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Chapter 1

Fundamentals and Notation

1.1 Logic

Definition 1.1 (Statements). A statement is a sentence (mathematically
or colloquially) which can be either true or false.

Ezxample 1.2. Statements are
e Tomorrow is Monday
e z > 1 where x is a natural number
e Green rabbits grow at full moon
No statements are
e What is a statement?
e x + 20y where x, y are natural numbers
e This sentence is false
Definition 1.3 (Connectives). When ®, ¥ are statements, then
(i) =@ (not ®)
(ii) A ¥ (P and V)

)
)
(ili) ® v ¥ (® or V)
(iv) & = U (if ® then )
)

(v) & <= U (@ if and only if (iff.) ¥)



are also statements. We can represent connectives with truth tables
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Remark 1.4.

(i) = U, P <= U, & <= U are NOT the same
(ili) & = U is always true if @ is false (ex falso quodlibet)

Definition 1.5 (Hierarchy of logical operators). — is stronger than A and
V, which are stronger than — and <= .

Ezample 1.6.
“PAY = (—@)
PAY <= U = (DA )<:>\If
PV U = VATV X ((=D)V (-V)) = ((-V)A D)

We avoid writing statements like ® AWV ©. A statement that is always true
is called a tautology. Some important equivalencies are
¢ equiv. =(—P))
® — VU equiv. ¥V — P
¢ <— Vequiv. (¢ = V)A(? = D)
& VU equiv. 7(=P A V)

Logical operators are commutative, associative and distributive.

Definition 1.7 (Quantifiers). Let ®(x) be a statement depending on z.
Then Vz ®(z) and Jz ®(z) are also statements. The interpretation of these
statements is

e Vo ®(z): "For all z, &(x) holds.”

e Jz ®(z): "There is (at least one) = s.t. ®(z) holds.”



Remark 1.8.

(i) Yo « > 1 is true for natural numbers, but not for integers. We must
specify a domain.

(i) If the domain is infinite the truth value of Vo ®(x) cannot be algorith-
mically determined.

(iii) Vo ®(z) and Yy ®(y) are equivalent.
(iv) Same operators can be exchanged, different ones cannot.

(v) Va ®(z) is equivalent to =3Iz —~P(z).

1.2 Sets and Functions

Definition 1.9. A set is an imaginary ”container” for mathematical objects.
If A is a set we write

e x € A for "z is an element of A”
ez ¢ Afor x€ A
There are some specific types of sets
(i) @ is the empty set which contains no elements. Formally: JzVy y ¢ x
(ii) Finite sets: {1,3,7,20}

(iii) Let ®(x) be a statement and A a set. Then {z € A|®(z)} is the set
of all elements from A such that ®(z) holds.

There are relation operators between sets. Let A, B be sets
(i) A C B means " A is a subset of B”.
(i) A= B means ”A and B are the same”

Each element can appear only once in a set, and there is no specific ordering
to these elements. This means that {1,3,3,7} = {3,1,7}. There are also
operators between sets

(i) AU B is the union of A and B.

r€AUB < zc AVz€EB



(ii) AN B is the intersection of A and B.
r€ANDB <= zc ANz €EB

This can be expanded to more than two sets (AU BUC). We can also
use the following notation. Let A be a set of sets. Then

e

CeA
is the union of all sets contained in A.

(iii) A\ B is the difference of A and B.

r€A\B < x€ ANz ¢ B

(iv) The power set of a set A is the set of all subsets of A. Example:
P({1,2}) = {2, {1},{2},{1,2}}

Theorem 1.10. Let A, B,C be sets. Then

A\(BUC)=(A\B)N(A\C)
\(BﬂC):(A\B)U(A\C)
U(BNC)=(AUB)N(AUC)
N(BUC)=(ANB)U(ANC)

Proof. Let A, B, C be sets.

r€AN(BUC) <= z€ ANzeBUC
< z€AN(zxeBVvzel)
< (x€e ANz eB)V(xeArzel) (1.1)
< rxe€ ANBVzxinANC
— ze€(ANB)U(ANC)

The other equations are left as an exercise to the reader. ]

Definition 1.11. Let A, B be sets. For x € A, y € B we call (z,y) the
ordered pair from «x,y. The Cartesian product is defined as

Ax B=A{(zr,y)|xr € ANy € B}



Remark 1.12.

(i) (z,y) is NOT equivalent to {x,y}. The former is an ordered pair, the
latter a set. It is important to note that

(x,y) = (a,b) <= z=aAy=0>

(ii) This can be extended to triplets, quadruplets, ...
AxBxC={(z,y,2)|r€ ANye BANze C}
We use the notation A x A = A?

(iii) For R? (R are the real numbers) we can view (z,y) as coordinates of
a point in the plane.

Definition 1.13. Let A, B be sets. A mapping f from A to B assigns each
x € A exactly one element f(z) € B. A is called the domain and B the
codomain.

Figure 1.1: A mapping f: A —> B

As shown in figure 1.1, every element from A is assigned exactly one
element from B, but not every element from B must be assigned to an
element from A, and elements from B can be assigned more than one element
from A. The notation for such mappings is

f:A— B

A mapping that has numbers (N, R, - - - ) as the codomain is called a function.



Example 1.14.
(i)
f:N— N
n+—2n+1

f:R—R

0 x rational
T —
1 =z irrational

(iii) Addition on N
f:NxN—N

Instead of f(x,y) we typically write x 4+ y for addition.
(iv) The identity mapping is defined as
id A A— A
T T
Remark 1.15 (Mappings as sets).

(i) A mapping f : A — B corresponds to a subset of F' = A x B, such
that

Vee AVy,z€ B (z,y) e FA(z,2) e F = y==z
Vee Adye B (z,y) € F

(ii) Simply writing "Let the function f(z) = 22...” is NOT mathematically
rigorous.

(iii)

f is a mapping from A to B <= f(x) is a value in B
(iv)
fyg: A — B are the same mapping <= Vx € A f(z) = g(x)

Definition 1.16. We call f: A - B



A

(a) Injective mapping. There is at (b) Surjective mapping. There is at
most one arrow per point in B least one arrow per point in B

Figure 1.2: Visualizations of injective and surjective mappings

e injective if Ve, 2 € A f(x) = f(Z) = =z =12
e surjective if Vy € B,dx € A f(x) =1y
e bijective if f is injective and surjective
Example 1.17.
(i)
f:N—N
n — n?
is not surjective (e.g. n? # 3), but injective.
(ii)
f:Z—N
n —s n’

is neither surjective nor injective.

(iii)

% neven
n n+1
o nodd

is surjective but not injective.



Definition 1.18 (Function compositing). Let A, B, C be sets, and let
f:A— B, g: B— C. Then the composition of f and g is the mapping

gof:A—~C
z— g(f(2))
Remark 1.19. Compositing is associative (why?), but not commutative. For

example let

fN—N g:N—N

n+— 2n n——n-+3
Then

fog(n)=2(n+3)=2n+6
go f(n)=2n+3

Theorem 1.20. Let f : A — B be a bijective mapping. Then there exists
a mapping f~1: B — A such that fo f~' =idg and f~'o f =ida. f~'is
called the inverse function of f.

Proof. Let y € B and f bijective. That means 3z € A such that f(z) = y.
Due to f being injective, this  must be unique, since if 3z € A s.t. f(Z) =
f(x) =y, then z = . We define f(z) =y and f~!(y) = z, therefore

Folf 7y =Fff"w)=fle)=y=idply) = fof'=idp (12)
and equivalently

FTlof(a) =ida(z) = f'of=ids (1.3)

O

1.3 Numbers

Definition 1.21. The real numbers are a set R with the following structure
(i) Addition
+:RxR—R
(ii) Multiplication
tRxR—R

Instead of 4+(x,y) and -(z,y) we write x + y and z - y.



