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1.1 Logic

Definition 1.1 (Statements). A statement is a sentence (mathematically or colloquially)
which can be either true or false.

Example 1.2. Statements are

� Tomorrow is Monday

� x > 1 where x is a natural number

� Green rabbits grow at full moon

No statements are

� What is a statement?

� x+ 20y where x, y are natural numbers

� This sentence is false

Definition 1.3 (Connectives). When Φ,Ψ are statements, then

(i) ¬Φ (not Φ)

(ii) Φ ∧Ψ (Φ and Ψ)

(iii) Φ ∨Ψ (Φ or Ψ)

(iv) Φ =⇒ Ψ (if Φ then Ψ)

(v) Φ ⇐⇒ Ψ (Φ if and only if (iff.) Ψ)

are also statements. We can represent connectives with truth tables

Φ Ψ ¬Φ Φ ∧Ψ Φ ∨Ψ Φ =⇒ Ψ Φ ⇐⇒ Ψ

t t f t t t t
t f f f t f f
f t t f t t f
f f t f f t t

Remark 1.4.

(i) ∨ is inclusive

(ii) Φ =⇒ Ψ, Φ ⇐= Ψ, Φ ⇐⇒ Ψ are NOT the same

(iii) Φ =⇒ Ψ is always true if Φ is false (ex falso quodlibet)

Definition 1.5 (Hierarchy of logical operators). ¬ is stronger than ∧ and ∨, which are
stronger than =⇒ and ⇐⇒ .



1.2. SETS AND FUNCTIONS 5

Example 1.6.

¬Φ ∧Ψ ∼= (¬Φ) ∧Ψ

¬Φ =⇒ Ψ ∼= (¬Φ) ∧Ψ

Φ ∧Ψ ⇐⇒ Ψ ∼= (Φ ∧Ψ) ⇐⇒ Ψ

¬Φ ∨ ¬Ψ =⇒ ¬Ψ ∧Ψ ∼= ((¬Φ) ∨ (¬Ψ)) =⇒ ((¬Ψ) ∧Ψ)

We avoid writing statements like Φ ∧ Ψ ∨ Θ. A statement that is always true is called a
tautology. Some important equivalencies are

Φ equiv. ¬(¬Φ))
Φ =⇒ Ψ equiv. ¬Ψ =⇒ ¬Φ
Φ ⇐⇒ Ψ equiv. (Φ =⇒ Ψ) ∧ (Ψ =⇒ Φ)

Φ ∨Ψ equiv. ¬(¬Φ ∧ ¬Ψ)

Logical operators are commutative, associative and distributive.

Definition 1.7 (Quantifiers). Let Φ(x) be a statement depending on x. Then ∀x Φ(x) and
∃x Φ(x) are also statements. The interpretation of these statements is

� ∀x Φ(x): ”For all x, Φ(x) holds.”

� ∃x Φ(x): ”There is (at least one) x s.t. Φ(x) holds.”

Remark 1.8.

(i) ∀x x ≥ 1 is true for natural numbers, but not for integers. We must specify a domain.

(ii) If the domain is infinite the truth value of ∀x Φ(x) cannot be algorithmically deter-
mined.

(iii) ∀x Φ(x) and ∀y Φ(y) are equivalent.

(iv) Same operators can be exchanged, different ones cannot.

(v) ∀x Φ(x) is equivalent to ¬∃x ¬Φ(x).

1.2 Sets and Functions

Definition 1.9. A set is an imaginary ”container” for mathematical objects. If A is a set
we write

� x ∈ A for ”x is an element of A”

� x /∈ A for ¬x ∈ A
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There are some specific types of sets

(i) ∅ is the empty set which contains no elements. Formally: ∃x∀y y /∈ x

(ii) Finite sets: {1, 3, 7, 20}

(iii) Let Φ(x) be a statement and A a set. Then {x ∈ A |Φ(x)} is the set of all elements
from A such that Φ(x) holds.

There are relation operators between sets. Let A,B be sets

(i) A ⊂ B means ”A is a subset of B”.

(ii) A = B means ”A and B are the same”

Each element can appear only once in a set, and there is no specific ordering to these
elements. This means that {1, 3, 3, 7} = {3, 1, 7}. There are also operators between sets

(i) A ∪B is the union of A and B.

x ∈ A ∪B ⇐⇒ x ∈ A ∨ x ∈ B

(ii) A ∩B is the intersection of A and B.

x ∈ A ∩B ⇐⇒ x ∈ A ∧ x ∈ B

This can be expanded to more than two sets (A∪B∪C). We can also use the following
notation. Let A be a set of sets. Then ⋃

C∈A
C

is the union of all sets contained in A.

(iii) A \B is the difference of A and B.

x ∈ A \B ⇐⇒ x ∈ A ∧ x /∈ B

(iv) The power set of a set A is the set of all subsets of A. Example:

P({1, 2}) = {∅, {1}, {2}, {1, 2}}

Theorem 1.10. Let A,B,C be sets. Then

A \ (B ∪ C) = (A \B) ∩ (A \ C)
A \ (B ∩ C) = (A \B) ∪ (A \ C)
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
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Proof. Let A,B,C be sets.

x ∈ A ∩ (B ∪ C) ⇐⇒ x ∈ A ∧ x ∈ B ∪ C
⇐⇒ x ∈ A ∧ (x ∈ B ∨ x ∈ C)

⇐⇒ (x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C)

⇐⇒ x ∈ A ∩B ∨ x inA ∩ C
⇐⇒ x ∈ (A ∩B) ∪ (A ∩ C)

(1.1)

The other equations are left as an exercise to the reader.

Definition 1.11. Let A,B be sets. For x ∈ A, y ∈ B we call (x, y) the ordered pair from
x, y. The Cartesian product is defined as

A×B = {(x, y) |x ∈ A ∧ y ∈ B}

Remark 1.12.

(i) (x, y) is NOT equivalent to {x, y}. The former is an ordered pair, the latter a set. It
is important to note that

(x, y) = (a, b) ⇐⇒ x = a ∧ y = b

(ii) This can be extended to triplets, quadruplets, ...

A×B × C = {(x, y, z) |x ∈ A ∧ y ∈ B ∧ z ∈ C}

We use the notation A×A = A2

(iii) For R2 (R are the real numbers) we can view (x, y) as coordinates of a point in the
plane.

Definition 1.13. Let A, B be sets. A mapping f from A to B assigns each x ∈ A exactly
one element f(x) ∈ B. A is called the domain and B the codomain.

As shown in figure 1.1, every element from A is assigned exactly one element from B,
but not every element from B must be assigned to an element from A, and elements from
B can be assigned more than one element from A. The notation for such mappings is

f : A −→ B

A mapping that has numbers (N, R, · · · ) as the codomain is called a function.
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A B

Figure 1.1: A mapping f : A→ B

Example 1.14.

(i)

f : N −→ N
n 7−→ 2n+ 1

(ii)

f : R −→ R

x 7−→

{
0 x rational

1 x irrational

(iii) Addition on N
f : N× N −→ N

Instead of f(x, y) we typically write x+ y for addition.

(iv) The identity mapping is defined as

idA : A −→ A

x 7−→ x

Remark 1.15 (Mappings as sets).

(i) A mapping f : A→ B corresponds to a subset of F = A×B, such that

∀x ∈ A ∀y, z ∈ B (x, y) ∈ F ∧ (x, z) ∈ F =⇒ y = z

∀x ∈ A ∃y ∈ B (x, y) ∈ F

(ii) Simply writing ”Let the function f(x) = x2...” is NOT mathematically rigorous.
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(iii)
f is a mapping from A to B ⇐⇒ f(x) is a value in B

(iv)
f, g : A −→ B are the same mapping ⇐⇒ ∀x ∈ A f(x) = g(x)

Definition 1.16. We call f : A→ B

� injective if ∀x, x̃ ∈ A f(x) = f(x̃) =⇒ x = x̃

� surjective if ∀y ∈ B, ∃x ∈ A f(x) = y

� bijective if f is injective and surjective

A B

(a) Injective mapping. There is at most one
arrow per point in B

A B

(b) Surjective mapping. There is at least one
arrow per point in B

Figure 1.2: Visualizations of injective and surjective mappings

Example 1.17.

(i)

f : N −→ N
n 7−→ n2

is not surjective (e.g. n2 ̸= 3), but injective.

(ii)

f : Z −→ N
n 7−→ n2

is neither surjective nor injective.
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(iii)

f : N −→ N

n 7−→

{
n
2 neven
n+1
2 nodd

is surjective but not injective.

Definition 1.18 (Function compositing). Let A, B, C be sets, and let f : A → B, g :
B → C. Then the composition of f and g is the mapping

g ◦ f : A −→ C

x 7−→ g(f(x))

Remark 1.19. Compositing is associative (why?), but not commutative. For example let

f : N −→ N
n 7−→ 2n

g : N −→ N
n 7−→ n+ 3

Then

f ◦ g(n) = 2(n+ 3) = 2n+ 6

g ◦ f(n) = 2n+ 3

Theorem 1.20. Let f : A → B be a bijective mapping. Then there exists a mapping
f−1 : B → A such that f ◦ f−1 = idB and f−1 ◦ f = idA. f

−1 is called the inverse function
of f .

Proof. Let y ∈ B and f bijective. That means ∃x ∈ A such that f(x) = y. Due to f being
injective, this x must be unique, since if ∃x̃ ∈ A s.t. f(x̃) = f(x) = y, then x = x̃. We
define f(x) = y and f−1(y) = x, therefore

f ◦ f−1(y) = f(f−1(y)) = f(x) = y = idB(y) =⇒ f ◦ f−1 = idB (1.2)

and equivalently
f−1 ◦ f(x) = idA(x) =⇒ f−1 ◦ f = idA (1.3)

1.3 Numbers

Definition 1.21. The real numbers are a set R with the following structure

(i) Addition

+ : R× R −→ R
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(ii) Multiplication

· : R× R −→ R

Instead of +(x, y) and ·(x, y) we write x+ y and x · y.

(iii) Order relations

≤ is a relation on R, i.e. x ≤ y is a statement.

Definition 1.22 (Axioms of Addition).

A1: Associativity
∀a, b, c ∈ R : (a+ b) + c = a+ (b+ c)

A2: Existence of a neutral element

∃0 ∈ R ∀x ∈ R : x+ 0 = x

A3: Existence of an inverse element

∀x ∈ R ∃(−x) ∈ R : x+ (−x) = 0

A4: Commutativity
∀x, y ∈ R : x+ y = y + x

Theorem 1.23. x, y ∈ R

(i) The neutral element is unique

(ii) ∀x ∈ R the inverse is unique

(iii) −(−x) = x

(iv) −(x+ y) = (−x) + (−y)

Proof.

(i) Assume a, b ∈ R are both neutral elements, i.e.

∀x ∈ R : x+ a = x = x+ b (1.4)

This also implies that a+ b = a and b+ a = b.

=⇒ b = b+ a
A4
= a+ b = a (1.5)

Therefore a = b.
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(ii) Assume c, d ∈ R are both inverse elements of x ∈ R, i.e.

x+ c = 0 = x+ d (1.6)

c = 0 + c = x+ d+ c
A4
= x+ c+ d = 0 + d = d (1.7)

Therefore c = d.

(iii) Left as an exercise for the reader.

