) \dd{z} = 0 \end{equation} \end{proof} \begin{defi} \begin{enumerate}[(i)] \item A closed curve $\gamma: [a, b] \rightarrow U$ with $U \subset \cmpln$ is said to be null-homotopic, if it can be continuously deformed into a point within the set $U$. \item Two curves $\gamma_1, \gamma_2: [0, 1] \rightarrow U$ with identical boundary points \begin{align*} \gamma_1(0) = \gamma_2(0) ~\wedge~ \gamma_1(1) = \gamma_2(1) \end{align*} is said to be homotopic in $U$ if the concatenation \begin{align*} \gamma: [0, 2] &\longrightarrow U \\ \gamma(t) &= \begin{cases} \gamma_1(t), & t \in [0, 1] \\ \gamma_2(2 - t) & t \in [1, 2] \end{cases} \end{align*} is null-homotopic. \item Two closed surves $\gamma_0, \gamma_1$ are said to be free-homotopic in $U$ if they can be continuously transformed into each other. \end{enumerate} \end{defi} \begin{defi} A non-empty set $U \subset \cmpln$ is said to be \begin{enumerate}[(i)] \item \textit{connected} if any two points in $U$ can be connected by a curve in $U$. \item \textit{simply connected} if $U$ is connected and every closed surve in $U$ is null-homotopic. \item a \textit{domain} if it is open and connected. \end{enumerate} \end{defi} \begin{thm}[Cauchy's Integral Theorem] Let $f: U \rightarrow \cmpln$ be holomorphic and $\gamma$ a closed, null-homotopic curve in $U \subset \cmpln$ open. Then \[ \oint_{\gamma} f(z) \dd{z} = 0 \] \end{thm} \begin{proof} \noproof \end{proof} \begin{cor} \begin{enumerate}[(i)] \item Let $\gamma_1, \gamma_2$ be holomorphic curves with the same endpoints on the open set $U \subset \cmpln$. Then \[ \int_{\gamma_1} f(z) \dd{z} = \int_{\gamma_2} f(z) \dd{z} \] for all holomorphic $f: U \rightarrow \cmpln$. \item For $f: U \rightarrow \cmpln$ holomorphic, with $U \subset \cmpln$ open and simple connected. Then $\forall z_0 \in U$ \[ F(z) := \int_{z_0}^{z} f(\zeta) \dd{\zeta} = \int_{\gamma = \gamma_0} f(\zeta) \dd{\zeta} \] is a holomorphic anti-derivative of $f$, i.e. \[ F'(z) = f(z) \quad \forall z \in U \] \end{enumerate} \end{cor} \begin{proof} First we prove (i). The concatenation $\gamma := \gamma_1 \gamma_2$ is a null-homotopic curve, so together with the holomorphy of $f$ we can apply the Cauchy integral theorem \begin{equation} \begin{split} 0 = \oint_{\gamma} f(z) \dd{z} &= \int_0^2 f(\gamma(t)) \dot{\gamma}(t) \dd{t} \\ &= \int_0^1 f(\gamma_1(t))\dot{\gamma_1}(t) \dd{t} - \int_1^2 f(\gamma_2(2 - t)) \dot{\gamma_2}(2 - t) \dd{t} \end{split} \end{equation} Substitute $s = 2 - t$ with $\dd{s} = -\dd{t}$: \begin{equation} \begin{split} &= \int_0^1 f(\gamma_1(t)) \dot{\gamma}(t) \dd{t} - \gamma_0^1 f(\gamma_2(s)) \dot{\gamma_2}(s) \dd{s} \\ &= \int_{\gamma_1} f(z) \dd{z} - \int_{\gamma_2} f(z) \dd{z} \end{split} \end{equation} Now we prove (ii). According to (i), we have \begin{equation} F(z + h) = F(z) + \int_{\gamma_{z+h, z}} f(z) \dd{z} \end{equation} We choose $\gamma_{z+h, z}$ to be a straight line, i.e. \begin{equation} \gamma_{z+h, z}(t) = t(z + h) + (1 - t)z, \quad t \in [0, 1] \end{equation} Then \begin{equation} \int_{\gamma_{z+h, z}} 1 \dd{\zeta} = \int_0^1 \dot{\gamma}(t) \dd{t} = h \end{equation} Thus follows \begin{equation} F(z + h) - F(z) = \int_{\gamma_{z + h, z}} f(\zeta) \dd{\zeta} \iff \frac{F(z+h) - F(z)}{h} = \frac{1}{h} \in f(\zeta) \dd{\zeta} \end{equation} and therefore \begin{equation} \begin{split} \left| \frac{F(z+h) - F(z)}{h} - f(z) \right| = &\left| \frac{1}{h} \int_{\gamma_{z+h, z}} f(\zeta) \dd{\zeta} - f(z) \right| \\ = &\left| \frac{1}{h} \int_{\gamma_{z+h, z}} f(\zeta) - f(z) \dd{\zeta} \right| \\ = &\frac{1}{\abs{h}} \int_0^1 \left| f(\gamma_{z+h, z}(t)) - f(z)\right| \left| \dot{\gamma_{z+h, z}}(t) \right| \dd{t} \\ \le &\frac{1}{h} \sup_{t \in [0, 1]} \left| f(\gamma_{z+h,z}(t)) - f(z) \right| \cdot \underbrace{\int \left| \dot{\gamma_{z+h, z}}(t) \right| \dd{t}}_{\abs{h}} \\ = &\sup_{t \in [0, 1]} \left| f(\gamma_{z+h, z}(t)) - f(z) \right| \\ \conv{k \rightarrow 0} &0 \end{split} \end{equation} \end{proof} \begin{eg}[The complex logarithm] Consider $t \mapsto e^{it}, ~t \in \realn$. This is a $2\pi$-periodic function, that means \[ e^{it} = e^{i(t + 2\pi n)}, \quad n \in \intn \] The function \begin{align*} f: \cmpln \setminus \set{0} &\longrightarrow \cmpln \\ z &\longmapsto \frac{1}{z} \end{align*} is holomorphic, and does not have an anti-derivative on $\cmpln \setminus \set{0}$. If it did, then \[ \int_{\gamma} f(z) \dd{z} = F(\gamma(2\pi)) - F(\gamma(0)) = 0 \] would have to hold, but we know that \[ \int_{\gamma} \frac{\dd{z}}{z} = 2\pi i \] This is a contradiction. However $f$ does have an anti-derivative on $\cmpln_{-}$ (the complex numbers without the negative real axis) , since $\cmpln_{-}$ is simple connected and $f$ is holomorphic. Thus we can define \begin{align*} \Log: \cmpln_{-} &\longrightarrow \cmpln \\ z &\longmapsto \int_{\gamma: [0, 1] \rightarrow z} \frac{\dd{\zeta}}{\zeta} \end{align*} It can also be defined as \begin{align*} \Log z = \begin{cases} 0, & 1 \\ \log\abs{z} + i \arg(z), & \text{else} \end{cases} \end{align*} The function $\arg$ is defined as \begin{align*} \arg: \cmpln_{-} &\longrightarrow (-\pi, \pi) \\ z &\longmapsto \phi \text{ for } z = \abs{z} e^{i\phi} \end{align*} $\Log$ is said to be the main branch of the complex logarithm, and \[ \Log z = \log\abs{z} + i (\arg(z) + 2\pi n), \quad n \in \intn \] the secondary branches. \end{eg} \begin{eg}[Fresnel Integrals] Consider the integrals \begin{align*} \int_0^{\infty} \cos(t^2) \dd{t} && \int_0^{\infty} \sin(t^2) \dd{t} \end{align*} The way these integrals are supposed to be interpreted is as \[ \int_0^{\infty} f(t) \dd{t} = \lim_{N \rightarrow \infty} \int_0^N f(t) \dd{t} \] We realize that \begin{align*} \cos(t^2) = \Re e^{-it^2} && \sin(t^2) = -\Im e^{-it^2} \end{align*} Now, consider these paths \begin{center} \begin{tikzpicture} \draw[->, >=stealth] (0, -1) -- (0, 5) node[above] {$\Im$}; \draw[->, >=stealth] (-1, 0) -- (5, 0) node[right] {$\Re$}; \draw[->, >=stealth, very thick] (0, 0) -- node[below] {$\gamma_1$} (4, 0) node[below] {$R$}; \draw[->, >=stealth, very thick] (4, 0) -- node[right] {$\gamma_2$} (4, 4); \draw[->, >=stealth, very thick] (0, 0) -- node[above left] {$\gamma$} (4, 4); \draw[dashed] (0, 4) node[left] {$R$} -- (4, 4); \end{tikzpicture} \end{center} So it becomes apparent that \[ \int_0^R \cos(t^2) \dd{t} = \Re \int_0^R e^{-it^2} \dd{t} = \Re \int_{\gamma} e^{-z^2} \dd{z} \] We can define a new (closed) path \[ \Gamma = \gamma_1 \gamma_2 (-\gamma) \] and with Cauchy's theorem we can realize that \begin{align*} 0 = \oint_{\Gamma} e^{-z^2} \dd{z} = \int_{\gamma_1} e^{-z^2} \dd{z} + \int_{\gamma_2} e^{-z^2} \dd{z} - \int_{\gamma} e^{-z^2} \dd{z} \end{align*} The next step is to evaluate each of the integrals in the last term, starting with the integral over $\gamma$. \begin{align*} \int_{\gamma} e^{-z^2} \dd{z} = &\int_0^R e^{-((1+i)t)^2} (1+i) \dd{t} \\ = &(1 + i) \int_0^R e^{-2it^2} \dd{t} \\ = &\frac{1+i}{\sqrt{2}} \int_0^{\sqrt{2} R} e^{-is^2} \dd{s} \end{align*} The integrall over $\gamma_1$ evaluates to \begin{align*} \int_{\gamma_1} e^{-z^2} \dd{z} = \int_0^R e^{-t^2} \dd{t} \conv{R \rightarrow \infty} \int_0^{\infty} e^{-t^2} \dd{t} = \frac{1}{2} \int_{-\infty}^{\infty} e^{-t^2} \dd{t} = \frac{\sqrt{\pi}}{2} \end{align*} And the one over $\gamma_2$ to \begin{align*} \int_{\gamma_2} e^{-z^2} \dd{z} = \int_0^R e^{-(r +it)^2} i \dd{t} = i \int_0^R e^{-R^2 + t^2} e^{-2irt} \dd{t} \end{align*} To evaluate this we need to consider the absolute value of this integral \begin{align*} \abs{\int_{\gamma_2} e^{-z^2} \dd{z}} \le &e^{-R^2} \int_0^R e^{t^2} \underbrace{\abs{e^{-2iRt}}}_{=1} \dd{t} \\ = &e^{-R^2} \int_0^R e^{t^2} \dd{t} \le e^{-R^2} \int_0^R e^{tR} \dd{t} \\ = &e^{-R^2} \left[\frac{1}{R} e^{tR}\right]_0^R = \frac{e^{-R^2}}{R} \left(e^{R^2} - 1\right) \end{align*} so \[ \abs{\int_{\gamma_2} e^{-z^2} \dd{z}} \le \frac{1}{R} \left(1 - e^{-R^2}\right) \conv{R \rightarrow \infty} 