(iii) Order relations

< is a relation on R, i.e. x < y is a statement.
Definition 1.22 (Axioms of Addition).

A1l: Associativity

Va,b,ce R: (a+b)+c=a+ (b+c)

A2: Existence of a neutral element

HVeRVzeR: 2+0=2x

A3: Existence of an inverse element

VeeRI(—x)eR: z+(—x)=0

A4: Commutativity
Ve,yeR: z4+y=y+=x

Theorem 1.23. z,y € R

(i) The neutral element is unique
(ii) Vx € R the inverse is unique
(1)) —(—x) ==
(i) —(z+y) = (—=2) + (-y)

Proof.

(i) Assume a,b € R are both neutral elements, i.e.
VeeR:z+a=z=x+b (1.4)

This also implies that a +b=a and b+ a = b.
— b=bt+aatb=a (1.5)

Therefore a = b.

10



(ii) Assume ¢,d € R are both inverse elements of z € R, i.e.
r+c=0=z+d (1.6)
c=0tc=o+d+c2rtctd=0+d=d (1.7)
Therefore ¢ = d.
(iii) Left as an exercise for the reader.
(iv)
z+y+ ((=2) + (=y)) =z +y + (=2) + (-y)
Ad (1.8)
=z+(-2)+y+(-y) =0

Therefore (—x)+ (—y) is the inverse element of (z+y), i.e. —(z+y) =
(=) + (—y).

O

Definition 1.24 (Axioms of Multiplication).

M1: Vz,y,z € R: (zy)z = x(y2)

M2: 1eRVzeR: zl==2

M3: Ve e R\ {0} Jz~teR: 2z '=1

M4: Vx,y e R: zy=yx
Definition 1.25 (Compatibility of Addition and Multiplication).

R1: Distributivity

Ve,y,z€R: z-(y+2)=(x-y)+ (z-2)

R2: 01
Theorem 1.26. z,y € R
(i) 2-0=0
(i) —(x-y) =z (-y) = (-2)-y
(iit) (=) - (—y) =z -y

11



(iv) (—x)"' = —(z™") (only for x #0)
(v) zy=0 = z2=0Vy=0

Proof.
(i) z€eR
2 R1
z-0=2-(0+0)=2-04+2-0 (1.9)
24 0=2-0 (1.10)
(ii) z,y e R

(iii) Left as an exercise for the reader.
(iv) z € R
r-(~(=0) ) L @ (o)) 2 (o) () 1 ot (113)

M3 —(—x)_l — 1 1.2(@) (_x)—l _ _($—1) (1.14)

v) z,y € R and 0. Then 3y~ ! € R:
(v) 2,y y y

my:O:xyy*1@x~1%2m:0:0-y*1 (1.15)

Remark 1.27. A structure that fulfils all the previous axioms is called a field.
We introduce the following notation for z,y € R, y # 0

T
4

Definition 1.28 (Order relations).

O1: Reflexivity
VeeR: z<z

02: Transitivity

Ve,y,z€ R: z<yny<z = <z

12



03: Anti-Symmetry
Ve,y e R: z<yANy<z = x=y
04: Totality

Ve,ye R: z<yVy<z

O5:
Ve,y,z€R: z<y = z+2<y+z

06:
Ve,ye R: 0<a2AN0<y = 0<zx y

We write x <y forx <yAz#vy
Theorem 1.29. z,y € R

(i) <y = —y< -z

(ii) ©<0Ny<0 = 0<uzxy
(iii) 0 < 1

(iv) 0 <z = 0< a1

(W Oo<z<y = y <zt
Proof.

(i)

= (1.16)

(ii) With y <0 % 0<—yandz <0 % 0 < —z follows from O6:

IA

0< (—2)(—y)=zy (1.17)
(iii) Assume 0 <1 is not true. From O4 we know that
1<0 % g<1.1=1 (1.18)
(iv) Left as an exercise for the reader.

13



(v)
0<ziro<yt 2B o<ty (1.19)

From z <y follows 0 <y —

28 <(y—z)z ty? i yrly Tt —zely b=t —yt (1.20)
R (1.21)
]

Remark 1.30. A structure that fulfils all the previous axioms is called an
ordered field.

Definition 1.31. Let A C R, x € R.
(i) z is called an upper bound of AifVy e A: y <z
(ii) x is called a maximum of A if x is an upper bound of A and z € A

(iii) « is called supremum of A is z is an upper bound of A and if for every
other upper bound y € R the statement x < y holds. In other words,
x is the smallest upper bound of A.

A is called bounded above if it has an upper bound. Analogously, there exists
a lower bound, a minimum and an infimum. We introduce the notation sup A
for the supremum and inf A for the infimum.

Definition 1.32. a,b € R, a < b. We define
o (a,b):={xeR|la<zAhz<b}
e [a,b ={xeRla<zAz<b}
o (a,00):={reR|a<z}

Ezample 1.33. (—o0, 1) is bounded above (1, 2, 1000, - - - are upper bounds),
but has no maximum. 1 is the supremum.

Definition 1.34 (Completeness of the real numbers). Every non-empty
subset of R with an upper bound has a supremum.

Definition 1.35. A set A C R is called inductive if 1 € A and

€A = zx+1cA

14



Lemma 1.36. Let I be an index set, and let A; be inductive sets for every
i€ I. Then (;c; Ai is also inductive.

Proof. Since A; is inductive Vi € I, we know that 1 € A;. Therefore

1e()A (1.22)
iel
Now let & € (;c; Ai, this means that x € A; Vi€ I.
= ztled Viel = z+1e()A (1.23)
iel
0

Definition 1.37. The natural numbers are the smallest inductive subset of

R. Le.
ﬂ A=:N

A inductive

Theorem 1.38 (The principle of induction). Let ®(x) be a statement with
a free variable x. If ®(1) is true, and if ®(xr) = ®(x + 1), then ®(z)
holds for all x € N.

Proof. Define A = {x € R|®(z)}. According to the assumptions, A is
inductive and therefore N C A. This means that Vn € N: &(n). O

Corollary 1.39. m,n € N
(i) m+neN
(i) mn € N

(iii) 1 <n VneN

Proof. We will only proof (i). (ii) and (iii) are left as an exercise for the
reader. Let n € N. Define A = {m € N|m +n € N}. Then 1 € A, since N
is inductive. Now let m € A, therefore n +m € N.

= n+m+1eN (1.24)
< m+1lecA (1.25)
Hence A is inductive, so N C A. From A C N follows that N = A. O

Theorem 1.40. n € N. There are no natural numbers between n and n+1.

15



Heuristic Proof. Show that x € NN (1,2) implies that N\ {z} is inductive.
Now show that if NN (n,n+1) = @ and z € NN (n+1,n+ 2) then N\ {z}
is inductive. O

Theorem 1.41 (Archimedian property).
VeeRIneN: z<n
Proof. If x < 1 there is nothing to prove, so let > 1. Define the set
A={neN|n <z} (1.26)

A is bounded above by definition. There exists the supremum s = sup A.
By definition, s — 1 is not an upper bound of 4, i.e. Ame A: s—1<m.
Therefore s < m + 1.

meACN = m+1eN (1.27)

Since s is an upper bound of A, this implies that m + 1 ¢ A, so therefore
m-—+1>ux. O

Corollary 1.42. Every non-empty subset of N has a minimum, and every
non-empty subset of N that is bounded above has a mazrimum.