(iv)

x+ y + ((−x) + (−y)) = x+ y + (−x) + (−y)
A4
= x+ (−x) + y + (−y) = 0

(1.8)

Therefore (−x) + (−y) is the inverse element of (x+ y), i.e. −(x+ y) = (−x) + (−y).

Definition 1.24 (Axioms of Multiplication).

M1: ∀x, y, z ∈ R : (xy)z = x(yz)

M2: ∃1 ∈ R ∀x ∈ R : x1 = x

M3: ∀x ∈ R \ {0} ∃x−1 ∈ R : xx−1 = 1

M4: ∀x, y ∈ R : xy = yx

Definition 1.25 (Compatibility of Addition and Multiplication).

R1: Distributivity
∀x, y, z ∈ R : x · (y + z) = (x · y) + (x · z)

R2: 0 ̸= 1

Theorem 1.26. x, y ∈ R

(i) x · 0 = 0

(ii) −(x · y) = x · (−y) = (−x) · y

(iii) (−x) · (−y) = x · y

(iv) (−x)−1 = −(x−1) (only for x ̸= 0)

(v) xy = 0 =⇒ x = 0 ∨ y = 0

Proof.
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(i) x ∈ R
x · 0 A2

= x · (0 + 0)
R1
= x · 0 + x · 0 (1.9)

A3
=⇒ 0 = x · 0 (1.10)

(ii) x, y ∈ R
xy + (−(xy))

A3
= 0

(i)
= x · 0 = x(y + (−y)) R1

= xy + x(−y) (1.11)

A3
=⇒ −(xy) = x · (−y) (1.12)

(iii) Left as an exercise for the reader.

(iv) x ∈ R

x · (−(−x)−1)
(ii)
= −(x · (−x)−1)

(ii)
= (−x) · (−x)−1 M3

= 1
M3
= x · x−1 (1.13)

M3
=⇒ −(−x)−1 = x−1 1.23(iii)

=⇒ (−x)−1 = −(x−1) (1.14)

(v) x, y ∈ R and y ̸= 0. Then ∃y−1 ∈ R:

xy = 0 =⇒ xyy−1 M3
= x · 1 M2

= x = 0 = 0 · y−1 (1.15)

Remark 1.27. A structure that fulfils all the previous axioms is called a field. We introduce
the following notation for x, y ∈ R, y ̸= 0

x

y
= xy−1

Definition 1.28 (Order relations).

O1: Reflexivity
∀x ∈ R : x ≤ x

O2: Transitivity
∀x, y, z ∈ R : x ≤ y ∧ y ≤ z =⇒ x ≤ z

O3: Anti-Symmetry
∀x, y ∈ R : x ≤ y ∧ y ≤ x =⇒ x = y

O4: Totality
∀x, y ∈ R : x ≤ y ∨ y ≤ x

O5:
∀x, y, z ∈ R : x ≤ y =⇒ x+ z ≤ y + z
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O6:
∀x, y ∈ R : 0 ≤ x ∧ 0 ≤ y =⇒ 0 ≤ x · y

We write x < y for x ≤ y ∧ x ̸= y

Theorem 1.29. x, y ∈ R

(i) x ≤ y =⇒ −y ≤ −x

(ii) x ≤ 0 ∧ y ≤ 0 =⇒ 0 ≤ xy

(iii) 0 ≤ 1

(iv) 0 ≤ x =⇒ 0 ≤ x−1

(v) 0 < x ≤ y =⇒ y−1 ≤ x−1

Proof.

(i)

x ≤ y
O5
=⇒ x+ (−x) + (−y) ≤ y + (−x) + (−y)
⇐⇒ −y ≤ −x

(1.16)

(ii) With y ≤ 0
(i)
=⇒ 0 ≤ −y and x ≤ 0

(i)
=⇒ 0 ≤ −x follows from O6:

0 ≤ (−x)(−y) = xy (1.17)

(iii) Assume 0 ≤ 1 is not true. From O4 we know that

1 ≤ 0
(ii)
=⇒ 0 ≤ 1 · 1 = 1 (1.18)

(iv) Left as an exercise for the reader.

(v)

0 ≤ x−1 ∧ 0 ≤ y−1 O6
=⇒ 0 ≤ x−1y−1 (1.19)

From x ≤ y follows 0 ≤ y − x

O6
=⇒ 0 ≤ (y − x)x−1y−1 R1

= yx−1y−1 − xx−1y−1 = x−1 − y−1 (1.20)

O5
=⇒ y−1 ≤ x−1 (1.21)

Remark 1.30. A structure that fulfils all the previous axioms is called an ordered field.
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Definition 1.31. Let A ⊂ R, x ∈ R.

(i) x is called an upper bound of A if ∀y ∈ A : y ≤ x

(ii) x is called a maximum of A if x is an upper bound of A and x ∈ A

(iii) x is called supremum of A is x is an upper bound of A and if for every other upper
bound y ∈ R the statement x ≤ y holds. In other words, x is the smallest upper
bound of A.

A is called bounded above if it has an upper bound. Analogously, there exists a lower
bound, a minimum and an infimum. We introduce the notation supA for the supremum
and inf A for the infimum.

Definition 1.32. a, b ∈ R, a < b. We define

� (a, b) := {x ∈ R | a < x ∧ x < b}

� [a, b] := {x ∈ R | a ≤ x ∧ x ≤ b}

� (a,∞) := {x ∈ R | a < x}

Example 1.33. (−∞, 1) is bounded above (1, 2, 1000, · · · are upper bounds), but has no
maximum. 1 is the supremum.

Definition 1.34 (Completeness of the real numbers). Every non-empty subset of R with
an upper bound has a supremum.

Definition 1.35. A set A ⊂ R is called inductive if 1 ∈ A and

x ∈ A =⇒ x+ 1 ∈ A

Lemma 1.36. Let I be an index set, and let Ai be inductive sets for every i ∈ I. Then⋂
i∈I Ai is also inductive.

Proof. Since Ai is inductive ∀i ∈ I, we know that 1 ∈ Ai. Therefore

1 ∈
⋂
i∈I

Ai (1.22)

Now let x ∈
⋂
i∈I Ai, this means that x ∈ Ai ∀i ∈ I.

=⇒ x+ 1 ∈ Ai ∀i ∈ I =⇒ x+ 1 ∈
⋂
i∈I

Ai (1.23)

Definition 1.37. The natural numbers are the smallest inductive subset of R. I.e.⋂
A inductive

A =: N
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Theorem 1.38 (The principle of induction). Let Φ(x) be a statement with a free variable
x. If Φ(1) is true, and if Φ(x) =⇒ Φ(x+ 1), then Φ(x) holds for all x ∈ N.

Proof. Define A = {x ∈ R |Φ(x)}. According to the assumptions, A is inductive and
therefore N ⊂ A. This means that ∀n ∈ N : Φ(n).

Corollary 1.39. m,n ∈ N

(i) m+ n ∈ N

(ii) mn ∈ N

(iii) 1 ≤ n ∀n ∈ N

Proof. We will only proof (i). (ii) and (iii) are left as an exercise for the reader. Let n ∈ N.
Define A = {m ∈ N |m + n ∈ N}. Then 1 ∈ A, since N is inductive. Now let m ∈ A,
therefore n+m ∈ N.

=⇒ n+m+ 1 ∈ N (1.24)

⇐⇒ m+ 1 ∈ A (1.25)

Hence A is inductive, so N ⊂ A. From A ⊂ N follows that N = A.

Theorem 1.40. n ∈ N. There are no natural numbers between n and n+ 1.

Heuristic Proof. Show that x ∈ N∩ (1, 2) implies that N \ {x} is inductive. Now show that
if N ∩ (n, n+ 1) = ∅ and x ∈ N ∩ (n+ 1, n+ 2) then N \ {x} is inductive.

Theorem 1.41 (Archimedian property).

∀x ∈ R ∃n ∈ N : x < n

Proof. If x < 1 there is nothing to prove, so let x ≥ 1. Define the set

A = {n ∈ N |n ≤ x} (1.26)

A is bounded above by definition. There exists the supremum s = supA. By definition,
s− 1 is not an upper bound of A, i.e. ∃m ∈ A : s− 1 < m. Therefore s ≤ m+ 1.

m ∈ A ⊂ N =⇒ m+ 1 ∈ N (1.27)

Since s is an upper bound of A, this implies that m+ 1 ̸⊂ A, so therefore m+ 1 > x.

Corollary 1.42. Every non-empty subset of N has a minimum, and every non-empty subset
of N that is bounded above has a maximum.
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Proof. Let A ⊂ N. Propose that A has no minimum. Define the set

Ã := {n ∈ N | ∀m ∈ A : n < m} (1.28)

1 is a lower bound of A, but according to the proposition A has no minimum, so therefore
1 /∈ A. This implies that 1 ∈ Ã.

n ∈ Ã =⇒ n < m ∀m ∈ A (1.29)

But since there exists no natural number between n and n+1, this means that n+1 is also
a lower bound of A, and therefore

n+ 1 ≤ m ∀m ∈ A =⇒ n+ 1 ∈ Ã (1.30)

So Ã is an inductive set, hence Ã = N. Therefore A = ∅.

Definition 1.43. We define the following new sets:

Z := {x ∈ R |x ∈ N0 ∨ (−x) ∈ N0}

Q :=

{
p

q
| p, q ∈ Z ∧ q ̸= 0

}
Z are called integers, and Q are called the rational numbers. N0 are the natural numbers
with the 0 (N0 = N ∩ {0}).

Remark 1.44.

x, y ∈ Z =⇒ x+ y, x · y, (−x) ∈ Z
x, y ∈ Q =⇒ x+ y, x · y, (−x) ∈ Q and x−1 ∈ Q if x ̸= 0

The second statement implies that Q is a field.

Corollary 1.45 (Density of the rationals). x, y ∈ R, x < y. Then

∃r ∈ Q : x < r < y

Proof. This proof relies on the Archimedian property.

∃q ∈ N :
1

y − x
< q

(
⇐⇒ 1

q
< y − x

)
(1.31)

Let p ∈ Z be the greatest integer that is smaller than y · q. The existence of p is ensured by
corollary Corollary 1.42. Then p

q < y and

p+ 1 ≥ y · q =⇒ y ≤ p

q
+

1

q
<
p

q
+ (y − x) (1.32)

=⇒ x <
p

q
< y (1.33)



1.3. NUMBERS 18

Definition 1.46 (Absolute values). We define the following function

| · | : R −→ [0,∞)

x 7−→

{
x , x ≥ 0

−x , x < 0

Theorem 1.47.
x, y ∈ R =⇒ |xy| = |x||y|

Proof. Left as an exercise for the reader.

Definition 1.48 (Complex numbers). Complex numbers are defined as the set C = R2.
Addition and multiplication are defined as mappings C× C → C. Let (x, y), (x̃, ỹ) ∈ C.

(x, y) + (x̃, ỹ) := (x+ x̃, y + ỹ)

(x, y) · (x̃, ỹ) := (xx̃− yỹ, xỹ + x̃y)

C is a field. Let z = (x, y) ∈ C. We define

ℜ(z) = Re(z) = x the real part

ℑ(z) = Im(z) = y the imaginary part

Remark 1.49.

(i) We will not prove that C fulfils the field axioms here, this can be left as an exercise
to the reader. However, we will note the following statements

� Additive neutral element: (0, 0)

� Additive inverse of (x, y): (−x,−y)
� Multiplicative neutral element: (1, 0)

� Multiplicative inverse of (x, y) ̸= (0, 0):
(

x
x2+y2

,− y
x2+y2

)
(ii) Numbers with y = 0 are called real.

