% !TeX root = ../../script.tex \documentclass[../../script.tex]{subfiles} \begin{document} \section{Adjoint Operators} \begin{thm}[Riesz Representation Theorem]\label{thm:riesz} Let $H$ be a Hilbert space. Then every bounded linear functional $f$ on $H$ can be written as an inner product \[ f(x) = \innerproduct{x}{z} \] where $z$ is a uniquely determined element of $H$, and $\norm{f} = \norm{z}$. \end{thm} \begin{proof} \noproof \end{proof} \begin{defi} Let $H_1$ and $H_2$ be Hilbert spaces, and $T: H_1 \rightarrow H_2$ a bounded linear operator. Then the adjoint operator $T^*$ of $T$ is the operator $T^*: H_2 \rightarrow H_1$ such that \[ \forall x \in H_1, y \in H_2: \quad \innerproduct{Tx}{y} = \innerproduct{x}{T^*y} \] \end{defi} \begin{thm} The adjoint operator $T^*$ of $T$ exists, is unique, and is bounded with $\norm{T^*} = \norm{T}$ \end{thm} \begin{proof} The existence of $T^*$ follows from \Cref{thm:riesz}. Specifically, consider for a fixed $y \in H_2$ the map \begin{equation} f(x) = \innerproduct{Tx}{y}, \quad x \in H_1 \end{equation} Then $f: H_1 \rightarrow \field$ is a bounded linear functional with \begin{equation} \abs{f(x)} = \abs{\innerproduct{Tx}{y}} \le \norm{Tx}\norm{y} \le \norm{T}\norm{x}\norm{y} = C\norm{x} \end{equation} By \Cref{thm:riesz}, there exists a $z \in H_1$ such that $f(x) = \innerproduct{x}{z}$. Then we can just set \begin{equation} T^* y := z \end{equation} \end{proof} \begin{thm} Let $H_1$ and $H_2$ be Hilbert spaces, and $T, S: H_1 \rightarrow H_2$ bounded linear operators. Then \begin{enumerate}[(i)] \item $\innerproduct{T^* y}{x} = \innerproduct{y}{Tx}, \quad x \in H_1, ~y \in H_2$ \item $(S + T)^* = S^* + T^*$ \item $(\alpha T)^* = \conj{\alpha} T^*, \quad \alpha \in \field$ \item $(T^*)^* = T$ \item $\norm{T^* T} = \norm{TT^*} = \norm{T}^2$ \item $T^* T = 0 \iff T = 0$ \item $(ST)^* = T^* S^*$ (if $H_1 = H_2$) \end{enumerate} \end{thm} \begin{defi} A bounded linear operator $T: H \rightarrow H$ on a Hilbert space $H$ is said to be \begin{itemize} \item self-adjoint if $T^* = T$ \item unitary if $T$ is bijective and $T^* = T^{-1}$ \item normal if $TT^* = T^*T$ \end{itemize} If $T$ is self-adjoint or unitary, then it is also normal. The inverse is not generally true. \end{defi} \begin{eg} Consider $T = 2i I$, where $I$ is the identity operator. Then $T^* = -2i I$. We can see that $TT^* = T^*T$, but $T^* \ne T^{-1} = -\frac{1}{2} i I$ and $T \ne T^*$. \end{eg} \begin{eg} Consider $\cmpln^n$ with the inner product \[ \innerproduct{x}{y} = \sum_{k=1}^n \xi_k \conj{\eta_k}, \quad x = (\xi_k), ~y = (\eta_k) \] Any bounded linear operator $T: \cmpln^n \rightarrow \cmpln^n$ can be represented by a square matrix $M_T$. Or in other words, $y = Tx$ can be expressed as \[ \begin{pmatrix} \eta_1 \\ \vdots \\ \eta_n \end{pmatrix} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix} \] If $M_T$ is the matrix of $T$, then $M_{T^*}$ (the matrix of $T^*$) is the conjugate transpose of $M_T$. \end{eg} \begin{thm} Let $H$ be a Hilbert space and $T: H \rightarrow H$ a bounded linear operator. Then \begin{enumerate}[(i)] \item If $T$ is self-adjoint, then $\innerproduct{Tx}{x}$ is real for all $x \in H$ \item If $H$ is complex ($\field = \cmpln$) and $\innerproduct{Tx}{x}$ is real, then $T$ is self-adjoint \end{enumerate} \end{thm} \begin{proof} To prove the first statement, assume $T$ is self-adjoint. Then \begin{equation} \conj{\innerproduct{Tx}{x}} = \innerproduct{x}{Tx} = \innerproduct{T^*x}{x} = \innerproduct{Tx}{x} \implies \innerproduct{Tx}{x} \in \realn \end{equation} For the second statement, assume $\innerproduct{Tx}{x}$ to be real. This means \begin{equation} \innerproduct{Tx}{x} = \conj{\innerproduct{Tx}{x}} = \conj{\innerproduct{x}{T^* x}} = \innerproduct{T^* x}{x} \end{equation} Thus \begin{equation} 0 = \innerproduct{Tx}{x} - \innerproduct{T^*x}{x} = \innerproduct{Tx - T^*x}{x} = \innerproduct{(T - T^*)x}{x} \implies T = T^* \end{equation} \end{proof} \begin{thm} \begin{enumerate}[(i)] \item The product of two bounded, self-adjoint operators $S$ and $T$ is self-adjoint, if and only if $ST = TS$. \item Let $(T_n)$ be a sequence of self-adjoint operators on a Hilbert space $H$, such that $T_n \conv{n \rightarrow \infty} T$ in $B(H, H)$. Then $T$ is self-adjoint. \end{enumerate} \end{thm} \begin{proof} We will only prove the second statement. We need to show that $T = T^*$. Consider \begin{equation} \norm{T_n^* - T^*} = \norm{(T_n - T)^*} = \norm{T_n - T} \conv{n \rightarrow \infty} 0 \end{equation} So $T_n^* \conv{n \rightarrow \infty} T^*$, and since $T_n = T_n^*$ this also means that $T_n \conv{n \rightarrow \infty} T^*$. This implies $T = T^*$. \end{proof} \end{document}