Proof. Let A C N. Propose that A has no minimum. Define the set
A:={neN|¥meA: n<m} (1.28)

1 is a lower bound of A4, but according to the proposition A has no minimum,
so therefore 1 ¢ A. This implies that 1 € A.

neAd = n<mVmeA (1.29)

But since there exists no natural number between n and n + 1, this means
that n + 1 is also a lower bound of A, and therefore

n+l<mVmeAd — n+lecd (1.30)
So A is an inductive set, hence A = N. Therefore A = @. ]
Definition 1.43. We define the following new sets:

Z:={zxeR|zxeNyV(—z) €Ny}

Q= {Zp,quAq7é0}

Z. are called integers, and Q are called the rational numbers. Ny are the
natural numbers with the 0 (Ng = NN {0}).

16



Remark 1.44.
r2,ye€l = rz+y,x-y,(—x) €L
1y€Q = z+y,z-y,(—z)€Qandz ' € Qif x #0
The second statement implies that Q is a field.
Corollary 1.45 (Density of the rationals). z,y € R, = <y. Then
IreQ: z<r<y

Proof. This proof relies on the Archimedian property.

1 1
dgeN: y<q<<:>q<y—:r> (1.31)

Let p € Z be the greatest integer that is smaller than y - q. The existence of
p is ensured by corollary Corollary 1.42. Then % <y and

1
p+12y-q:>y§g+*<£+(y—x) (1.32)
q (g q
p
= < =<y (1.33)
q
O

Definition 1.46 (Absolute values). We define the following function
|-+ R —[0,00)
x ,x >0
x—
{—x ,x <0

Theorem 1.47.
z,y ER = |zy| = |z||y]

Proof. Left as an exercise for the reader. O

Definition 1.48 (Complex numbers). Complex numbers are defined as the
set C = R2. Addition and multiplication are defined as mappings CxC — C.
Let (2,y), (.7) € C.
(z,9) + (2,9) = (x + 2,y + 9)
C is a field. Let z = (z,y) € C. We define
R(z) = Re(z) =z the real part
) =Im(z) =y the imaginary part

17



Remark 1.49.

(i) We will not prove that C fulfils the field axioms here, this can be
left as an exercise to the reader. However, we will note the following
statements

e Additive neutral element: (0,0)
e Additive inverse of (z,y): (—z,—y)

e Multiplicative neutral element: (1,0)
e Multiplicative inverse of (x,y) # (0,0): (%—l—y?’ —%erz)
(ii) Numbers with y = 0 are called real.
(iii) The imaginary unit is defined as i = (0,1)
0,1) - (z,y) = (=y, )

Especially
#=(0,1)> = (-1,0) = —(1,0) = —1

We also introduce the following notation
(z,y) = (z,0) +i-(y,0) =z + iy

Theorem 1.50 (Fundamental theorem of algebra). Every non-constant,
complex polynomial has a complex root. Le. form € N, ag, - ,ap, € C,
oy # 0 there is some x € C such that

n
g ' = ap 4+ a1z + aer? + -+ apz™ =0
i=0

Proof. Not here. O

18



Chapter 2

Real Analysis: Part 1

2.1 Elementary Inequalities

Example 2.1.
ez cR — 22>0
e 22 —2zy+1y’=(x—9y)?>0 Vo,ycR
o 2% +y* > 2y
Theorem 2.2 (Absolute inequalities). Let x € R, ¢ € [0,00). Then
(1) —lz] <z < |z
(i1) |z| < ¢ <= —c<z<c
(iii) || > ¢ <= < —cVec<cx
() |z =0 <= =0
Theorem 2.3 (Triangle inequality). Let z,y € R. Then
[z +y| < 2|+ |yl
Proof. From Theorem 2.2 follows z < |z| and y < |y|.
= 4y <[z + |yl (2.1)
However, from the same theorem follows —|z| < z and —|y| < y.

= —|z[—|yl=2+y (2.2)
= |z +y| < |z + |y

19



Corollary 2.4. n €N, x1,--- ,x, € R. Then

n n
D @i < i
i=1 i=1

Proof. Proof by induction. Let n = 1:

|z1] < |1 (2.4)

This statement is trivially true. Now assume the corollary holds for n € N.
Then

n+1 n n
S ai| =D o mit | <D an| + |[2ng]
i=1 i=1 i=1
n
< il + |2nal (2.5)
=1
n+1

= |l
i=1
O
Theorem 2.5 (Bernoulli inequality). Let x € [-1,00) and n € N. Then
(1+z)">1+nx
Proof. Proof by induction. Let n = 1:
l+z>1+4+1-x (2.6)
This is trivial. Now assume the theorem holds for n € N. Then
1+2)" =0 +2)"1+2z)>1+nz)(1+2)

=14 (n+ 1z + na? (2.7)
>1+(n+ 1z

O]

2.2 Sequences and Limits

Definition 2.6. Let M be a set (usually M is R or C). A sequence in M
is a mapping from N to M. The notation is (zy,)neny C M or (z,) C M. x,
is called element of the sequence at n.

20



Example 2.7. Some real sequences are
ez, =2 (1,1
° Tp =) 1k
e 1, = "smallest prime factor of n”  (%,2,3,2,5,2,7,2,3,2,---)

Definition 2.8 (Convergence). Let (z,) C R be a sequence, and x € R.
Then

() converges to x <= Ve >03IN €N: |z, —z[<e Vn>N

A complex sequence (z,) C C converges to z € C if the real and imaginary
parts of (z,) converge to the real and imaginary parts of z. x (or z) is called
the limit of the sequence. Common notation:

n—oo 3 —
Ty — T Ty —— T T}g]goxn—x

If a sequence converges to 0 it is called a null sequence.
Ezample 2.9.

(i) = € R, z, = = (constant sequence). This sequence converges to z. To
show this, let ¢ > 0. Then for N = 1:

|z, —z| =z —2z|=0<e¢
(ii) x, = % is a null sequence. Let € > 0. By the Archimedean property:
1
dJNeN: -<N
€

Then for n > N:

(iii) The sequence

does not converge.

Remark 2.10. A property holds for almost every (a.e.) n € N if it doesn’t
hold for only finitely many n. (e.g. n < 10 is true for a.e. n € N)

21



Theorem 2.11. A sequence (x,) C R (or C) has at most one limit.

Proof. Propose that z, % are different limits of (x,). Without loss of gener-

ality (w.l.o.g.) we can write z < Z. Now define € = (& — 2) > 0.

Ty —> x <= dNp: a:ne(x—e,a:+e):<x—e,x—;$> (2.8)

Ty — T <= dNy: xne(i—e,i+e):<x;x,x+e) (2.9)

Since these intervals are disjoint, the proposition led to a contradiction. [J

Theorem 2.12. Let (x,) C R (or C) be sequence with limit x € R. Then
formeN

lim zp4m =2
n—oo

Proof. Left as an exercise for the reader. O

Definition 2.13. The sequence (z,,) C R is bounded above if {z,, |n € N}
is bounded above. A number K € R is an upper bound if Vn e N: z, < K.

Theorem 2.14. Every convergent sequence is bounded.

Proof. Let (z,,) C R converge to x € R. For e = 1 we trivially know that

ANeNVR>N: |z, —z[<e=1 (2.10)
Let
K = max{z1,x9, - ,oN, || + 1} (2.11)
Then
|z, < K VneN (2.12)

This is trivial for n < N. For n > N we can use the triangle inequality:
n| = [(2n — ) + 2] < |z — 2| + |2 <[z +1 (2.13)
O

Theorem 2.15. If (z,) C R bounded and (y,) C R null sequence, then
(n) - (yn) is also a null sequence.