(iii) The imaginary unit is defined as i = (0, 1)

(0, 1) · (x, y) = (−y, x)

Especially
i2 = (0, 1)2 = (−1, 0) = −(1, 0) = −1

We also introduce the following notation

(x, y) = (x, 0) + i · (y, 0) = x+ iy
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Theorem 1.50 (Fundamental theorem of algebra). Every non-constant, complex polyno-
mial has a complex root. I.e. for n ∈ N, α0, · · · , αn ∈ C, αn ̸= 0 there is some x ∈ C such
that

n∑
i=0

αix
i = α0 + α1x+ α2x

2 + · · ·+ αnx
n = 0

Proof. Not here.
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2.1 Elementary Inequalities

Example 2.1.

� x ∈ R =⇒ x2 ≥ 0

� x2 − 2xy + y2 = (x− y)2 ≥ 0 ∀x, y ∈ R

� x2 + y2 ≥ 2xy

Theorem 2.2 (Absolute inequalities). Let x ∈ R, c ∈ [0,∞). Then

(i) −|x| ≤ x ≤ |x|

(ii) |x| ≤ c ⇐⇒ −c ≤ x ≤ c

(iii) |x| ≥ c ⇐⇒ x ≤ −c ∨ c ≤ x

(iv) |x| = 0 ⇐⇒ x = 0

Theorem 2.3 (Triangle inequality). Let x, y ∈ R. Then

|x+ y| ≤ |x|+ |y|

Proof. From Theorem 2.2 follows x ≤ |x| and y ≤ |y|.

=⇒ x+ y ≤ |x|+ |y| (2.1)

However, from the same theorem follows −|x| ≤ x and −|y| ≤ y.

=⇒ −|x| − |y| = x+ y (2.2)

=⇒ |x+ y| ≤ |x|+ |y| (2.3)

Corollary 2.4. n ∈ N, x1, · · · , xn ∈ R. Then∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣ ≤
n∑
i=1

|xi|

Proof. Proof by induction. Let n = 1:

|x1| ≤ |x1| (2.4)
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This statement is trivially true. Now assume the corollary holds for n ∈ N. Then∣∣∣∣∣
n+1∑
i=1

xi

∣∣∣∣∣ =
∣∣∣∣∣
n∑
i=1

xi + xn+1

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
i=1

xn

∣∣∣∣∣+ |xn+1|

≤
n∑
i=1

|xi|+ |xn+1|

=

n+1∑
i=1

|xi|

(2.5)

Theorem 2.5 (Bernoulli inequality). Let x ∈ [−1,∞) and n ∈ N. Then

(1 + x)n ≥ 1 + nx

Proof. Proof by induction. Let n = 1:

1 + x ≥ 1 + 1 · x (2.6)

This is trivial. Now assume the theorem holds for n ∈ N. Then

(1 + x)n+1 = (1 + x)n(1 + x) ≥ (1 + nx)(1 + x)

= 1 + (n+ 1)x+ nx2

≥ 1 + (n+ 1)x

(2.7)

2.2 Sequences and Limits

Definition 2.6. LetM be a set (usuallyM is R or C). A sequence inM is a mapping from
N to M . The notation is (xn)n∈N ⊂ M or (xn) ⊂ M . xn is called element of the sequence
at n.
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Example 2.7. Some real sequences are

� xn = 1
n

(
1, 12 ,

1
3 ,

1
4 , · · ·

)
� xn =

∑n
k=1 k (1, 3, 6, 10, 15, · · · )

� xn = ”smallest prime factor of n” (∗, 2, 3, 2, 5, 2, 7, 2, 3, 2, · · · )
Definition 2.8 (Convergence). Let (xn) ⊂ R be a sequence, and x ∈ R. Then

(xn) converges to x ⇐⇒ ∀ϵ > 0 ∃N ∈ N : |xn − x| < ϵ ∀n ≥ N

A complex sequence (zn) ⊂ C converges to z ∈ C if the real and imaginary parts of (zn)
converge to the real and imaginary parts of z. x (or z) is called the limit of the sequence.
Common notation:

xn −→ x xn
n→∞−−−→ x lim

n→∞
xn = x

If a sequence converges to 0 it is called a null sequence.

Example 2.9.

(i) x ∈ R, xn = x (constant sequence). This sequence converges to x. To show this, let
ϵ > 0. Then for N = 1:

|xn − x| = |x− x| = 0 < ϵ

(ii) xn = 1
n is a null sequence. Let ϵ > 0. By the Archimedean property:

∃N ∈ N :
1

ϵ
< N

Then for n ≥ N :

|xn − 0| = |xn| =
1

n
≤ 1

N
< ϵ

(iii) The sequence

xn =

{
1 , n even

−1 , n odd

does not converge.

Remark 2.10. A property holds for almost every (a.e.) n ∈ N if it doesn’t hold for only
finitely many n. (e.g. n < 10 is true for a.e. n ∈ N)

Theorem 2.11. A sequence (xn) ⊂ R (or C) has at most one limit.

Proof. Propose that x, x̃ are different limits of (xn). Without loss of generality (w.l.o.g.)
we can write x < x̃. Now define ϵ = 1

2(x̃− x) > 0.

xn −→ x ⇐⇒ ∃N1 : xn ∈ (x− ϵ, x+ ϵ) =

(
x− ϵ,

x+ x̃

2

)
(2.8)

xn −→ x̃ ⇐⇒ ∃N2 : xn ∈ (x̃− ϵ, x̃+ ϵ) =

(
x+ x̃

2
, x+ ϵ

)
(2.9)

Since these intervals are disjoint, the proposition led to a contradiction.
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Theorem 2.12. Let (xn) ⊂ R (or C) be sequence with limit x ∈ R. Then for m ∈ N

lim
n→∞

xn+m = x

Proof. Left as an exercise for the reader.

Definition 2.13. The sequence (xn) ⊂ R is bounded above if {xn |n ∈ N} is bounded
above. A number K ∈ R is an upper bound if ∀n ∈ N : xn ≤ K.

Theorem 2.14. Every convergent sequence is bounded.

Proof. Let (xn) ⊂ R converge to x ∈ R. For ϵ = 1 we trivially know that

∃N ∈ N ∀n ≥ N : |xn − x| < ϵ = 1 (2.10)

Let
K = max{x1, x2, · · · , xN , |x|+ 1} (2.11)

Then
|xn| ≤ K ∀n ∈ N (2.12)

This is trivial for n ≤ N . For n > N we can use the triangle inequality:

|xn| = |(xn − x) + x| ≤ |xn − x|+ |x| ≤ |x|+ 1 (2.13)

Theorem 2.15. If (xn) ⊂ R bounded and (yn) ⊂ R null sequence, then (xn) · (yn) is also
a null sequence.

Proof. If (xn) is bounded, this means that ∃K ∈ (0,∞) such that

|xn| ≤ K ∀n ∈ N (2.14)

Since (yn) is a null sequence we know that

∀ϵ > 0 ∃N ∈ N ∀n ≥ N : |yn| < ϵ (2.15)

Now let ϵ > 0, then ∃N ∈ N such that

∀n ≥ N : |yn| <
ϵ

K
(2.16)

|xn · yn| = |xn||yn| ≤ K
ϵ

K
= ϵ (2.17)

Therefore (xn)(yn) is a null sequence.
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Theorem 2.16 (Squeeze theorem). Let (xn), (yn), (zn) ⊂ R be sequences such that

xn ≤ yn ≤ zn

for a.e. n ∈ N, and let xn → x, zn → x. Then

lim
n→∞

yn = x

Proof. Let ϵ > 0. Then ∃N1, N2, N3 ∈ N such that

∀n ≥ N1 : xn ≤ yn ≤ zn (2.18)

∀n ≥ N2 : |xn − x| < ϵ (2.19)

∀n ≥ N3 : |zn − x| < ϵ (2.20)

Choose N = max{N1, N2, N3}. Then

∀n ≥ N : − ϵ < xn − x ≤ yn − x ≤ zn − x < ϵ (2.21)

Therefore |yn − x| < ϵ

Example 2.17. ∀n ∈ N : n ≤ n2 (why?).

=⇒ 0 ≤ 1

n2
≤ 1

n
=⇒ lim

n→∞

1

n2
= 0

Theorem 2.18. Let (xn), (yn) ⊂ R and xn → x, yn → y. Then x ≤ y.

Proof. Left as an exercise for the reader.

Remark 2.19. If xn < yn ∀n ∈ N, then x = y can still be true.

Lemma 2.20. Let (xn) ∈ R and x ∈ R.

(xn) −→ x ⇐⇒ (|xn − x|) is null sequence

Especially:
(xn) null sequence ⇐⇒ |xn| null sequence

Proof.
||xn − x| − 0| = |xn − x| (2.22)

Theorem 2.21. Let (xn), (xn) ⊂ R (or C) with xn → x, yn → y (x, y ∈ R). Then all of
the following are true:

(i)
lim
n→∞

xn + yn = x+ y = lim
n→∞

xn + lim
n→∞

yn
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(ii)
lim
n→∞

xnyn = xy = lim
n→∞

xn · lim
n→∞

yn

(iii) If y ̸= 0:

lim
n→∞

xn
yn

=
x

y
=

limn→∞ xn
limn→∞ yn

Proof.

(i) Let ϵ > 0. Then ∃N1, N2 ∈ N such that

∀n ≥ N1 : |xn − x| < ϵ

2
(2.23)

∀n ≥ N2 : |yn − y| < ϵ

2
(2.24)

Now choose N = max{N1, N2}. Then ∀n ≥ N :

|xn + yn − (x+ y)| = |(xn − x) + (yn − y)|
≤ |xn − x|+ |yn − y|

<
ϵ

2
+
ϵ

2
= ϵ

(2.25)

=⇒ xn + yn −→ x+ y (2.26)

(ii)

0 ≤ |xnyn − xy| = |(xnyn − xny) + (xny − xy)|
≤ |xn(yn − y)|+ |(xn − x)y|
= |xn||yn − y|+ |xn − x||y| −→ 0

(2.27)

Therefore |xnyn − xy| is a null sequence and

xnyn −→ xy (2.28)

(iii) Now we need to show that if y ̸= 0 then 1
yn

→ 1
y . We know that |y| > 0. So ∃N ∈ N

such that

∀n ≥ N : |yn − y| < |y|
2

(2.29)

This implies that

∀n ≥ N : 0 <
|y|
2

≤ |yn| (2.30)

From this we now know that 1
yn

is defined and bounded∣∣∣∣ 1yn
∣∣∣∣ = 1

|yn|
≤ 2

|y|
(2.31)
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So finally ∣∣∣∣ 1yn − 1

y

∣∣∣∣ = ∣∣∣∣ 1yn
(
1− yn

1

y

)∣∣∣∣ = ∣∣∣∣ 1yn
∣∣∣∣ ∣∣∣∣1− yn

1

y

∣∣∣∣ −→ 0 (2.32)

And therefore

yn −→ y =⇒ yn
y

−→ 1

Thm. 2.15
=⇒

∣∣∣∣1− yn
y

∣∣∣∣ is a null sequence

Lem. 2.20
=⇒ 1

yn
−→ 1

y

(2.33)

Corollary 2.22. Let k ∈ N, a0, · · · , ak, b0, · · · , bk ∈ R and bk ̸= 0. Then

lim
n→∞

a0 + a1n+ a2n
2 + · · ·+ ak−1n

k−1 + akn
k

b0 + b1n+ b2n2 + · · ·+ bk−1nk−1 + bknk
=
ak
bk

Proof. Multiply the numerator and the denominator with 1
nk

a0
nk + a1

nk−1 + a2
nk−2 + · · ·+ ak−1

n + ak
b0
nk + b1

nk−1 + b2
nk−2 + · · ·+ bk−1

n + bk
−→
n→∞

0 (2.34)

Example 2.23. Let x ∈ (−1, 1). Then limn→∞ xn = 0

Proof. For x = 0 this is trivial. For x ̸= 0 it follows that |x| ∈ (0, 1) and 1
|x| ∈ (1,∞).