0 \] Thus we can calculate \[ \int_{\gamma} e^{-z^2} \dd{z} = \frac{1+i}{\sqrt{2}} \int_0^{\sqrt{2} R} e^{-it^2} \dd{t} = \int_{\gamma_1} e^{-z^2} \dd{z} + \int_{\gamma_2} e^{-z^2} \dd{z} \] And finally \begin{align*} \lim_{R \rightarrow \infty} \int_0^{\infty} e^{-it^2} \dd{t} = &\lim_{R \rightarrow \infty} \int_0^{\sqrt{2} R} e^{-t^2} \dd{t} \\ = &\frac{\sqrt{2}}{1+i} \left(\lim_{R \rightarrow \infty} \left( \int_{\gamma_1} e^{-z^2} \dd{z} + \int_{\gamma_2} e^{-z^2} \dd{z} \right) \right) \\ = &\frac{\sqrt{2}}{1+i} \left(\frac{\pi}{2} + 0\right) \\ = &\sqrt{\frac{\pi}{2}} \frac{1-i}{2} = \sqrt{\frac{\pi}{8}} (1 - i) \end{align*} So we can calculate the Fresnel integrals \begin{align*} \int_0^{\infty} \cos(t^2) \dd{t} &= \sqrt{\frac{\pi}{8}} \\ \int_0^{\infty} \sin(t^2) \dd{t} &= \sqrt{\frac{\pi}{8}} \end{align*} \end{eg} \begin{thm}[Cauchy's Theorem for circular disks] Let $f: U \rightarrow \cmpln$ be holomorphic, $U \subset \cmpln$ open and $\cball[r](a) \subset U$. Then \[ f(a) = \frac{1}{2\pi i} \int_{\abs{z - a} = r} \frac{f(z)}{z-a} \dd{z} \] \end{thm} \begin{proof} Consider the following path \begin{center} \begin{tikzpicture}[scale=7.5] \draw[fill] (5, 0.7) node[below] {$a$} circle [radius=0.004]; \begin{scope}[decoration={ markings, mark=at position 0.5 with {\arrow{latex}}} ] \draw[thick, postaction={decorate}, domain=435:105] plot ({0.1*cos(\x) + 5}, {0.1*sin(\x) + 0.7}); \draw[postaction={decorate}, domain=435:105] plot ({0.3*cos(\x) + 5}, {0.3*sin(\x) + 0.7}); \draw[thick, postaction={decorate}] ({0.1*cos(105) + 5}, {0.1*sin(105) + 0.7}) -- node[left] {$\alpha_{\delta}^1$} ({0.3*cos(105) + 5}, {0.3*sin(105) + 0.7}); \draw[thick, postaction={decorate}] ({0.3*cos(435) + 5}, {0.3*sin(435) + 0.7}) -- node[right] {$\alpha_{\delta}^2$} ({0.1*cos(435) + 5}, {0.1*sin(435) + 0.7}); \draw[thick, postaction={decorate}, domain=105:75] plot ({0.3*cos(\x) + 5}, {0.3*sin(\x) + 0.7}); \end{scope} \node[below] at ({0.1*cos(270) + 5}, {0.1*sin(270) + 0.7}) {$\gamma_{\epsilon}$}; \node[below] at ({0.3*cos(270) + 5}, {0.3*sin(270) + 0.7}) {$|z - a| = r$}; \draw[dashed] (5, 0.7) -- ({0.1*cos(150) + 5}, {0.1*sin(150) + 0.7}) node[above left=-0.1cm] {$\epsilon$} ; \draw[dashed] (5, 0.7) -- ({0.3*cos(5) + 5}, {0.3*sin(5) + 0.7}) node[right] {$r$}; \node[above] at ({0.3*cos(90) + 5}, {0.3*sin(90) + 0.7}) {$\gamma_{\delta}$}; \end{tikzpicture} \end{center} According to the first corollary of Cauchy's theorem we have \begin{equation} \begin{split} \int_{\abs{z-a}=r} \frac{f(z)}{z-a} \dd{z} = &\lim_{\delta \rightarrow 0} \int_{\gamma_{\epsilon, \delta}} \frac{f(z)}{z-a} \dd{z} + \underbrace{\int_{\alpha_{\delta}^1} \frac{f(z)}{z-a} \dd{z} + \int_{\alpha_{\delta}^2} \frac{f(z)}{z-a} \dd{z}}_{\conv{\delta \rightarrow 0} 0} \\ = &\int_{\gamma_{\epsilon}} \frac{f(z)}{z-a} \dd{z} \end{split} \end{equation} Thus we conclude \begin{equation} \begin{split} \int_{\abs{z-a}=r} \frac{f(z)}{z-a} \dd{z} = \int_{\gamma_{\epsilon}} \frac{f(z)}{z-a} \dd{z} = &\int_{\gamma_{\epsilon}} \frac{f(z) - f(a)}{z-a} \dd{z} + \int_{\gamma_{\epsilon}} \frac{f(a)}{z-a} \dd{z} \\ = &\int_{\gamma_{\epsilon}} \frac{f(z) - f(a)}{z-a} \dd{z} + f(a) \int_{\gamma_{\epsilon}} \frac{\dd{z}}{z-a} \end{split} \end{equation} We also know that \begin{equation} \int_{\gamma_{\epsilon}} \frac{\dd{z}}{z-a} = 2\pi i \end{equation} Since $f$ is holomorphic we can realize \begin{equation} \sup_{\cball[r](a)} \left| \frac{f(z) - f(a)}{z - a} \right| = M_r < \infty \end{equation} Which results in \begin{equation} \abs{\int_{\gamma_{\epsilon}} \frac{f(z) - f(a)}{z - a} \dd{z}} \le M_r \underbrace{\int_0^{2\pi} \abs{\dot{\gamma_{\epsilon}}(t)} \dd{t}}_{2\pi\epsilon} \conv{\epsilon \rightarrow 0} 0 \end{equation} Thus follows \begin{equation} \int_{|z - a| = r} \frac{f(z)}{z - a} \dd{z} = \int_{\gamma_{\epsilon}} \frac{f(z) - f(a)}{z - a} \dd{z} + 2\pi i f(a) \conv{\epsilon \rightarrow 0} 2\pi i f(a) \end{equation} Or short \begin{equation} \int_{\abs{z - a} = r} \frac{f(z)}{z - a} \dd{z} = 2\pi i f(a) \end{equation} \end{proof} \begin{cor} Let $f: U \rightarrow \cmpln$ be a holomorphic function and $U \subset \cmpln$ an open set such that $\cball[r](a) \subset U$. Then \[ f(a) = \frac{1}{2\pi} \int_0^{2\pi} f(a + re^{it}) \dd{t} \] \end{cor} \begin{proof} \reader \end{proof} \begin{defi}[Analytic functions] Let $f: U \rightarrow \cmpln$ be a function and $U \subset \cmpln$ a domain. $f$ is said to be analytic in $z_0 \in U$ if and only if there exists a power series \[ \sum_{n=0}^{\infty} a_n \zeta^n \] with convergence radius \[ \rho = \left(\limsup |a_n|^{\frac{1}{n}}\right)^{-1} > 0 \] and $\delta \in (0, \rho)$ such that $\oball[\delta](z_0) \subset U$ and \[ f(z) = \int_{k=0}^{\infty} a_n (z - z_0)^n, \quad \forall z \in \oball[\delta](z_0) \] $f$ is said to be analytic on $U$ if $f$ is analytic $\forall z_0 \in U$. \end{defi} \begin{thm}[Power series expansion] If $f$ is holomorphic on a circular disk $\oball[r](z_0)$ for some $r > 0$, then $f$ is analytic in $z_0$. $f$ can be represented with the on $\oball[\rho](z_0)$ convergent power series \[ f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n, \quad z \in \oball[\rho](z_0) \] with \[ c_n = \frac{1}{2\pi i} \int_{|z - z_0| = r} \frac{f(z)}{(z - z_0)^{n+1}} \dd{z}, \quad \forall \rho \in (0, r) \] \end{thm} \begin{proof} \noproof \end{proof} \begin{rem} If $f$ is holomorphic then $f$ can be infinitely often differentiated on $\cmpln$ with \[ f^{(n)}(z) = n! c_n = \frac{n!