22



Proof. 1f (x,,) is bounded, this means that 3K € (0, c0) such that
|z, < K VneN (2.14)
Since (yp,) is a null sequence we know that
Ve>03dN e NVn>N: |y, <e (2.15)

Now let € > 0, then 3N € N such that

€

> N: n 2.1
Vn > lynl < 5 (2.16)
@0 -yl = [eallyal < K= =€ (2.17)
Therefore (z,,)(y,) is a null sequence. O

Theorem 2.16 (Squeeze theorem). Let (xy,), (yn), (2n) C R be sequences
such that

for a.e. n € N, and let ,, = x, z, — x. Then

lim y, ==z
n—0o0

Proof. Let € > 0. Then 3Ny, No, N3 € N such that

Vn> Ny z, <yp <z (2.18)
Vn>Ny: |z, —x|<e€ (2.19)
Vn > Ng: |z, —x|<e€ (2.20)

Choose N = max{Ny, Na, N3}. Then
Vn>N: —e<zp—c<yp,—cx<z,—x<e€ (2.21)
Therefore |y, — x| < € O

Ezample 2.17. Yn € N: n < n? (why?).

1 1 . 1
— 0< =< - = lim — =0
nZ2 —n n—oo n2

Theorem 2.18. Let (x,,), (yn) C R and x, — x, yp — y. Then x < y.

Proof. Left as an exercise for the reader. O
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Remark 2.19. If x, < y, Vn € N, then x = y can still be true.
Lemma 2.20. Let (z,) € R and = € R.

(xn) — & <= (|xn — z|) is null sequence

Especially:
(xr) null sequence <= |x,| null sequence

Proof.
||zn, — x| — 0| = |2y, — 2 (2.22)

O]

Theorem 2.21. Let (z,), () C R (or C) with x,, = =, yp =y (x,y € R).
Then all of the following are true:

(1)

Jig on o =24y = Ly an + Jim un

(i)

lim zpy, =2y = lim x, - lim y,
n—oo n—oo n—oo

(iii) If y # 0:
. Xy T lim,,—voo T,
lim —=-=_—"—""—
n—=00 Yn Yy limy, 00 Yn

Proof.
(i) Let € > 0. Then 3N, Ny € N such that

Yn> Nl —a] < % (2.23)
Vn>Ny: |y, —y| < % (2.24)
Now choose N = max{Ny, No}. Then Vn > N:
20+ yn = (2 +y)| = (20 = 2) + (0 — Y|
< |zn — 2 + |yn — ¥l (2.25)
272" ¢
= Tn+ Y — T+Y (2.26)
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0<L |xnyn - xy| = |(xnyn - xny) + (xny - l‘y)’
< |zn(yn — )| + (20 — 2)y (2.27)
= |@n||yn — y| + |20 — 2||ly] — 0

Therefore |z,y, — zy| is a null sequence and

iii) Now we need to show that if 0 then L+ —
y #

m % We know that
ly| > 0. So 3N € N such that

|y

Vn>N: |y, —y| < o (2.29)
This implies that
Yn>N: 0< |g2/| < |yn| (2.30)

From this we now know that i is defined and bounded

1 1 2
=< = (2.31)
Yn|  lynl = 1Yl
So finally
1 1 1 1 1 1
S )= wl] o e
Yn Yy Yn ) Yn )
And therefore
Yn — Y = yi — 1
Yy
Thin 2151 _ Y01 4 o null sequence (2.33)
Yy

Lem. 2.20 1 1
=T

Yn Yy
O
Corollary 2.22. Letk € N, ag, -+ ,ax,bo,- -+ ,br € R and by, # 0. Then

iy 0T+ aomn? + -+ ap_inf N+ apnt  ag
11m —
n—00 by + byn + bon2 + -+ bp_nk—1 + bpnk by
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Proof. Multiply the numerator and the denominator with #

ag al a2 Ap—1
kT Tt o T T tag

nk—

— 0 (2.34)
L N .

Ezample 2.23. Let x € (—1,1). Then lim, o 2™ =0

Proof. For x = 0 this is trivial. For x # 0 it follows that || € (0,1) and

ﬁ € (1,00). Choose s = ﬁ — 1 > 0 and apply the Bernoulli inequality

(Theorem 2.5).

(I+s)">14n-s (2.35)
1 " 1 1 1 -0
0< |z|" = - < A R
1+s (1+s)" " 14n-s 14n-s
The squeeze theorem now tells us that |2 = |z|* — 0 and therefore 2™ —
0. O

Definition 2.24. A sequence (z,,) C R is called monotonic increasing (de-
creasing) if x, 41 > xy (Tpy1 < @) Yn € N.

Theorem 2.25 (Monotone convergence theorem). Let (z,) C R be a mono-
tonic increasing (or decreasing) sequence that is bounded above (or below).
Then (x,,) converges.

Proof. Let (z,,) be monotonic increasing and bounded above. Define
x =sup{x,|n € N} (2.37)
A

Now let € > 0, then = — € is not an upper bound of A, this means AN € N
such that zy > x — e. The monotony of (x,) implies that

Vn>N: z, >z —¢ (2.38)
So therefore
rT—e<Tp<TH+e = |z, —x|<e€ (2.39)
O
Remark 2.26.
(x5,) is monotonic increasing < Tn+l >1 VneN
Tn
x
(z5,) is monotonic decreasing <= "l <1 VpeN
Tn
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Ezxample 2.27. Consider the following sequence

1'1:1
1 a
:L'nJrl:i <$n+>a ac [0,00)
n

Notice that 0 < z,, Vn € N. For n € N one can show that
1 a? 1 a®
9321+1 =1 (x%—l—?a—i—l&) =1 <x%—2a+$2> +a

n n

2
1 a
:<xn—> +a>a
4 Ty

So x?L > a VYn > 2, and therefore x% < x,. Finally

1 a 1
$n+1=2<wn—|—xn) §§($n+:pn):xn Vn > 2

This proves that (z,) is monotonic decreasing and bounded below.

Theorem 2.28 (Square root). This theorem doubles as the definition of the
square root. Let a € [0,00). Then 3z € [0,00) such that x* = a. Such an

is called the square Toot of a, and is notated as r = +/a.

Proof. First we want to prove the uniqueness of such an x. Assume that

2

= r4+y=0 = z=y=0
= r—y=0 = =y

Now to prove the existence, review the previous example.
xn — x for some z € [0, 00)
By using the recursive definition we can write
2T, - Tpyl :xi+a—>x2+a

= 22 =240 = ’=a

27

2? = y? = a with 2,y € [0,00). Then 0 = 22 — y? = (z — y)(z + ¥).

(2.42)

(2.43)

(2.44)



Remark 2.29. Analogously 3z € [0,00) Va € [0,00) such that z"

= a.

(Notation: {/a or = = a%). We will also introduce the power rules for

rational exponents. Let z,y € R, u,v € Q.

($ . y)u — xuyu xu . SCU — CC“+U

Theorem 2.30. Let z,y € R, n € N. Then

0<z<y = Vo< Yy
Let n,m e N, n<m, x € (1,00), y € (0,1). Then
Vo> N Vy < Xy

Proof. Left as an exercise for the reader.