Choose s = 1
|x| − 1 > 0 and apply the Bernoulli inequality (Theorem 2.5).

(1 + s)n ≥ 1 + n · s (2.35)

0 ≤ |x|n =

(
1

1 + s

)n
=

1

(1 + s)n
≤ 1

1 + n · s
=

1 + n · 0
1 + n · s

2.22−→ 0 (2.36)

The squeeze theorem now tells us that |xn| = |x|n → 0 and therefore xn → 0.

Definition 2.24. A sequence (xn) ⊂ R is called monotonic increasing (decreasing) if xn+1 ≥
xn (xn+1 ≤ xn) ∀n ∈ N.

Theorem 2.25 (Monotone convergence theorem). Let (xn) ⊂ R be a monotonic increasing
(or decreasing) sequence that is bounded above (or below). Then (xn) converges.
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Proof. Let (xn) be monotonic increasing and bounded above. Define

x = sup {xn |n ∈ N}︸ ︷︷ ︸
A

(2.37)

Now let ϵ > 0, then x − ϵ is not an upper bound of A, this means ∃N ∈ N such that
xN > x− ϵ. The monotony of (xn) implies that

∀n ≥ N : xn > x− ϵ (2.38)

So therefore
x− ϵ < xn < x+ ϵ =⇒ |xn − x| < ϵ (2.39)

Remark 2.26.

(xn) is monotonic increasing ⇐⇒ xn+1

xn
≥ 1 ∀n ∈ N

(xn) is monotonic decreasing ⇐⇒ xn+1

xn
≤ 1 ∀n ∈ N

Example 2.27. Consider the following sequence

x1 = 1

xn+1 =
1

2

(
xn +

a

xn

)
, a ∈ [0,∞)

Notice that 0 < xn ∀n ∈ N. For n ∈ N one can show that

x2n+1 =
1

4

(
x2n + 2a+

a2

x2n

)
=

1

4

(
x2n − 2a+

a2

x2n

)
+ a

=
1

4

(
xn −

a

xn

)2

+ a ≥ a

So x2n ≥ a ∀n ≥ 2, and therefore a
xn

≤ xn. Finally

xn+1 =
1

2

(
xn +

a

xn

)
≤ 1

2
(xn + xn) = xn ∀n ≥ 2

This proves that (xn) is monotonic decreasing and bounded below.

Theorem 2.28 (Square root). This theorem doubles as the definition of the square root.
Let a ∈ [0,∞). Then ∃!x ∈ [0,∞) such that x2 = a. Such an x is called the square root of
a, and is notated as x =

√
a.
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Proof. First we want to prove the uniqueness of such an x. Assume that x2 = y2 = a with
x, y ∈ [0,∞). Then 0 = x2 − y2 = (x− y)(x+ y).

=⇒ x+ y = 0 =⇒ x = y = 0 (2.40)

=⇒ x− y = 0 =⇒ x = y (2.41)

Now to prove the existence, review the previous example.

xn −→ x for some x ∈ [0,∞) (2.42)

By using the recursive definition we can write

2xn · xn+1 = x2n + a −→ x2 + a (2.43)

=⇒ 2x2 = x2 + a =⇒ x2 = a (2.44)

Remark 2.29. Analogously ∃!x ∈ [0,∞) ∀a ∈ [0,∞) such that xn = a. (Notation: n
√
a

or x = a
1
n ). We will also introduce the power rules for rational exponents. Let x, y ∈ R,

u, v ∈ Q.

(x · y)u = xuyu xu · xv = xu+v (xu)v = xu·v

Theorem 2.30. Let x, y ∈ R, n ∈ N. Then

0 ≤ x < y =⇒ n
√
x < n

√
y

Let n,m ∈ N, n < m, x ∈ (1,∞), y ∈ (0, 1). Then
n
√
x > m

√
x n

√
y < m

√
y

Proof. Left as an exercise for the reader.

Theorem 2.31. Let a ∈ (0,∞). Then

lim
n→∞

n
√
n = 1 lim

n→∞
n
√
a = 1

Proof. Let ϵ > 0. Then
n

(n+ ϵ)n
n→∞−−−→ 0 (2.45)

This means that
∃N ∈ N ∀n ≥ N :

n

(n+ ϵ)n
< 1 (2.46)

Therefore
n < (1 + ϵ)n =⇒ 1− ϵ < 1 ≤ n

√
n < 1 + ϵ ⇐⇒

∣∣ n
√
n− 1

∣∣ < ϵ (2.47)
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This proves the first statement. The second statement is trivially true for a = 1, so let
a > 1. Then ∃n ∈ N such that a < n:

=⇒ 1 < n
√
a < n

√
n −−−→ 1 (2.48)

Squeeze
=⇒ n

√
a

n→∞−−−→ 1 (2.49)

Now let a < 1. Then 1
a < 1

lim
n→∞

n
√
a = lim

n→∞

1

n

√
1
a

n→∞−−−→ 1

1
= 1 (2.50)

Definition 2.32. Let z ∈ C, x, y ∈ R such that z = x+ iy.

|z| :=
√
zz̄ =

√
x2 + y2

Theorem 2.33. Let u, v ∈ C. Then

|u · v| = |u||v|
∣∣∣∣1u
∣∣∣∣ = 1

|u|
|u+ v| ≤ |u|+ |v|

Proof.
|uv| =

√
uv · ūv =

√
uū · vv̄ =

√
uū ·

√
vv̄ = |u||v| (2.51)∣∣∣∣1u

∣∣∣∣ |u| = ∣∣∣∣1uu
∣∣∣∣ = |1| =⇒

∣∣∣∣1u
∣∣∣∣ = 1

|u|
(2.52)

For the final statement, remember that complex numbers can be represented as z = x+ iy,
and then

Re(z) ≤ |Re(z)| ≤ |z| (2.53)

Im(z) ≤ | Im(z)| ≤ |z| (2.54)

So therefore

|u+ v|2 = (u+ v) · (ū+ v̄)

= uū+ vū+ uv̄ + vv̄

= |u|2 + 2Re(ūv) + |v|2

≤ |u|2 + 2|ūv|+ |v|2

= |u|2 + 2|u||v|+ |v|2

= (|u|+ |v|)2

(2.55)
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Lemma 2.34. Let (zn) ⊂ C, z ∈ C.

(zn) −−−→ z ⇐⇒ (|zn − z|) null sequence

Proof. Let xn = Re(zn) and yn = Im(zn). Then x = Re(z) and y = Im(z). First we prove
the ” ⇐= ” direction. Let (|zn − z|) be a null sequence.

0 ≤ |xn| − |x| = |Re(zn − z)| ≤ |zn − z| −−−→ 0 (2.56)

Analogously, this holds for yn and y. We know that (|xn−x|) is a null sequence if xn −−−→ x
(same for yn and y), therefore

=⇒ zn −−−→ z (2.57)

To prove the ” =⇒ ” direction we use the triangle inequality:

0 ≤ |zn − z| = |(xn − x) + i(yn − y)|
≤ |xn − x|+ |i(yn − y)|︸ ︷︷ ︸

|yn−y|

−−−→ 0 (2.58)

By the squeeze theorem, |zn − z| is a null sequence.

Remark 2.35. Lemma 2.34 allows us to generalize Theorem 2.21 and Corollary 2.22 for
complex sequences.

Definition 2.36 (Cauchy sequence). A sequence (xn) ⊂ R (or C) is called Cauchy sequence
if

∀ϵ > 0 ∃N ∈ N ∀n,m ≥ N : |xn − xm| < ϵ

Theorem 2.37 (Cauchy convergence test). A sequence (xn) ⊂ R (or C) converges if and
only if it is a Cauchy sequence.

Proof. Firstly, let (xn) converge to x, and let ϵ > 0. Then

∃N ∈ N ∀n ≥ N : |xn − x| < ϵ

2
(2.59)

So therefore ∀n,m ≥ N :

|xn − xm| = |xn − x+ x− xm| ≤ |xn − x|+ |x− xm| < ϵ (2.60)

This proves the ” =⇒ ” direction of the theorem. To prove the inverse let (xn) be a Cauchy
sequence. That means

∃N ∈ N ∀n,m ≥ N : |xn − xm| ≤ 1 (2.61)

=⇒ |xn| = |xn − xN + xN | ≤ |xn − xN |+ |xN |
≤ |xN |+ 1 ∀n ≥ N

(2.62)
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We will now introduce the two auxiliary sequences

yn = sup{xk | k ≥ n} zn = inf{xk | k ≥ n} (2.63)

(yn) and (zn) are bounded, and for ñ ≤ n

{xk | k ≥ ñ} ⊃ {xk | k ≥ n} (2.64)

=⇒ yn = sup{xk|k ≥ n} ≤ sup{xk|k ≥ ñ} = yñ (2.65)

=⇒ (xn) monotonic decreasing and therefore converging to y (2.66)

Analogously, this holds true for (zn) as well. Trivially,

zn ≤ xn ≤ yn (2.67)

If y = z, then (xn) converges according to the squeeze theorem. Assume z < y. Choose
ϵ > y−z

2 > 0. If N is big enough, then

sup{xk | k ≥ N} = yN > y − ϵ (2.68)

inf{xk | k ≥ N} = zN < z + ϵ (2.69)

So for every N ∈ N, we know that

∃k ≥ N : xk > y − 2ϵ (2.70)

∃l ≥ N : xl < z + 2ϵ (2.71)

For these elements the following holds

|xk − xl| ≥ ϵ =
y − z

2
(2.72)

This is a contradiction to our assumption that (xn) is a Cauchy sequence, so y = z and
therefore (xn) converges.

Remark 2.38.

(i) xn = (−1)n. For this sequence the following holds

∀n ∈ N : |xn − xn+1| = 2

So this sequence isn’t a Cauchy sequence-

(ii) It is NOT enough to show that |xn − xn+1| tends to 0! Example: (xn) =
√
n

√
n+ 1−

√
n = (

√
n+ 1−

√
n)

√
n+ 1 +

√
n√

n+ 1 +
√
n

=
�n + 1−�n√
n+ 1 +

√
n

=
1√

n+ 1 +
√
n

n→∞−−−→ 0

However (
√
n) doesn’t converge.
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(iii) We introduce the following

Limes superior lim sup
n→∞

xn = lim
n→∞

sup{xk | k ≥ n}

Limes inferior lim inf
n→∞

xn = lim
n→∞

inf{xk | k ≥ n}

lim supn→∞ xn ≥ lim infn→∞ xn always holds, and if (xn) converges then

xn
n→∞−−−→ x ⇐⇒ lim sup

n→∞
xn = lim inf

n→∞
xn

Definition 2.39. A sequence (xn) ⊂ R is said to be properly divergent to ∞ if

∀k ∈ (0,∞) ∃N ∈ N ∀n ≥ N : xn > k

We notate this as
lim
n→∞

xn = ∞

Theorem 2.40. Let (xn) ⊂ R be a sequence that diverges properly to ∞. Then

lim
n→∞

1

xn
= 0

Conversely, if (yn) ⊂ (0,∞) is a null sequence, then

lim
n→0

1

yn
= ∞

Proof. Let ϵ > 0. By condition

∃N ∈ N ∀n ≥ N : |xn| >
1

ϵ

(
⇐⇒ 1

|xn|
< ϵ

)
(2.73)

Therefore 1
xn

is a null sequence. The second part of the proof is left as an exercise for the
reader.