}{2\pi i} \int_{\abs{z - z_0} = \rho} \frac{f(z)}{(z- z_0)^{n+1}} \dd{z} \] By employing the estimation lemma we can then find that \begin{align*} \abs{c_n} \le \frac{1}{2\pi} \abs{\int_{\abs{z - z_0} = \rho} \frac{f(z)}{(z - z_0)^{n+1}} \dd{z}} \le &\frac{1}{2\pi} \sup_{\abs{z - z_0} = \rho} \abs{\frac{f(z)}{\abs{z - z_0}^{n+1}}} \cdot 2\pi \rho \\ = &\frac{1}{\rho^n} \sup_{z \in \oball[r](z_0)} \abs{f(z)} \\ = &\frac{M_r}{\rho^n}, \quad M_r < \infty \end{align*} This is Cauchy's estimate. \end{rem} \begin{thm}[Liouville's Theorem] Every bounded entire function is constant. \end{thm} \begin{proof} According to the power series expansion theorem, $f$ can be represented by a power series on all of $\cmpln$: \begin{equation} f(z) = \sum_{n=0}^{\infty} c_n z^n \end{equation} and the coefficients satisfy the Cauchy estimate \begin{equation} \abs{c_n} \le \frac{1}{\rho^n} \sup_{\abs{z} = \rho} \abs{f(z)} \le \frac{1}{\rho^n} \underbrace{\sup_{z \in \cmpln} \abs{f(z)}}_{< \infty} \end{equation} This inequality tends to $0$ if $\rho$ tends to $\infty$ for all $n \ge 1$, thus we can find \begin{equation} c_n = 0, \quad \forall n \ge 1 \end{equation} Thus \begin{equation} f(z) = c_0 = \const. \end{equation} \end{proof} \begin{thm}[Fundamental Theorem of Algebra]\label{thm:fundamental} Every polynomial of degree $n \ge 1$ \[ f(z) = \sum_{k=0}^n c_k z^k, \quad c_n \ne 0 \] has a root, i.e. \[ \exists z_0 \in \cmpln: \quad f(z_0) = 0 \] \end{thm} \begin{proof} Assume there exists no root. Then the function \begin{equation} z \longmapsto \frac{1}{f(z)} \end{equation} would be holomorphic on all of $\cmpln$, since $z \mapsto \rec{z}$ is holomorphic on $\cmpln \setminus \set{0}$. Furthermore we find that \begin{equation} \exists R \ge 0: ~~\abs{z} \ge R \implies \abs{f(z)} \ge \abs{f(0)} > 0 \end{equation} which implies \begin{equation} \sup_{z \in \cmpln} \frac{1}{\abs{f(z)}} = \sup_{\abs{z} < R} \frac{1}{\abs{f(z)}} = \max_{\abs{z} \le R} \frac{1}{\abs{f(z)}} < \infty \end{equation} since $f$ doesn't have a root. According to Liouville's theorem $\rec{f}$ has to be constant, and thus $f$ must be constant. This implies that $c_n = 0$, which contradicts the assumption. So $f$ has to have a root. \end{proof} \begin{cor}[Polynomial Decomposition] Let \[ f(z) = \sum_{k=0}^n c_k z^k, \quad n \in \natn, c_k \in \cmpln, c_n = 1 \] Then $\exists z_j \in \cmpln, ~~j = 1, \cdots, n$ such that \[ f(z) = \prod_{j=1}^n (z - z_j) \] \end{cor} \end{document}