Theorem 2.31. Let a € (0,00). Then

lim Yn=1 lim Ya=1

n—oo n—oo
Proof. Let € > 0. Then
n n—00
(n+¢e)n — 0
This means that n

dANeNVn>N: — <1
(n+e)n

Therefore

n<(l+e)" = 1—-e<1<{n<l+e |{l/ﬁ—1’<e

(2.45)

(2.46)

(2.47)

This proves the first statement. The second statement is trivially true for

a=1,s0let a > 1. Then dn € N such that a < n:
= 1< {a< {Yn——1
n—oo

Squeeze
L Ya 12%

Now let a < 1. Then é <1

n—00 n—oo ,/1 1

Definition 2.32. Let z € C, z,y € R such that z = z + iy.
2| := V22 = Va2 + 42
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Theorem 2.33. Let u,v € C. Then

1 1
|- v = |ul|v] ul T Tl lu+v| < |ul + |v]
Proof.
luv| = Vuv - uv = Vi - v0 = Vui - Voo = |ul|v] (2.51)
1 1 1 1

For the final statement, remember that complex numbers can be represented
as z = x + 1y, and then

So therefore
lu+of* = (u+v)- (@ +7)
= uu + vu + uv + vo

= \u|2 + 2Re(uv) + MZ

< |uf* + 2|av| + |v|? (2.55)
= [ul? + 2lulfv] + |v]?
= (|ul + |v])?

]

Lemma 2.34. Let (z,) C C, z € C.
(zn) —— 2z <= (|zn — z|) null sequence

Proof. Let x, = Re(z,) and y, = Im(z,). Then x = Re(z) and y = Im(2).
First we prove the ” <=7 direction. Let (|2, — z|) be a null sequence.

0 <l|zn|—|z| =|Re(zn — 2)| < |2n — 2| —— 0 (2.56)

Analogously, this holds for y, and y. We know that (|z, — z|) is a null
sequence if x,, —— x (same for y, and y), therefore

= zp —— 2 (2.57)
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To prove the ” =7 direction we use the triangle inequality:

0< |zn — 2| = |(zn — 2) +i(yn — )|

< lan — 2l + |ilyn —y)| — 0 (2.58)
N——
[yn—yl
By the squeeze theorem, |z, — z| is a null sequence. ]

Remark 2.35. Lemma 2.34 allows us to generalize Theorem 2.21 and Corol-
lary 2.22 for complex sequences.

Definition 2.36 (Cauchy sequence). A sequence (z,,) C R (or C) is called
Cauchy sequence if

Ve>03INeNVn,m>N: |z, —x,| <e

Theorem 2.37 (Cauchy convergence test). A sequence (z,) C R (or C)
converges if and only if it is a Cauchy sequence.

Proof. Firstly, let (x,) converge to z, and let € > 0. Then

€

AN eNVn> N : \xn—x|<2 (2.59)
So therefore Vn,m > N:
[Ty — | = |2n — 2+ 2 — 2| <|zp — |+ |z — 20| <€ (2.60)

This proves the ” = 7 direction of the theorem. To prove the inverse let
() be a Cauchy sequence. That means

ANeNVn,m>N: |z, —zn| <1 (2.61)
0| = |20 — 2N + 2n| < [2n — 2|+ 2N] (2.62)
<l|lzn|+1 Vn>N
We will now introduce the two auxiliary sequences
Yn = sup{zy |k > n} zp = inf{zy |k > n} (2.63)
(yn) and (z,) are bounded, and for n < n
{zg |k >n} D{zr|k>n} (2.64)
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=y, = sup{xilk > n} <sup{xklk > n} =yx (2.65)

—> (x,) monotonic decreasing and therefore converging toy  (2.66)
Analogously, this holds true for (z,) as well. Trivially,
Zn < Tn < Yn (2.67)

If y = z, then (x,) converges according to the squeeze theorem. Assume
z < y. Choose € > 5% > 0. If N is big enough, then

sup{zy |k > N} =yn >y —e (2.68)
inf{zxy |k >N} =2y <z+e (2.69)

So for every N € N, we know that

Jdk>N: xp>y— 2 (2.70)
A>N: 2 <z+2€ (2.71)
For these elements the following holds

Yy—z
2

|z — 21| > €=

(2.72)

This is a contradiction to our assumption that (x,) is a Cauchy sequence,
so y = z and therefore (z,,) converges. O

Remark 2.38.
(i) @, = (—1)™. For this sequence the following holds
VneN: |z, —zp1| =2
So this sequence isn’t a Cauchy sequence-
(ii) It is NOT enough to show that |z, — x,11| tends to 0! Example:

(zn) = /n

B _ Y tltvn
VRt l= V= (Vad -V S

At
vn+1+yn
]- nA)OOO

T Vntl+vn

However (y/n) doesn’t converge.
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(ili) We introduce the following

Limes superior limsup 2, = lim sup{zy |k > n}
n—00 n—=oo
Limes inferior liminf z, = lim inf{zy |k > n}

limsup,,_,, zn, > liminf,, . x, always holds, and if (x,) converges
then
n—oo . . .
T, —— ¢ <= limsupz, = liminfz,
n—00 n—oo
Definition 2.39. A sequence (z,) C R is said to be properly divergent to
oo if
Vk € (0,00) AN ENYR>N: z, >k
We notate this as
lim x, = o0
n—o0

Theorem 2.40. Let (z,) C R be a sequence that diverges properly to oo.

Then 1
lim — =0
n—0o Ty,

Conversely, if (yn) C (0,00) is a null sequence, then

1
lim — = o0
n—0 Yp

Proof. Let € > 0. By condition
1 1
AN eNVn>N: |z, > - (<:><e> (2.73)
€ ||
Therefore ﬁ is a null sequence. The second part of the proof is left as an

exercise for the reader. O

Remark 2.41 (Rules for computing). In this remark we will introduce some
basic "rules” for working with infinities. These rules are exclusive to this
topic, and are in no way universal! This should become obvious with our
first two rules:

:I:oo:0 6200
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Obviously, division by 0 is still a taboo, however it works in this case since
we are working with limits, and not with absolutes. Let a € R, b € (0, 00),
€ (1,00), d € (0,1). The remaining rules are:

a4+ 00 =00 a— 00 = —00
00 + 00 = 00 —00 — 00 = —00
b-oo=o00 b-(—00) = —0
00 - 00 = 00 00+ (—00) = —00
¢ =00 =0
d* =0 d> =00

There are no general rules for the following:
00 — 00 > 0-00
00

1OO

Theorem 2.42. Let (z,,) C R be a sequence converging to x, and let (k,) C
N be a sequence such that
lim k, = o0

n—oo
Then
lim xx, ==
n—oo
Proof. Let € > 0. Then
ANeNVR>N: |z, —x|<e (2.74)
Furthermore 3 3
INeNVR>N: k,>N (2.75)
Therefore B
Vn>N: |z, —z|<e (2.76)

Ezxample 2.43. Consider the following sequence
S n%" 4 2n"
nT 3 _opgn
This can be rewritten as
n? +2n"  (n")?%+2(n")

n3n —npn (nn)?) _ (nn)

Introduce the subsequence k, = n™:
k2 + 2k n%" + 2n"

klggo k3 —k 0= nh—gio n3n —nn =0
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2.3 Convergence of Series

Definition 2.44. Let (z,,) C R (or C). Then the series

o0

D

k=1
is the sequence of partial sums (s,):

n
o=
k=1

If the series converges, then Y77 denotes the limit.

Theorem 2.45. Let (x,) CR (or C). Then

(o.9]
Zmn converges = (x,,) null sequence

n=1
Proof. Let s, = > >2; . This is a Cauchy series. Let € > 0. Then
AN eNVn>N: |spt1 — Sn| = |xnt1| <€ (2.77)
O
Ezample 2.46 (Geometric series). Let x € R (or C). Then
(o.9]
Dt
k=1

converges if |z| < 1. (Why?)

Ezample 2.47 (Harmonic series). This is a good example of why the inverse
of Theorem 2.45 does not hold. Consider

Tp = —
n

This is a null sequence, but Y32 ; + does not converge. (Why?)