Remark 2.41 (Rules for computing). In this remark we will introduce some basic ”rules” for
working with infinities. These rules are exclusive to this topic, and are in no way universal!
This should become obvious with our first two rules:

1

±∞
= 0

1

0
= ∞

Obviously, division by 0 is still a taboo, however it works in this case since we are working
with limits, and not with absolutes. Let a ∈ R, b ∈ (0,∞), c ∈ (1,∞), d ∈ (0, 1). The
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remaining rules are:

a+∞ = ∞ a−∞ = −∞
∞+∞ = ∞ −∞−∞ = −∞
b · ∞ = ∞ b · (−∞) = −∞

∞ ·∞ = ∞ ∞ · (−∞) = −∞
c∞ = ∞ c−∞ = 0

d∞ = 0 d−∞ = ∞

There are no general rules for the following:

∞−∞ ∞
∞

0 · ∞ 1∞

Theorem 2.42. Let (xn) ⊂ R be a sequence converging to x, and let (kn) ⊂ N be a sequence
such that

lim
n→∞

kn = ∞

Then
lim
n→∞

xkn = x

Proof. Let ϵ > 0. Then
∃N ∈ N ∀n ≥ N : |xn − x| < ϵ (2.74)

Furthermore
∃Ñ ∈ N ∀n ≥ Ñ : kn > N (2.75)

Therefore
∀n ≥ Ñ : |xkn − x| < ϵ (2.76)

Example 2.43. Consider the following sequence

xn =
n2n + 2nn

n3n − nn

This can be rewritten as
n2n + 2nn

n3n − nn
=

(nn)2 + 2(nn)

(nn)3 − (nn)

Introduce the subsequence kn = nn:

lim
k→∞

k2 + 2k

k3 − k
= 0 =⇒ lim

n→∞

n2n + 2nn

n3n − nn
= 0
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2.3 Convergence of Series

Definition 2.44. Let (xn) ⊂ R (or C). Then the series

∞∑
k=1

xk

is the sequence of partial sums (sn):

sn =

n∑
k=1

xk

If the series converges, then
∑∞

k=1 denotes the limit.

Theorem 2.45. Let (xn) ⊂ R (or C). Then

∞∑
n=1

xn converges =⇒ (xn) null sequence

Proof. Let sn =
∑∞

n=1 xn. This is a Cauchy series. Let ϵ > 0. Then

∃N ∈ N ∀n ≥ N : |sn+1 − sn| = |xn+1| < ϵ (2.77)

Example 2.46 (Geometric series). Let x ∈ R (or C). Then

∞∑
k=1

xk

converges if |x| < 1. (Why?)

Example 2.47 (Harmonic series). This is a good example of why the inverse of Theorem 2.45
does not hold. Consider

xn =
1

n

This is a null sequence, but
∑∞

k=1
1
k does not converge. (Why?)

Lemma 2.48. Let (xn) ⊂ R (or C). Then

∞∑
k=1

xn converges ⇐⇒
∞∑
k=N

xn converges for some N ∈ N

Proof. Left as an exercise for the reader.
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Theorem 2.49 (Alternating series test). Let (xn) ⊂ [0,∞) be a monotonic decreasing null
sequence. Then

∞∑
k=1

(−1)kxk

converges, and ∣∣∣∣∣
∞∑
k=1

(−1)kxk −
N∑
k=1

(−1)kxk

∣∣∣∣∣ ≤ xN+1

Proof. Let sn =
∑n

k=1(−1)kxn, and define the sub sequences an = s2n, bn = s2n+1. Then

an+1 = s2n − (x2n+1 − x2n+2)︸ ︷︷ ︸
≥0

≤ s2n = an (2.78)

Hence, (an) is monotonic decreasing. By the same argument, (bn) is monotonic decreasing.
Let m,n ∈ N such that m ≤ n. Then

bm ≤ bn = an − x2n+1 ≤ an ≤ am (2.79)

Therefore (an), (bn) are bounded. By Theorem 2.25, these sequence converge

(an)
n→∞−−−→ a (bn)

n→∞−−−→ b (2.80)

Furthermore
bn − an = −x2n+1

n→∞−−−→ 0 =⇒ a = b (2.81)

From eq. (2.79) we know that
bm ≤ b = a ≤ am (2.82)

So therefore

|s2n − a| = an − a ≤ an − bn = x2n+1 (2.83)

|s2n+1 − a| = b− bn ≤ am+1 − bn = x2n+2 (2.84)

Example 2.50 (Alternating harmonic series).

s =
∞∑
k=1

(−1)k+1 1

k
= 1− 1

2
+

1

3
− 1

4
+

1

5
− · · ·

=

(
1− 1

2

)
− 1

4
+

(
1

3
− 1

6

)
− 1

8
+

(
1

5
− 1

10

)
− 1

12
+ · · ·

=
1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+ · · ·

=
1

2

(
1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

)
=

1

2
s
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But s ∈
[
1
2 , 1
]
, this is an example on why rearranging infinite sums can lead to weird results.

Remark 2.51.

(i) The convergence behaviour does not change if we rearrange finitely many terms.

(ii) Associativity holds without restrictions

∞∑
k=1

xk =

∞∑
k=1

(x2k + x2k−1)

(iii) Let I be a set, and define

I −→ R
i 7−→ ai

Consider the sum ∑
i∈I

ai

If I is finite, there are no problems. However if I is infinite then the solution of that
sum can depend on the order of summation!

Definition 2.52. Let (xn) ⊂ R (or C). The series
∑∞

k=1 xk is said to converge absolutely
if
∑∞

k=1 |xk| converges.

Remark 2.53. Let (xn) ⊂ [0,∞). Then the sequence

sn =

n∑
k=1

xk

is monotonic increasing. If (sn) is bounded it converges, if it is unbounded it diverges
properly. The notation for absolute convergence is

∞∑
k=1

|xk| <∞

Lemma 2.54. Let
∑∞

k=1 xk be a series. Then the following are all equivalent

(i)
∞∑
k=1

xk converges absolutely

(ii) {∑
k∈I

|xk|

∣∣∣∣∣ I ⊂ N finite

}
is bounded
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(iii)

∀ϵ > 0 ∃I ⊂ N finite ∀J ⊂ N finite :
∑
k∈J\I

|xk| < ϵ

Proof. To prove the equivalence of all of these statements, we will show that (i) =⇒ (ii)
=⇒ (iii) =⇒ (i). This is sufficient. First we prove (i) =⇒ (ii). Let

∞∑
n=1

|xn| = k ∈ [0,∞) (2.85)

Let I ⊂ N be a finite set, and let N = max I. Then

∑
n∈I

|xn| ≤
N∑
n=1

|xn| ≤x
Monotony of the partial sums

∞∑
n=1

|xn| (2.86)

Now to prove (ii) =⇒ (iii), set

K :=

{∑
k∈I

|xk|

∣∣∣∣∣ I ⊂ N finite

}
(2.87)

Let ϵ > 0. Then by definition of sup

∃I ⊂ N finite :
∑
k∈I

|xk| > k − ϵ (2.88)

Let J ⊂ N finite. Then
k − ϵ <

∑
k∈I

|xk| ≤
∑
k∈I∪J

|xk| ≤ K (2.89)

Hence ∑
k∈J\I

|xk| =
∑
k∈I∪J

|xk| −
∑
k∈I

|xk| ≤ ϵ (2.90)

Finally we show that (iii) =⇒ (i). Choose I ⊂ N finite such that

∀J ⊂ N finite :
∑
k∈J\I

|xk| < 1 (2.91)

Then ∀J ⊂ N finite ∑
k∈J

|xk| ≤
∑
k∈J\I

|xk|+
∑
k∈I

|xk| ≤
∑
k∈I

|xk|+ 1 (2.92)

Therefore
∑n

k=1 |xk| is bounded and monotonic increasing, and hence it is converging. So∑∞
k=1 |xk| <∞.
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Theorem 2.55. Every absolutely convergent series converges and the limit does not depend
on the order of summation.

Proof. Let
∑∞

k=1 xk be absolutely convergent and let ϵ > 0. Choose I ⊂ N finite such that

∀J ⊂ N :
∑
k∈I

|xk| < ϵ (2.93)

Choose N = max I. Define the series

sn =

n∑
k=1

xk (2.94)

Then for n ≤ m ≤ N

|sn − sm| ≤
n∑

k=m+1

|xk| ≤
∑

k∈{1,··· ,n}\I

|xk| < ϵ (2.95)

Hence sn is a Cauchy sequence, so it converges. Let ϕ : N → N be a bijective mapping.
According to Lemma 2.54 the series

∑∞
k=1 xϕ(n) converges absolutely. Let ϵ > 0. According

to the same Lemma

∃I ⊂ N finite ∀J ⊂ N finite :
∑
k∈J\I

|xk| <
ϵ

2
(2.96)

Choose N ∈ N such that

I ⊂ {1, · · · , N} ∩ {ϕ(1), ϕ(2), · · · , ϕ(n)} (2.97)

Then for n ≥ N∣∣∣∣∣
∞∑
k=1

xk −
n∑
k=1

xϕ(k)

∣∣∣∣∣ =
∣∣∣∣∣∣

∑
k∈{1,··· ,N}\I

xk −
∑

k∈{ϕ(1),··· ,ϕ(n)}\I

xk

∣∣∣∣∣∣
≤

∑
k∈{1,··· ,N}\I

|xk|+
∑

k∈{ϕ(1),··· ,ϕ(n)}\I

|xk| < ϵ

(2.98)

Therefore

lim
n→∞

(
n∑
k=1

xk −
n∑
k=1

xϕ(k)

)
= 0 (2.99)

Theorem 2.56. Let
∑∞

k=1 xk be a converging series. Then∣∣∣∣∣
∞∑
k=1

xk

∣∣∣∣∣ ≤
∞∑
k=1

|xk|
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Proof. Left as an exercise for the reader.

Theorem 2.57 (Direct comparison test). Let
∑∞

k=1 xk be a series. If a converging series∑∞
k=1 yk exists with |xk| ≤ yk for all sufficiently large k, then

∑∞
k=1 xk converges absolutely.

If a series
∑∞

k=1 zk diverges with 0 ≤ zk ≤ xk for all sufficiently large k, then
∑∞

k=1 xk
diverges.

Proof.
n∑
k=1

|xk| ≤
n∑
k=1

yk =⇒
n∑
k=1

xk bounded
Lem. 2.54
=⇒

∞∑
k=1

|xk| <∞ (2.100)

n∑
k=1

zk ≤
n∑
k=1

xk =⇒
∞∑
k=1

xk unbounded (2.101)

Corollary 2.58 (Ratio test). Let (xn) be a sequence. If ∃q ∈ (0, 1) such that∣∣∣∣xn+1

xn

∣∣∣∣ ≤ q

for a.e. n ∈ N, then
∑∞

k=1 xk converges absolutely. If∣∣∣∣xn+1

xn

∣∣∣∣ ≥ 1

then the series diverges.

