% !TeX root = ../../script.tex \documentclass[../../script.tex]{subfiles} \begin{document} \section{Solution Methods} \begin{defi} An ordinary differential equation (ODE) is an equation of the form \[ F(x, y, y', \cdots, y^{(n)}) = 0 \] with $F: \realn^{n+2} \rightarrow \realn$. $n$ is the order of the ODE. Let $I$ be an open interval. A function $y: I \rightarrow \realn$ is a solution of the ODE if $y \in C^n(\realn)$ and \[ F(x, y(x), y'(x), \cdots, y^{(n)}(x)) = 0 ~~\forall x \in I \] \end{defi} \begin{eg} \begin{align*} y'' = -\frac{1}{y^2} && \text{Gravitational field} \\ y'' = -\sin y && \text{Pendulum} \end{align*} \end{eg} \begin{rem} \begin{enumerate}[(i)] \item Often times $F$ is only defined on subsets of $\realn^{n+2}$ \item ODEs are not simple to solve \item Even if we can't calculate explicit solutions, we can inspect the following properties \begin{itemize} \item Existence of solutions \item Uniqueness of solutions \item Dependency of solutions from initial conditions \item Sability \end{itemize} \end{enumerate} \end{rem} \begin{eg} \begin{enumerate}[(i)] \item Let $I$ be an open interval and $f: I \rightarrow \realn$ continuous. Then the solution of \[ y' = f(x) \] is the antiderivative of $f$. Let $x_0 \in I$, then \[ y(x) = \int_{x_0}^x f(t) \dd{t} + c ~~c \in \realn \] \item Consider the ODE \[ y' = y \] The functions $x \mapsto c e^x$ are solutions $\forall c \in \realn$. Are those all the solutions that exist? Let $y: I \rightarrow \realn$ be any solution, and consider \[ u(x) = y(x)e^{-x} \] Then \begin{align*} u'(x) &= y'(x) e^{-x} - y(x)e^{-x} \\ &= \left(y'(x) - y(x)\right) e^{-x} = 0 ~~\forall x \in I \end{align*} So $u(x) = c$. \end{enumerate} \end{eg} \begin{defi}[Initial Value Problem] Let $y_0, \cdots, y_{n-1} \in \realn$ and also $F: \realn^{n+2} \rightarrow \realn$. The system of equations \begin{align*} F(x, y, y', \cdots, y^{(n)}) = 0 && \begin{cases} y(0) = y_0 \\ y'(0) = y_1\\ \cdots \\ y^{(n-1)}(0) = y_{n-1} \end{cases} \end{align*} is said to be an initial value problem (IVP). \end{defi} \begin{eg} Consider the problem \begin{align*} y'' = -\rec{y^2} && \begin{cases} y(0) = y_0 \\ y'(0) = y_1 \end{cases} \end{align*} This describes the movement of a point mass in the gravitational field of the earth along a straight line through the center of the earth with the initial position $y_0$ and the initial velocity $y_1$. \end{eg} \begin{eg} Consider the problem \begin{align*} y' = -y^2 && y(0) = 1 \end{align*} Assume $y: I \rightarrow \realn$ is a solution and $y(x) > 0 ~~\forall x \in I$. Then \[ 1 = -\frac{1}{y(t)^2} ~y'(t) ~~\forall t \in I \] By integrating we get \begin{align*} x = -\int_0^x \frac{1}{y(t)^2} y'(t) \dd{t} &\equalexpl{Substitution} -\int_1^{y(x)} \rec{y^2} \dd{y} \\ &= \left. \rec{y} \right\vert_1^{y(x)} = \rec{y(x)} - 1 ~~\forall x \in I \end{align*} So a solution is \[ y(x) = \frac{1}{1+x} \] The biggest domain that makes sense is $(-1, \infty)$. Analogously one can approach equations with "separated variables", so of the form \begin{align*} y' = f(y)g(x) && y(x_0) = y_0 \end{align*} \end{eg} \begin{thm}[Separation of Variables] Let $I, J$ be open intervals, and let \begin{align*} f: I \longrightarrow \realn && g: J \longrightarrow \realn \end{align*} be continuous with $0 \ne f(I)$. Let $x_0 \in J, ~y_0 \in I$. Then there exists an open interval $I_2 \subset J$ and $x_0 \in I_2$ such that the IVP \begin{align*} y' = f(y)g(x) && y(x_0) = y_0 \end{align*} has exactly one solution on $I_2$. Set \[ F(y) = \int_{y_0}^y \rec{f(t)} \dd{t} \] Then $y: I_2 \rightarrow I$ is uniquely defined by \[ F(y(x)) = \int_{x_0}^x g(t) \dd{t} \] \end{thm} \end{document}