Lemma 2.48. Let (x,) C R (or C). Then

[ee) [e.e]
an converges <= E Ty converges for some N € N
k=1 k=N
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Proof. Left as an exercise for the reader. O

Theorem 2.49 (Alternating series test). Let (xy,) C [0,00) be a monotonic
decreasing null sequence. Then

> (—1)Fay,

k=1

converges, and
N

STk = Y (- DFag| < ey
k=1 k

=1

Proof. Let s, = Zzzl(—l)kxn, and define the sub sequences a, = sop,
bn, = Son+1- Then

Upt1 = S2n — (Tant+1 — Tont2) < Sop = apn (2.78)
>0

Hence, (a,) is monotonic decreasing. By the same argument, (b,,) is mono-
tonic decreasing. Let m,n € N such that m < n. Then

by < by = ap — Topg1 < ap < apy (279)

Therefore (ay,), (by) are bounded. By Theorem 2.25, these sequence converge

(an) =25 a (bp) =25 b (2.80)
Furthermore
bp — Gp = —ZTopi] —0 = a=b (2.81)

From eq. (2.79) we know that

bm <b=a<ap (2.82)
So therefore
|son —al =an —a < ap — by = Tyl (2.83)
|son+1 —al =b— by < ami1 — by = Topyo (2.84)
O
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Ezample 2.50 (Alternating harmonic series).

1 1 1 1 1 1 1 1
:<1_2>_4+<3_6>_8+<5_10>_12
1 1 1 1. 1 1
"2 176 8 w0 12"
:1<1_1+1_1+1_1+ )

2 2 3 4 5 6
1
_53

But s € [%, 1], this is an example on why rearranging infinite sums can lead
to weird results.

Remark 2.51.

(i) The convergence behaviour does not change if we rearrange finitely
many terms.

(ii) Associativity holds without restrictions

o o
Zwk = Z(l‘zk + Tok-1)
k=1 k=1
(iii) Let I be a set, and define
I —R
7 — a;

Consider the sum

S

i€l
If I is finite, there are no problems. However if [ is infinite then the
solution of that sum can depend on the order of summation!

Definition 2.52. Let (z,,) C R (or C). The series > ;- xj, is said to con-
verge absolutely if > "7, |zx| converges.
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Remark 2.53. Let (z,) C [0,00). Then the sequence
n
=D
k=1

is monotonic increasing. If (s,) is bounded it converges, if it is unbounded
it diverges properly. The notation for absolute convergence is

oo
Z |zg| < 00
k=1

Lemma 2.54. Let Y 2, x) be a series. Then the following are all equivalent
(1)

oo
Z:L‘k converges absolutely
k=1

(ii)
{Z |z

kel

ICN ﬁm’te} s bounded

(iii)
Ve > 03I CN finite VJ C N finite: Y |ag| < e
keJ\I

Proof. To prove the equivalence of all of these statements, we will show that
(i) = (ii) = (iii) = (i). This is sufficient. First we prove (i) =
(ii). Let

[e.e]

> Jan| =k € [0,00) (2.85)

n=1

Let I C N be a finite set, and let N = max . Then

N 00
D Lzl <D fnl % D lzal (2.86)
n=1 n=1

nel
Monotony of the partial sums

Now to prove (ii) = (iii), set

oo {3

kel

ICN ﬁnite} (2.87)
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Let € > 0. Then by definition of sup

37 C N finite : Z|xk| >k—e
kel

Let J C N finite. Then

k—e<) gl < D |kl <K

kel kelJJ
Hence
D lukl= Yl =)ol <e
keJ\I keluJ kel

Finally we show that (iii) = (i). Choose I C N finite such that

VJ C N finite : Z lzg| < 1
keJ\I

Then VJ C N finite

Z|$k| < Z || +Z!$k! < Z\xk\—l-l

keJ keJ\I kel kel

(2.88)

(2.89)

(2.90)

(2.91)

(2.92)

Therefore Y, |zx| is bounded and monotonic increasing, and hence it is

converging. So Y p |zx| < co.

O]

Theorem 2.55. FEvery absolutely convergent series converges and the limit

does not depend on the order of summation.

Proof. Let Y .2, x be absolutely convergent and let € > 0. Choose I C

N finite such that
VICN: ) ol <e
kel

Choose N = max . Define the series
n
=Y
k=1
Then for n <m < N

lsn—sml < D Jul <) ] <e
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Hence s, is a Cauchy sequence, so it converges. Let ¢ : N — N be a bi-
jective mapping. According to Lemma 2.54 the series > ;- Ty(n) CONVETZES

absolutely. Let € > 0. According to the same Lemma
€

I C N finite V.J C N finite: > [ay| < 5

keJ\I
Choose N € N such that

Il NIn{a(1),6(2), -, (n)}
Then for n > N

Dok wm|=| D wme— Y, w
k=1 k=1

ke{l,-- ,N]\I ke{p(1),+,¢(n)I\I

S akl+ > |log| < e

ke{l,- ,NJ\I ke{a(1),+,¢(n)\I

IN

Therefore

nan;O (Z Ty — Zw¢(k)> =0
k=1 k=1

Theorem 2.56. Let Y .-,z be a converging series. Then

00 00
Dok < e
k=1 k=1

Proof. Left as an exercise for the reader.

(2.96)

(2.97)

(2.98)

(2.99)

O]

Theorem 2.57 (Direct comparison test). Let Y o, xp be a series. If a
converging series Y,y exists with |xi| < yg for all sufficiently large
k, then Y ;2 x) converges absolutely. If a series > oz, diverges with

0 <z <z, for all sufficiently large k, then Y 2= xy diverges.
Proof.

n n n oo
Z || < Zyk = Zxk bounded “23> Z |zl < oo (2.100)
k=1 k=1 k=1 k=1

2": ze < Zn::vk e ixk unbounded
k=1 k=1 k=1
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Corollary 2.58 (Ratio test). Let (z,,) be a sequence. If 3g € (0,1) such
that

Tn+1
Tn

<q

for a.e. n € N, then Y 32, x), converges absolutely. If

Tn+1
Tn

>1

then the series diverges.

Proof. Let ¢ € (0,1) and choose N € N such that

vn>N: | <y (2.102)
T
Then
lenal < alewl, fonal < gzl < land, - (2.103)
This means that
o) N 00
Dolael <D lml+ Y Vo] < oo (2.104)

Hence, > 72, zj, converges absolutely. Now choose N € N such that

Vn>N: |Zfi s (2.105)
Ty,
However this means that
|Tpt1] > |zn| YR > N (2.106)

So (xy) is monotonic increasing and therefore not a null sequence. Hence
> pe x diverges. O

Corollary 2.59 (Root test). Let (zy,) be a sequence. If 3¢ € (0,1) such

that
Vizal < q

for a.e. n €N, then Y2, x), converges absolutely. If

Vien| >1

for alln € N then Y 72 | x), diverges.
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Proof. Left as an exercise for the reader. O

Remark 2.60. The previous tests can be summed up by the formulas

. ':UTL+1 . n

| o | <7 a3l Vlem| <1
. xn-i—]. : n

HILH;O . > 1 nlglgo Vien| > 1

for convergence and divergence respectively. If any of these limits is equal
to 1 then the test is inconclusive.

Example 2.61. Let z € C. Then

k

exp(z) := Z %

k=0
converges. To prove this, apply the ratio test:

2[Rz
(k+1)z)F  k+1

The function exp : C — C is called the exponential function.

Remark 2.62 (Binomial coefficient). The binomial coefficient is defined as

()= (i30) = () v

and represents the number of ways one can choose k objects from a set of n

objects. Some rules are
<:> =0 ifk>n
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Ve,ye C: (z+y)" Z()k”k

k=1

Theorem 2.63.