Proof. Let q ∈ (0, 1) and choose N ∈ N such that

∀n ≥ N :

∣∣∣∣xn+1

xn

∣∣∣∣ ≤ q (2.102)

Then
|xN+1| ≤ q|xN |, |xN+2| ≤ q|xN+1| ≤ q2|xN |, · · · (2.103)

This means that
∞∑
k=1

|xk| ≤
N∑
k=1

|xk|+
∞∑

k=N+1

qk−N · |xN | <∞ (2.104)

Hence,
∑∞

k=1 xk converges absolutely. Now choose N ∈ N such that

∀n ≥ N :

∣∣∣∣xn+1

xn

∣∣∣∣ > 1 (2.105)

However this means that
|xn+1| ≥ |xn| ∀n ≥ N (2.106)

So (xn) is monotonic increasing and therefore not a null sequence. Hence
∑∞

k=1 xk diverges.
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Corollary 2.59 (Root test). Let (xn) be a sequence. If ∃q ∈ (0, 1) such that

n
√
|xn| ≤ q

for a.e. n ∈ N, then
∑∞

k=1 xk converges absolutely. If

n
√

|xn| ≥ 1

for all n ∈ N then
∑∞

k=1 xk diverges.

Proof. Left as an exercise for the reader.

Remark 2.60. The previous tests can be summed up by the formulas

lim
n→∞

∣∣∣∣xn+1

xn

∣∣∣∣ < 1 lim
n→∞

n
√
|xn| < 1

lim
n→∞

∣∣∣∣xn+1

xn

∣∣∣∣ > 1 lim
n→∞

n
√
|xn| > 1

for convergence and divergence respectively. If any of these limits is equal to 1 then the test
is inconclusive.

Example 2.61. Let z ∈ C. Then

exp(z) :=
∞∑
k=0

zk

k!

converges. To prove this, apply the ratio test:

|z|k+1k!

(k + 1)!|z|k
=

|z|
k + 1

−−−→ 0

The function exp : C → C is called the exponential function.

Remark 2.62 (Binomial coefficient). The binomial coefficient is defined as(
n

0

)
:= 1

(
n

k + 1

)
=

(
n

k

)
· n− k

k + 1

and represents the number of ways one can choose k objects from a set of n objects. Some
rules are

(i) (
n

k

)
= 0 if k > n

(ii)

k ≤ n :

(
n

k

)
=

n!

k!(n− k)!
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(iii) (
n

k

)
+

(
n

k − 1

)
=

(
n+ 1

k

)
(iv)

∀x, y ∈ C : (x+ y)n =
n∑
k=1

(
n

k

)
xkyn−k

Theorem 2.63.
∀u, v ∈ C : exp(u+ v) = exp(u) · exp(v)

Proof.

exp(u) · exp(v) =

( ∞∑
n=0

un

n!

)
·

( ∞∑
m=0

vm

m!

)
=

∞∑
n=0

∞∑
m=0

unvm

n!m!

=

∞∑
l=0

l∑
k=0

ukvl−k

k!(l − k)!

=

∞∑
l=0

(u+ v)l

l!

= exp(u+ v)

(2.107)

Remark 2.64. We define Euler’s number as

e := exp(1)

We will also take note of the following rules ∀x ∈ C, n ∈ N

exp(0) = exp(x) exp(−x) = 1 =⇒ exp(−x) = 1

exp(x)

exp(nx) = exp(x+ x+ x+ · · ·+ x) = exp(x)n

exp(x)
1
n = exp

(x
n

)
Alternatively we can write

exp(z) = ez

Theorem 2.65. Let x, y ∈ R.

(i)
x < y =⇒ exp(x) < exp(y)
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(ii)
exp(x) > 0 ∀x ∈ R

(iii)
exp(x) ≥ 1 + x ∀x ∈ R

(iv)

lim
n→∞

nd

exp(n)
= 0 ∀d ∈ N

Proof.

(i) Left as an exercise for the reader.

(ii) For x ≥ 0 this is trivial. For x < 0

exp(x) =
1

exp(−x)
> 0 (2.108)

(iii) For x ≥ 0 this is trivial. For x < 0

∞∑
k=0

xk

k!
(2.109)

is an alternating series, and therefore the statement follows from Theorem 2.49.

(iv) Let d ∈ N. Then ∀n ∈ N

0 <
nd

exp(n)
<

nd∑d+1
k=0

nk

k!

n→∞−−−→ 0 (2.110)

Definition 2.66. Define
sin, cos : R −→ R

as

sin(x) := Im(exp(ix))

cos(x) := Re(exp(ix))

Remark 2.67.

(i) Euler’s formula
exp(ix) = cos(x) + i sin(x)
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(ii) ∀z ∈ C : exp(z) = exp(z̄)

| exp(ix)|2 = exp(ix) · exp(ix) = exp(ix) · exp(−ix) = 1

Also:
1 = cos2(x) + sin2(x)

On the symmetry of cos and sin:

cos(−x) + i sin(−x) = exp(−ix) = exp(ix) = cos(x)− i sin(x)

(iii) From

exp(ix) =
∞∑
k=0

(ix)k

k!
(i0 = 1, i1 = i, i2 = −1, i3 = −i, i4 = 1, · · · )

follow the following series

sin(x) =

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
cos(x) =

∞∑
k=0

(−1)kx2k

(2k)!

(iv) For x ∈ R

exp(i2x) = cos(2x) + i sin(2x)

= (cos(x) + i sin(x))2

= cos2(x)− sin2(x) + 2i sin(x) cos(x)

By comparing the real and imaginary parts we get the following identities

cos(2x) = cos2(x)− sin2(x)

sin(2x) = 2 sin(x) cos(x)

(v) Later we will show that cos as exactly one root in the interval [0, 2]. We define π as
the number in the interval [0, 4] such that cos

(
π
2

)
= 0.

=⇒ sin
(π
2

)
= ±1

cos and sin are 2π-periodic.

Theorem 2.68. ∀z ∈ C

lim
n→∞

(
1 +

z

n

)n
= lim

n→∞

(
1− z

n

)−n
= exp(z)

Proof. Without proof.
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3.1 Vector Spaces

We introduce the new field K which will stand for any field. It can be either R, C or any
other set that fulfils the field axioms.

Definition 3.1. A vector space is a set V with the operations

Addition

+ : V × V −→ V

(x, y) 7−→ x+ y

Scalar Multiplication

· : K× V −→ V

(α, y) 7−→ αx
We require the following conditions for these operations

(i) ∃0 ∈ V ∀x ∈ V : x+ 0 = x

(ii) ∀x ∈ V ∃(−x) ∈ V : x+ (−x) = 0

(iii) ∀x, y ∈ V : x+ y = y + x

(iv) ∀x, y, z ∈ V : (x+ y) + z = x+ (y + z)

(v) ∀α ∈ K ∀x, y ∈ V : α(x+ y) = αx+ αy

(vi) ∀α, β ∈ K ∀x ∈ V : (α+ β)x = αx+ βx

(vii) ∀α, β ∈ K ∀x ∈ V : (αβ)x = α(βx)

(viii) ∀x ∈ V : 1 · x = x

Elements from V are called vectors, elements from K are called scalars.

Remark 3.2. We now have two different addition operations that are denoted the same way:

(i) + : V × V → V

(ii) + : K×K → K

Analogously there are two neutral elements and two multiplication operations.

Example 3.3.

(i) K is already a vector space

(ii) V = K2. In the case that K = R this vector space is the two-dimensional Euclidean
space. The neutral element is (0, 0), and the inverse is (χ1, χ2) → (−χ1,−χ2). This
can be extended to Kn.

(iii) K-valued sequences:
V =

{
(χn)n∈N

∣∣χ ∈ K ∀n ∈ N
}
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(iv) Let M be a set. Then the set of all K-valued functions on M is a vector space

V = {f | f :M → K}

Definition 3.4. Let V be a vector space, let x, x1, · · · , xn ∈ V and let M ⊂ V .

(i) x is said to be a linear combination of x1, · · · , xn if ∃α1, · · · , αn ∈ K such that

x =
n∑
k=1

αkxk

(ii) The set of all linear combinations of elements from M is called the span, or the linear
hull of M

spanM :=

{
n∑
k=1

αkxk

∣∣∣∣∣n ∈ N, α1, · · · , αn ∈ K, x1, · · · , xn ∈ V

}

(iii) M (or the elements of M) are said to be linearly independent if ∀α1, · · · , αn ∈
K, x1, · · · , xn ∈ V

n∑
k=1

αkxk = 0 =⇒ α1 = α2 = · · · = αn = 0

(iv) M is said to be a generator (of V ) if

spanM = V

(v) M is said to be a basis of V if it is a generator and linearly independent.

(vi) V is said to be finite-dimensional if there is a finite generator.

Example 3.5.

(i) For V = R2 consider the vectors x = (1, 0), y = (1, 1). These vectors are linearly
independent, since

αx+ βy = α(1, 0) + β(1, 1) = (0, 0) =⇒ α+ β = 0 ∧ β = 0

So therefore α = β = 0. We can show that span{x, y} = R2 because

(α, β) = (α− β)x+ βy

So {x, y} is a generator, hence R2 is finite-dimensional.
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(ii) For V = R3 consider x = (1,−1, 2), y = (2,−1, 0), z = (4,−3, 3). These vectors are
linearly dependent because

2x+ y − z = (0, 0, 0)

(iii) Let V = {f | f : R → R}. Consider the vectors

fn : R −→ R
x 7−→ xn

The f0, f1, · · · , fn, · · · are linearly independent, because

0 =

∞∑
=1

k = 0nαkfk =

∞∑
=1

k = 0nαkx
k

implies α0 = α1 = · · · = αn = 0. The span of the fk is the set of all polynomials of
(≤ n)-th degree. The function x 7→ (x− 1)3 is a linear combination of f0, · · · , f3:

(x− 1)3 = x3 − 3x2 + 3x− 1

Remark 3.6. Let V be a vector space, y ∈ V a linear combination of y1, · · · , yn, and each
of those a linear combination of x1, · · · , xn. I.e.

∃α1, · · · , αn ∈ K : y =
n∑
k=1

αkyk

and

∃βk,l ∈ K : yk =
n∑
l=1

βk,lxl

Then

y =
n∑
k=1

αkyk =
n∑
k=1

αk

n∑
l=1

βk,lxl =
n∑
l=1

(
n∑
k=1

αkβk,l

)
︸ ︷︷ ︸

∈K

xl

So therefore
span(span(M)) = span(M)

Theorem 3.7. Let V be a finite-dimensional vector space, and let x1, · · · , xn ∈ V . Then
the following are equivalent

(i) x1, · · · , xn is a basis.

(ii) x1, · · · , xn is a minimal generator (Minimal means that no subset is a generator).

