\documentclass[../../script.tex]{subfiles} % !TEX root = ../../script.tex \begin{document} \section{Matrices and Gaussian elimination} \begin{defi} Let $a_{ij} \in \field$, with $i \in \set{1, \cdots, n}$, $j \in \set{1, \cdots, m}$. Then \[ \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix} \] is called an $n \times m$-matrix. $(n, m)$ is said to be the dimension of the matrix. An alternative notation is \[ A = (a_{ij}) \in \field^{n \times m} \] $\field^{n\times m}$ is the space of all $n \times m$-matrices. The following operations are defined for $A, B \in \field^{n \times m}$, $C \in \field^{m \times l}$: \begin{enumerate}[(i)] \item Addition \[ A + B = \begin{pmatrix} a_{11} + b_{11} & \cdots & a_{1m} + b_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} + b_{n1} & \cdots & a_{nm} + b_{nm} \end{pmatrix} \] \item Scalar multiplication \[ \alpha \cdot A = \begin{pmatrix} \alpha a_{11} & \cdots & \alpha a_{1m} \\ \vdots & \ddots & \vdots \\ \alpha a_{n1} & \cdots & \alpha a_{nm} \end{pmatrix} \] \item Matrix multiplication \[ A \cdot C = \begin{pmatrix} a_{11}c_{11}+a_{12}c_{21}+\cdots+a_{1m}c_{m1} & \cdots & a_{11}c_{1l}+a_{12}c_{2l}+\cdots+a_{1m}c_{ml} \\ \vdots & \ddots & \vdots \\ a_{n1}c_{11}+a_{n2}c_{21}+\cdots+a_{nm}c_{m1} & \cdots & a_{n1}c_{1l}+a_{n2}c_{2l}+\cdots+a_{nm}c_{ml} \end{pmatrix} \] or in shorthand notation \[ (AC)_{ij} = \series[m]{k} a_{ik}c_{kj} \] \item Transposition The transposed matrix $A^T \in \field^{m \times n}$ is created by writing the rows of $A$ as the columns of $A^T$ (and vice versa). \item Conjugate transposition \[ \conj{A} = \left(\overline{A}\right)^T \] \end{enumerate} \end{defi} \begin{rem}\leavevmode \begin{enumerate}[(i)] \item $\field^{n \times m}$ (for $n, m \in \natn$) is a vector space. \item $A \cdot B$ is only defined if $A$ has as many columns as $B$ has rows. \item $\field^{n \times 1}$ and $\field^{1 \times n}$ can be trivially identified with $\field^n$. \item Let $A, B, C, D, E$ matrices of fitting dimensions and $\alpha \in \field$. Then \begin{align*} (A + B) C &= AC + BC \\ A(B + C) &= AB + AC \\ A(CE) &= (AC)E \\ \alpha (AC) &= (\alpha A) C = A (\alpha C) \end{align*} \begin{align*} (A + B)^T &= A^T + B^T & \conj{(A + B)} &= \conj{A} + \conj{B} \\ (\alpha A)^T &= \alpha (A)^T & \conj{(\alpha A)} &= \overline{A} \conj{A} \\ (AC)^T &= C^T \cdot A^T & \conj{(AC)} &= \conj{C} \conj{A} \end{align*} \begin{proof}[Proof of associativity] Let $A \in \field^{n \times m}, C \in \field^{m \times l}, E \in \field^{l \times p}$. Furthermore let $i \in \set{1, \cdots, n}, j \in \set{1, \cdots, p}$. \begin{equation} \begin{split} \left((AC)E\right)_{ij} &= \sum_{k=1}^l (AC)_{ik} E_{kj} = \sum_{k=1}^l \left(\sum_{\tilde{k} = 1}^m a_{i\tilde{k}} c_{\tilde{k}k}\right) \cdot e_{kj} \\ &= \sum_{k=1}^l \sum_{\tilde{k} = 1}^m a_{i\tilde{k}} \cdot c_{\tilde{k}k} \cdot e_{kj} \\ &= \sum_{\tilde{k} = 1}^m a_{i\tilde{k}} \left( \sum_{k=1}^l c_{\tilde{k} k} e_{kj}\right) \\ &= \sum_{\tilde{k} = 1}^m a_{i \tilde{k}} \cdot (CE)_{\tilde{k}j} \\ &= (A(CE))_{ij} \end{split} \end{equation} \begin{equation} \implies A(CE) = A(CE) \end{equation} \end{proof} \end{enumerate} \end{rem} \end{document}