Vu,v € C: exp(u+v) =exp(u) - exp(v)

Proof.
exp(u) - exp(v) = (Z l;;) : <Z Z:) = Z Z Z::,:ll
n=0 m=0 n=0m=0 "

Remark 2.64. We define Euler’s number as
e :=exp(1)

We will also take note of the following rules Va € C,n € N

exp(0) = exp(z) exp(—z) =1 = exp(—z) = )

exp(nz) =exp(r +x+x+ -+ x) = exp(x)
1 T
exp(z)n = exp(;)

Alternatively we can write
z

exp(z) =e
Theorem 2.65. Let x,y € R.

(i)

r <y = exp(z) < exp(y)
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(i)
exp(z) >0 Vz eR

(iii)
exp(z) >1+z VxeR

(i)

nd
lim =0 VdeN
n—oo exp(n)
Proof.
(i) Left as an exercise for the reader.
(ii) For x > 0 this is trivial. For z <0
(@)= — >0 (2.108)
exp(x) = o .

(iii) For x > 0 this is trivial. For z <0
k

> x

S (2.109)
|

!

is an alternating series, and therefore the statement follows from The-
orem 2.49.

(iv) Let d € N. Then Vn € N

n n n—oo
0< 0 2.110
exp(n) Zi(l) %’f ( )
O

Definition 2.66. Define
sin,cos : R — R
as

sin(z) := Im(exp(iz))
cos(z) := Re(exp(iz))
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Remark 2.67.

(1)

(i)

(iii)

Euler’s formula
exp(ix) = cos(z) + isin(x)

Vz e C: exp(z) = exp(2)

|exp(iz)|* = exp(iz) - exp(iz) = exp(iz) - exp(—iz) = 1

Also:
1 = cos?(z) + sin’(z)

On the symmetry of cos and sin:

cos(—x) + isin(—x) = exp(—ix) = exp(ix) = cos(z) — isin(x)

From

— (iz)
exp(iz) = ) k‘ ((*=1,i'=i,i’=—-1,i=—i,i*=1,--)
k=0 )

follow the following series
1)kg2k+1

& (_1)kx2k
sin(x Z 2k .y cos(x) = Z R

k=0 k=0
Forz e R
exp(i2z) = cos(2x) + i sin(2z)
= (cos(z) + isin(z))?

= cos?(z) — sin?(z) + 2i sin(z) cos(z)

By comparing the real and imaginary parts we get the following iden-
tities

cos(2x) = cos?(z) — sin?(x)
sin(2z) = 2sin(x) cos(x)

Later we will show that cos as exactly one root in the interval [0, 2].
We define 7 as the number in the interval [0, 4] such that cos(%) = 0.

— sin(f) =41
2
cos and sin are 27-periodic.
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Theorem 2.68. Vz € C

Z n
lim (1 + —)
n—00 n

Proof. Without proof.
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Chapter 3

Linear Algebra

3.1 Vector Spaces

We introduce the new field K which will stand for any field. It can be either
R, C or any other set that fulfils the field axioms.

Definition 3.1. A vector space is a set V with the operations

Addition Scalar Multiplication
+: VXV —V KXV —V
(z,y) —z+y (o, y) — ax

We require the following conditions for these operations
(i) 0eVVeeV: z4+0=x

(i) Ve e VI(—z)eV: z4+(—2)=0

(iii) Ve,y e V: z+y=y+zx

(iv) Vo,y,z€V: (z+y)+z=2+ (y+2)

(v) Vo eKVz,yeV: alz+y)=ar+ay
(vi) Va, e KV e V: (a+f)r=azr+ fz
(vil) Yo, B e KVz e V1 (af)z = a(fz)
(vili) Ve e V: 1l-z=x

Elements from V are called vectors, elements from K are called scalars.
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Remark 3.2. We now have two different addition operations that are denoted
the same way:

(i) +: VxV =V
(i) +: KxK—K

Analogously there are two neutral elements and two multiplication opera-
tions.

Example 3.3.
(i) K is already a vector space

(i) V = K2 In the case that K = R this vector space is the two-
dimensional Euclidean space. The neutral element is (0,0), and the
inverse is (x1, x2) = (—x1, —x2). This can be extended to K".

(iii) K-valued sequences:

V ={(xn)nen|x € K Vn € N}

(iv) Let M be a set. Then the set of all K-valued functions on M is a
vector space
V=A{f|f:M—K}

Definition 3.4. Let V be a vector space, let x,z1,--- ,x, € V and let
MCV.
(i) x is said to be a linear combination of 1, -,z if Jag, -+ ,a, € K
such that

n
Tr = E ATl
k=1

(ii) The set of all linear combinations of elements from M is called the
span, or the linear hull of M

n
span M := {Z QT

k=1

neN, ar, - ,a, €K, x1,~~,xn€V}

(ili)) M (or the elements of M) are said to be linearly independent if

Vai, - ,an €K, x1,-- ,2, €V
n
Zakazkzo — ap=ar=---=a, =0
k=1
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(iv)

(v)
(vi)

M is said to be a generator (of V) if

span M =V

M is said to be a basis of V' if it is a generator and linearly independent.

V' is said to be finite-dimensional if there is a finite generator.

Ezample 3.5.

(i)

(i)

For V = R? consider the vectors x = (1,0), y = (1,1). These vectors
are linearly independent, since

ar + pfy =a(1,0)+ 4(1,1) =(0,0) = a+F=0AF=0
So therefore a = 8 = 0. We can show that span{z,y} = R? because
(a,8) = (a =Bz + Py
So {z,y} is a generator, hence R? is finite-dimensional.

For V = R3 consider z = (1,-1,2), y = (2,—1,0), 2 = (4,-3,3).
These vectors are linearly dependent because

224y —z = (0,0,0)

Let V ={f|f:R — R}. Consider the vectors

fn:R—R
z— "

The fo, fi,-*, fn, -+ are linearly independent, because

implies ag = a1 = --+ = a,, = 0. The span of the fi is the set of all
polynomials of (< n)-th degree. The function z + (z — 1)? is a linear
combination of fy, -, fs:

(x—13=a23—322+3zx -1
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Remark 3.6. Let V be a vector space, y € V a linear combination of
Y1, ,Yn, and each of those a linear combination of x1,--- ,x,. Le.

n
daq, -, a, € K y:Zakyk
k=1

and
n
Br, €K yp = Z/Bk,lm’l
=1
Then
n n n n n
B ST N ST T o (zam,l) .
k=1 k=1 =1 I=1 \k=1
€K
So therefore
span(span(M)) = span(M)
Theorem 3.7. Let V be a finite-dimensional vector space, and let 1, ,Tp €
V. Then the following are equivalent
(i) x1,--- ,p s a basis.
(ii) x1,--- ,xy is a minimal generator (Minimal means that no subset is a
generator).
(i4i) x1,--- ,xy is a maximal linearly independent system (Mazximal means
that x1,- -+, Tn,y s not linearly independent).
(iv) Yz € V there exists a unique ai,--- ,a, € K
n
x = Z QLT
k=1
Proof. First we prove ”(i) == (ii)”. Let z1,---,x, be a basis of V.
By definition z1,---,x, is a generator. Assume that zo,---,x, is still a
generator, then
n
dag, -+ ,a, € K: :U1:Zakxk (3.1)
k=1
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However this contradicts the linear independence of the basis. Next, to prove
7(ii) = (iii)” let x1,--- ,x, be a minimal generator. Let aq,--- ,a, € K
such that

n
0= Z QLT (3.2)
k=1

Assume that one coefficient is # 0 (w.l.o.g. ay = 0). Then

Ir1 = Z —%.%k (3.3)