(iii) x1, · · · , xn is a maximal linearly independent system (Maximal means that x1, · · · , xn, y
is not linearly independent).
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(iv) ∀x ∈ V there exists a unique α1, · · · , αn ∈ K

x =

n∑
k=1

αkxk

Proof. First we prove ”(i) =⇒ (ii)”. Let x1, · · · , xn be a basis of V . By definition
x1, · · · , xn is a generator. Assume that x2, · · · , xn is still a generator, then

∃α2, · · · , αn ∈ K : x1 =
n∑
k=1

αkxk (3.1)

However this contradicts the linear independence of the basis. Next, to prove ”(ii) =⇒
(iii)” let x1, · · · , xn be a minimal generator. Let α1, · · · , αn ∈ K such that

0 =
n∑
k=1

αkxk (3.2)

Assume that one coefficient is ̸= 0 (w.l.o.g. α1 = 0). Then

x1 =
n∑
k=2

−αk
α1
xk (3.3)

x1, · · · , xn is a generator, i.e. for x ∈ V

∃β1, · · · , βn ∈ K : x =
n∑
k=1

βkxk =
n∑
k=2

(
βk −

αk
α1

)
xk (3.4)

But this implies that x2, · · · , xn is a generator. That contradicts the assumption that
x1, · · · , xn was minimal.

=⇒ α1 = α2 = · · · = αn = 0 (3.5)

Now let y ∈ V . Then

∃γ1, · · · , γn ∈ K : y =
n∑
k=1

γkxk (3.6)

So x1, · · · , xn, y is linearly dependent, and therefore x1, · · · , xn is maximal. To prove ”(iii)
=⇒ (iv)” let x1, · · · , xn be a maximal linearly independent system. If y ∈ V , then

∃α1, · · · , αk, β ∈ K :

n∑
k=1

αkxk + βy = 0 (3.7)

Assume β = 0, then consequently

x1, · · · , xn linearly independent =⇒ α1 = α2 = · · · = αn = 0 (3.8)
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This is a contradiction, so therefore β ̸= 0:

y =

n∑
k=1

−αk
β
xk (3.9)

The uniqueness of these coefficients are left as an exercise for the reader. Finally, to finish
the proof we need to show ”(iv) =⇒ (i)”. By definition

V = span {x1, · · · , xn} (3.10)

Hence, {x1, · · · , xn} is a generator. In case

0 =

n∑
k=1

αkxk (3.11)

holds, then α1 = · · · = αn = 0 follows from the uniqueness.

Corollary 3.8. Every finite-dimensional vector space has a basis.

Proof. By condition, there is a generator x1, · · · , xn. Either this generator is minimal (then
it would be a basis), or we remove elements until it is minimal.

Lemma 3.9. Let V be a vector space and x1, · · · , xk ∈ V a linearly independent set of
elements. Let y ∈ V , then

x1, · · · , xk, y linearly independent ⇐⇒ y /∈ span {x1, · · · , xk}

Proof. To prove ” ⇐= ”, assume y ̸= span {x1, · · · , xk}. Therefore x1, · · · , xk, y must be
linearly independent. To see this, consider

0 =
n∑
k=1

αkxk + βy α1, · · · , αn ∈ K (3.12)

Then β = 0, otherwise we could solve the above for y, and that would contradict our
assumption. The argument works in the other direction as well.

Theorem 3.10 (Steinitz exchange lemma). Let V be a finite-dimensional vector space. If
x1, · · · , xm is a generator and y1, · · · , yn a linear independent set of vectors, then n ≤ m.
In case x1, · · · , xm and y1, · · · , yn are both bases, then n = m.

Heuristic Proof. Let K ∈ {0, · · · ,min {m,n} − 1} and let

x1, · · · , xK , yK+1, · · · , yn (3.13)

be linearly independent. Assume that

xK+1, · · · , xm ∈ span {x1, · · · , xk, yK+2, · · · , yn} (3.14)
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Then
yK+1 ∈ span {x1, · · · , xm} ⊂ span {x1, · · · , xK , yK+2, · · · , ym} (3.15)

This contradicts with the linear independence of x1, · · · , xK , yK+2, · · · yn. Furthermore,

∃xi ∈ V : xi /∈ span {x1, · · · , xK , yK+2, · · · , yn} (3.16)

W.l.o.g. x : i = xK+1. By Lemma 3.9, x1, · · · , xK+1, yK+2, · · · yn is linearly independent.
We can now sequentially replace yi with xi without losing the linear independence. Assume
n > m, then this process leads to a linear independent system x1, · · · , xm, ym+1, · · · , yn. But
since x1, · · · , xm is a generator, ym+1 is a linear combination of x1, · · · , xm. If x1, · · · , xm
and y1, · · · , yn are both bases, then we cannot change the roles and therefore m = n.

Definition 3.11. The amount of elements in a basis is said to be the dimension of V , and
is denoted as dimV .

Example 3.12.

(i) Let V = Rn (or Cn). Define

ek = (0, 0, · · · , 0, 1
↑

k-th position

, 0, · · · , 0)

Then e1, · · · , en is a basis, in fact, it is the standard basis of Rn (Cn).

(ii) Let V be the vector space of polynomials

V =

{
f : R −→ R

∣∣∣∣∣n ∈ N, α1, · · · , αn ∈ R, f(x) =
n∑
k=1

αkx
k ∀x ∈ R

}

This space has the basis
{x 7−→ xn |n ∈ N0}

Corollary 3.13. In an n-dimensional vector space, every generator has at least n elements,
and every linearly independent system has at most n elements.

Proof. Let M ⊂ span {x1, · · · , xn}. Then

V = spanM ⊂ spanx1, · · · , xn (3.17)

Hence, x1, · · · , xn is a generator. On the other hand, assume

∃y ∈M \ span {x1, · · · , xn} (3.18)

Then x1, · · · , xn, y is linearly independent (Lemma 3.9), and we can sequentially add ele-
ments from M until x1, · · · , xn, yn+1, · · · , yn+m is a generator.
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Definition 3.14 (Vector subspace). Let V be a vector space. A non-empty set W ⊂ V is
called a vector subspace if

∀x, y ∈W ∀α ∈ K : x+ αy ∈W

Example 3.15. Consider
W =

{
(χ, χ) ∈ R2

∣∣χ ∈ R
}

This is a subspace, because

(χ, χ) + α(η, η) = (χ+ αη, χ+ αη)

However,
A =

{
(χ, η) ∈ R2

∣∣χ2 + η2 = 1
}

is not a subspace, because (1, 0), (0, 1) ∈ A, but (1, 1) /∈ A.

Remark 3.16.

(i) Every subspace W ⊂ V contains the 0 and the inverse elements.

(ii) Let W ⊂ V be a subspace. Then

∀x1, · · · , xn ∈W, α1, · · · , αn ∈ K :

n∑
k=1

αkxk ∈W

Furthermore, M ⊂W =⇒ spanM ⊂W .

(iii) M ⊂ V is a subspace if and only of spanM =M .

(iv) Let I be an index set, and Wi ⊂ V subspaces. Then⋂
i∈I

Wi

is also a subspace

(v) The previous doesn’t hold for unions.

(vi) Let M ⊂ V :

spanM =
⋂

W⊃M subspace of V

W
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3.2 Matrices and Gaussian elimination

Definition 3.17. Let aij ∈ K, with i ∈ {1, · · · , n}, j ∈ {1, · · · ,m}. Then
a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm


is called an n×m-matrix. (n,m) is said to be the dimension of the matrix. An alternative
notation is

A = (aij) ∈ Kn×m

Kn×m is the space of all n ×m-matrices. The following operations are defined for A,B ∈
Kn×m, C ∈ Km×l:

(i) Addition

A+B =

a11 + b11 · · · a1m + b1m
...

. . .
...

an1 + bn1 · · · anm + bnm


(ii) Scalar multiplication

α ·A =

αa11 · · · αa1m
...

. . .
...

αan1 · · · αanm


(iii) Matrix multiplication

A · C =

a11c11 + a12c21 + · · ·+ a1mcm1 · · · a11c1l + a12c2l + · · ·+ a1mcml
...

. . .
...

an1c11 + an2c21 + · · ·+ anmcm1 · · · an1c1l + an2c2l + · · ·+ anmcml


or in shorthand notation

(AC)ij =
m∑
k=1

aikckj

(iv) Transposition

The transposed matrix AT ∈ Km×n is created by writing the rows of A as the columns
of AT (and vice versa).

(v) Conjugate transposition

AH =
(
A
)T

Remark 3.18.
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(i) Kn×m (for n,m ∈ N) is a vector space.

(ii) A ·B is only defined if A has as many columns as B has rows.

(iii) Kn×1 and K1×n can be trivially identified with Kn.

(iv) Let A,B,C,D,E matrices of fitting dimensions and α ∈ K. Then

(A+B)C = AC +BC

A(B + C) = AB +AC

A(CE) = (AC)E

α(AC) = (αA)C = A(αC)

(A+B)T = AT +BT (A+B) = A+B

(αA)T = α(A)T (αA) = AA

(AC)T = CT ·AT (AC) = CA

Proof of associativity. Let A ∈ Kn×m, C ∈ Km×l, E ∈ Kl×p. Furthermore let i ∈
{1, · · · , n} , j ∈ {1, · · · , p}.

((AC)E)ij =

l∑
k=1

(AC)ikEkj =

l∑
k=1

 m∑
k̃=1

aik̃ck̃k

 · ekj

=
l∑

k=1

m∑
k̃=1

aik̃ · ck̃k · ekj

=

m∑
k̃=1

aik̃

(
l∑

k=1

ck̃kekj

)

=
m∑
k̃=1

aik̃ · (CE)k̃j

= (A(CE))ij

(3.19)

=⇒ A(CE) = A(CE) (3.20)

(v) Matrix multiplication is NOT commutative. First off, AB and BA are only well
defined when A ∈ Kn×m and B ∈ Km×n. Example:(

0 1
0 0

)(
0 0
1 0

)
=

(
1 0
0 0

)
̸=
(
0 0
1 0

)(
0 1
0 0

)
=

(
0 0
0 1

)
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(vi) Let n,m ∈ N. There exists exactly one neutral additive element in Kn×m, which is
the zero matrix. Multiplication with the zero matrix yields a zero matrix.

(vii) We define

δij =

{
1, i = j

0 else

The respective matrix I = (δij) ∈ Kn×m is called the identity matrix.

(viii) A ̸= 0 and B ̸= 0 can still result in AB = 0:(
0 1
0 0

)2

=

(
0 0
0 0

)
Example 3.19 (Linear equation system). Consider the following linear equation system

a11x1 + a12x2 + · · ·+ a1mxm = b1

a21x1 + a22x2 + · · ·+ a2mxm = b2
...

an1x1 + an2x2 + · · ·+ anmxm = bn

This can be rewritten using matrices

A =

a11 · · · a1m
...

. . .
...

an1 · · · anm

 x =

x1
...
xm

 b =

b1...
bn


Which results in

Ax = B, A ∈ Km×n, x ∈ Km×1, b ∈ Kn×1

Such an equation system is called homogeneous if b = 0.

Theorem 3.20. Let A ∈ Kn×m, b ∈ Kn. The solution set of the homogeneous equation
system Ax = 0, (that means {x ∈ Km |Ax = 0} ⊂ Km) is a linear subspace. If x and x̃
are solutions of the inhomogeneous system Ax = b, then x − x̃ solves the corresponding
homogeneous problem.

Proof. A · 0 = 0 shows that Ax = 0 has a solution. Let x, y be solutions, i.e. Ax = 0 and
Ay = 0. Then ∀α ∈ K:

A(x+ αy) = Ax+A(αy) = Ax︸︷︷︸
0

+α( Ay︸︷︷︸
0

) = 0 (3.21)

=⇒ x+ αy ∈ {x ∈ Km |Ax = 0} (3.22)
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Next, let x, x̃ be solutions of Ax = b, i.e.