=
T1,- -+, Ty is a generator, i.e. forx € V
n n a
k
B, B €K =D Bap=) (ﬂk— al) Tk (3.4)
k=1 k=2
But this implies that xo,---,x, is a generator. That contradicts the as-
sumption that xq,--- ,x, was minimal.
— a1=ag=---=qa, =0 (3.5)
Now let y € V. Then
n
I, m €K Y= ek (3.6)
k=1
So x1, -+ ,Zn,y is linearly dependent, and therefore x4, - , x, is maximal.
To prove ”(iii) = (iv)” let z1,--- , 2y be a maximal linearly independent
system. If y € V| then
n
Jag, o, B EK: Zakxk—i—ﬁy:O (3.7)
k=1
Assume 8 = 0, then consequently
Z1,- -,y linearly independent — oy =ag ==, =0 (3.8)

This is a contradiction, so therefore 8 # 0:



The uniqueness of these coefficients are left as an exercise for the reader.
Finally, to finish the proof we need to show ”(iv) = (i)”. By definition

V =span{xi, - ,zn} (3.10)
Hence, {z1, -+ ,z,} is a generator. In case
n
0="> gy (3.11)
k=1
holds, then a; = - -+ = «,, = 0 follows from the uniqueness. ]

Corollary 3.8. Ewvery finite-dimensional vector space has a basis.

Proof. By condition, there is a generator xz1,--- ,z,. Either this generator
is minimal (then it would be a basis), or we remove elements until it is
minimal. O
Lemma 3.9. Let V be a vector space and x1,--- ,x; € V a linearly inde-

pendent set of elements. Let y € V', then

xi,-+ Tk, Yy linearly independent <= y ¢ span{xi, -, Ty}
Proof. Toprove” <" assumey # span{xy,--- ,x}. Therefore z1,- -, zk,y
must be linearly independent. To see this, consider

O:Zakxk—FBy o1, 0, € K (3.12)
k=1

Then S = 0, otherwise we could solve the above for y, and that would
contradict our assumption. The argument works in the other direction as
well. O

Theorem 3.10 (Steinitz exchange lemma). Let V' be a finite-dimensional
vector space. If x1, -+ , Xy, 1S a generator and y1, -+ ,Yn a linear indepen-
dent set of vectors, then n < m. In case x1, -+ , Ty and Y1, ,yn are both
bases, then n = m.

Heuristic Proof. Let K € {0,--- ,min{m,n} — 1} and let

Tl s TKYYK+1, " s Yn (313)

be linearly independent. Assume that

TK+1, " ,Tm € Span{xlv"' y Lk YK 425" 7yn} (314)
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Then

Y1 € span{z, -, oy} Cspan{zi, -, Tx,Yk+2, " sYm}  (3.15)
This contradicts with the linear independence of z1, -+ ,Zx, Y42, Yn-
Furthermore,

dx, € Vi m ¢ span{xi, - ,Tr,Yk+2," " s Yn} (3.16)
W.log. z:1=xgy1. By Lemma 3.9, 1, ,2x+1,YK+2, - Yn is linearly

independent. We can now sequentially replace y; with z; without losing the
linear independence. Assume n > m, then this process leads to a linear

independent system 1, -+, Zm,Ym+1, " ,Yn. DBut since x1,--- ,xy is a
generator, ¥m,+1 is a linear combination of x1, -+ ,xy,. If z1,--- 2z, and
Y1, ,Yn are both bases, then we cannot change the roles and therefore
m =n. O

Definition 3.11. The amount of elements in a basis is said to be the di-
mension of V', and is denoted as dim V' .

Example 3.12.
(i) Let V =R" (or C™). Define

€L = (0707 707%>07"' 70)
k-th position

Then ey, --- , e, is a basis, in fact, it is the standard basis of R™ (C").

(ii) Let V be the vector space of polynomials

n
neN, ay, - ,a, €R, f(x):Zak:Uk Vr e R

VZ{f:R—)R
k=1

This space has the basis

{xr—>x”\n€No}

Corollary 3.13. In an n-dimensional vector space, every generator has
at least n elements, and every linearly independent system has at most n
elements.
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Proof. Let M C span{z1,---,x,}. Then

V =span M C spanxy,- - ,Zn (3.17)

Hence, 1, -+, x, is a generator. On the other hand, assume
dy € M \ span{xy, - ,z,} (3.18)
Then x1, -+, Zp,y is linearly independent (Lemma 3.9), and we can sequen-
tially add elements from M until x1, -, Zn, Ynt1, ** »Yntm IS & genera-
tor. [

Definition 3.14 (Vector subspace). Let V be a vector space. A non-empty
set W C V is called a vector subspace if

Ve,ye WVaeK: x4+ayeW
Ezample 3.15. Consider
W ={(x,x) €R2|chi € R}
This is a subspace, because

(O x) +aln,n) = (x +an, x +an)

However,

A={(n eR?|X*+n* =1}
is not a subspace, because (1,0), (0,1) € 4, but (1,1) ¢ A.
Remark 3.16.

(i) Every subspace W C V contains the 0 and the inverse elements.
(ii) Let W C V be a subspace. Then

n
Ve, -,z €W, ag, - ,a, €K ZakxkEW
k=1

Furthermore, M C W = span M C W.
(ili) M C V is a subspace if and only of span M = M.

(iv) Let I be an index set, and W; C V subspaces. Then

nw.

i€l

is also a subspace
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(v) The previous doesn’t hold for unions.

(vi) Let M C V:
span M = ﬂ

w

W DM subspace of V

3.2 DMatrices and Gaussian elimination

Definition 3.17. Let a;; € K, with i € {1,--- ,n}, j € {1,--- ,m}. Then

air a2 - aim
az1 az2 - aoam
anl QAn2 - OGpm

is called an n x m-matrix. (n,m) is said to be the dimension of the matrix.

An alternative notation is

A= (CLZ‘]‘) e Knxm

K™*™ is the space of all n x m-matrices. The following operations are defined

for A, B € K™ C e K™%l
(i) Addition

a1 + b1y
A+ B= :
an1 + by1
(ii) Scalar multiplication
aary
a-A=
(707751

(iii) Matrix multiplication
aiicCil + aijec21 + - + A1mCmi
A-C =
ap1C11 + an2c21 + - -+ + ApmCmi

or in shorthand notation

a1m + bim

Anm + bm

A1m,

AApm

aiiciy + ajece + -+ A1mCmi

ap1C1y + an2Cop + -+ - + GnmCmi

(AC)Z] = Zaikckj

k=1
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(iv) Transposition
The transposed matrix AT € K™*" is created by writing the rows of
A as the columns of AT (and vice versa).

(v) Conjugate transposition
A= (A"

Remark 3.18.
(i) K™ (for n,m € N) is a vector space.
(ii

) A- B is only defined if A has as many columns as B has rows.
(iii) K™*! and K" can be trivially identified with K".
)

(iv) Let A, B,C, D, E matrices of fitting dimensions and « € K. Then
(A+ B)C = AC + BC
A(B+C)=AB+ AC
A(CE) = (AC)E
a(AC) = (aA)C = A(aC)

(A+B)T = AT + BT (A+ B)* = A* + B*
()T = a(4) (@A) = AA*
Ay =T . AT (AC)* = C*A*

Proof of associativity. Let A € K™ C € K™*! E ¢ K*P. Further-
more let i € {1,--- ,n},j €{1,--- ,p}.

l l m
(AC)E);; = > (AC)uEy =Y (Z az-,;c,;k) - ek
k=1

k=1 k=1
l

o

Il

—_
I
Il
—

- (Senen

95



— A(CE) = A(CE) (3.20)
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