Ax = b, Ax̃ = b (3.23)

Then
A(x− x̃) = Ax−Ax̃ = b− b = 0 (3.24)

Therefore, x− x̃ is the solution of the homogeneous equation system

Remark 3.21 (Finding all solutions). First find a basis e1, · · · , ek of

{x ∈ Km |Ax = 0}

Next find some x0 ∈ Km such that Ax0 = b. Then every solution of Ax = b can be written
as

x = x0 + α1e1 + · · ·+ αkek

Example 3.22. Let

A =


1 2 0 0 1
0 0 1 0 0
0 0 0 1 −1
0 0 0 0 0

 b =


1
2
3
4

 c =


3
2
1
0


Then Ax = b has no solution, since the fourth row would state 0 = 4. However, Ax = c has
the particular solution

x =


3
0
2
1
0


If we consider the homogeneous problem Ay = 0, we can come up with the solution

y =


−2
1
0
0
0

 y2 +


−1
0
0
1
1

 y5

and in turn find the set of solutions{
y ∈ K5

∣∣Ay = 0
}
= span

{
(−2, 1, 0, 0, 0)T , (−1, 0, 0, 1, 1)T

}{
x ∈ K5

∣∣Ax = c
}
=
{
(3, 0, 2, 1, 0)T + α(−2, 1, 0, 0, 0)T + β(−1, 0, 0, 1, 1)T

}
Definition 3.23 (Row Echelon Form). A zero row is a row in a matrix containing only
zeros. The first element of a row that isn’t zero is called the pivot.

A matrix in row echelon form must meet the following conditions



3.2. MATRICES AND GAUSSIAN ELIMINATION 57

(i) Every zero row is at the bottom

(ii) The pivot of a row is always strictly to the right of the pivot of the row above it

A matrix in reduced row echelon form must additionally meet the following conditions

(i) All pivots are 1

(ii) The pivot is the only non-zero element of its column

Remark 3.24. Let A ∈ Kn×m and b ∈ Kn. If A is in reduced row echelon form, then Ax = b
can be solved through trivial rearranging.

Definition 3.25 (Matrix row operations). Let A be a matrix. Then the following are row
operations

(i) Swapping of rows i and j

(ii) Addition of row i to row j

(iii) Multiplication of a row by λ ̸= 0

(iv) Addition of row i multiplied by lambda to row j

Theorem 3.26 (Gaussian Elimination). Every matrix can be converted into reduced row
echelon form in finitely many row operations.

Heuristic Proof. If A is a zero matrix the proof is trivial. But if it isn’t:

� Find the first column containing a non-zero element.

– Swap rows such that this element is in the first row

� Multiply every other row with multiples of the first row, such that all other entries in
that column disappear.

� Repeat, but ignore the first row this time

At the end of this the matrix will be in reduced row echelon form.

Definition 3.27. A ∈ Kn×n is called invertible if there exists a multiplicative inverse. I.e.

∃B ∈ Kn×n : AB = BA = I

We denote the multiplicative inverse as A−1

Remark 3.28. We have seen matrices A ̸= 0 such that A2 = 0. Such a matrix is not
invertible.
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Theorem 3.29. Let A,B,C ∈ Kn×n, B invertible and A = BC. Then

A invertible ⇐⇒ C invertible

Especially, the product of invertible matrices is invertible.

Proof. Without proof.

Remark 3.30. Matrix multiplication with A from the left doesn’t ”mix” the columns of
matrix B

Theorem 3.31. Let A be a matrix, and let Ã be the result of row operations applied to A.
Then

∃T invertible : Ã = TA

We say: The left multiplication with T applies the row operations.

Heuristic proof. You can find invertible matrices T1, · · · , Tn that each apply one row oper-
ation. Then we can see that

Ã = TnTn−1 · · ·T1︸ ︷︷ ︸
T

A (3.25)

Since T is the product of invertible matrices, it must itself be invertible.

Corollary 3.32. Let A ∈ Kn×m, b ∈ Kn, T ∈ Kn×m. Then Ax = b and TAx = Tb have
the same solution sets.

Proof. If Ax = b it is trivial that

Ax = b =⇒ TAx = Tb (3.26)

If TAx = Tb, then
Ax = T−1TAx = T−1Tb = b (3.27)

Lemma 3.33. Let A ∈ fieldn×m be in row echelon form. Then

A invertible ⇐⇒ The last row is not a zero row

and
A invertible ⇐⇒ All diagonal entries are non-zero

Proof. Let A be invertible with a zero-row as its last row. Then

(0, · · · , 0, 1) ·A = (0, · · · , 0, 0) (3.28)

Multiplying with A−1 from the right would result in a contradiction. Therefore the last row
of A can’t be a zero row.
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Now let the diagonal entries of A be non-zero. This means we can use row operations
to transform A into the identity matrix, i.e.

∃T invertible : TA = I =⇒ A = T−1 (3.29)

Corollary 3.34. Let A ∈ Kn×n. Then

A invertible ⇐⇒ Every row echelon form has non-zero diagonal entries

and
A invertible ⇐⇒ The reduced row echelon form is the identity matrix

Proof. Every row echelon form of A has the form TA with T an invertible matrix. Especially,
∃S invertible such that SA is in reduced row echelon form. Then

TA invertible ⇐⇒ A invertible (3.30)

Remark 3.35. Let A ∈ Kn×n be invertible, B ∈ Kn×m. Our goal is to compute A−1B.
First, write (A |B). Now apply row operations until we reach the form (I | B̃). Let S be
the matrix realising these operations, i.e. SA = I. Then B̃ = SB = A−1B. If B = I this
can be used to compute A−1.

Example 3.36. Let

A =

1 1 1
0 1 1
0 0 1


Rewrite this as 1 1 1 1 0 0

0 1 1 0 1 0
0 0 1 0 0 1


Turn this into 1 1 0 1 0 −1

0 1 0 0 1 −1
0 0 1 0 0 1


And finally 1 0 0 1 −1 0

0 1 0 0 1 −1
0 0 1 0 0 1


The right part of the above matrix is A−1.
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Definition 3.37. Let A ∈ Kn×m and let z1, · · · , zn ∈ K1×m be the rows of A. The row
space of A is defined as

span {z1, · · · , zn}

The dimension of the row space is the row rank of the matrix. Analogously this works for
the column space and the column rank. Later we will be able to show that row rank and
column rank are always equal. They’re therefore simply called rank of the matrix.

Theorem 3.38. The row operations don’t effect the row space.

Proof. It is obvious that multiplication with λ and swapping of rows don’t change the row
space. Furthermore it is clear that every linear combination of z1 + z2, z2, · · · , zn is also a
linear combination of z1, z2, · · · , zn, and vice versa.

Theorem 3.39. Let A be in row echelon form. Then the non-zero rows of the matrix are
a basis of the row space of the matrix.

Proof. Let z1, · · · , zk ∈ K1×n be the non-zero rows ofA. They create the space span {z1, · · · , zn},
since zk, · · · zn are only zero rows. Analogously,

α1z1 + α2z2 + · · ·+ αkzk = 0 (3.31)

Let j be the index of the column of the pivot of z1. Then z2, · · · , zk have zero entries in the
j-th column. Therefore

α1 zij︸︷︷︸
̸=0

= 0 =⇒ α1 = 0 (3.32)

By inductivity, this holds for every row.

Remark 3.40. (i) To compute the rank of A, bring A into row echelon form and count
the non-zero rows.

(ii) Let v1, · · · , vm ∈ Kn. To find a basis for

span {v1, · · · vm}

write v1, · · · , vm as rows of a matrix and bring it into row echelon form.

3.3 The Determinant

In this section we always define A ∈ Kn×n and z1, · · · , zn the row vectors of A. We declare
the mapping

det : Kn×n −→ K

and define
det(A) := det(z1, z2, . . . , zn)
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Definition 3.41. There exists exactly one mapping det such that

(i) It is linear in the first row, i.e.

det(z1 + λz̃1, z2, · · · , zn) = det(z1, z2, · · · , zn) + λ det(z̃1, z2, · · · , zn)

(ii) If Ã is obtained from A by swapping two rows

det(A) = −det
(
Ã
)

(iii) det(I) = 1

This mapping is called the determinant, and we write

detA =

∣∣∣∣∣∣∣
a11 · · · a1n
...

. . .
...

an1 · · · ann

∣∣∣∣∣∣∣
Example 3.42. ∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = a11a22 − a21a12

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =a11a22a33 + a12a23a31 + a13a21a32

− a31a22a13 − a32a23a11 − a33a21a12

Remark 3.43. (i) Every determinant is linear in every row

(ii) If two rows are equal then det(A) = 0

(iii) If one row (w.l.o.g. z1) is a linear combination of the others, so

z1 = α2z2 + α3z3 + · · ·+ αnzn, α1, · · · , αn ∈ K

then

det(z1, z2, · · · , zn) =α2 det(z2, z2, z3, · · · , zn)︸ ︷︷ ︸
0

+

α3 det(z3, z2, z3, · · · , zn)︸ ︷︷ ︸
0

+

· · ·+
αn det(zn, z2, z3, · · · , zn)︸ ︷︷ ︸

0

= 0
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(iv) Adding a multiple of a row to another doesn’t change the determinant

(v) Define

Tij swaps rows i and j

Mi(λ) multiplies row i with λ ̸= 0

Lij(λ) adds λ-times row j to row i

Then

det(TijA) = −det(A)

det(Lij(λ)A) = det(A)

det(Mi(λ)A) = λ det(A)

Lemma 3.44. Let det be the determinent, and A,B ∈ Kn×n. Let A be in row echelon
form, then

det(AB) = a11 · a22 · · · · · ann · det(B)

Proof. First consider the case of A not being invertible. This means that the last row of A
is a zero row, which in turn means that det(A) = 0. This also means that the last row of
AB is a zero row and therefore det(AB) = 0.

Now let A be invertible. This means that all the diagonal entries are non-zero. It is
possible to bring A into diagonal form without changing the diagonal entries themselves.
So, w.l.o.g. let A be in diagonal form:

A =Mn(ann) · · · · ·M2(a22)M1(a11)I (3.33)

and thus

det(AB) = det(Mn(ann) · · · · ·M2(a22)M1(a11)B)

= ann · · · · · a22 · a11 det(B)
(3.34)

Remark 3.45. For B = I this results in

det(A) = a11a22 · · · ann

Theorem 3.46. Let A,B ∈ Kn×n. Then

detAB = detA · detB
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Proof. Let i, j ∈ {1, · · · , n} and λ ̸= 0. Then

det(TijAB) = −det(AB) (3.35a)

det(Lij(λ)AB) = det(AB) (3.35b)

Bring A with Tij and Lij(λ) operations into row echelon form. Then

det(AB) = a11a22 · · · ann · det(B) (3.36)

and therefore
det(AB) = detA · detB (3.37)

Corollary 3.47.
A ∈ Kn×n invertible ⇐⇒ detA ̸= 0

Proof. Row operations don’t effect the invertibility or the determinant (except for the sign)
of a matrix. Therefore we can limit ourselves to matrices in row echelon form (w.l.o.g.).
Let A be in row echelon form, then

detA ̸= 0 ⇐⇒ a11a22 · · · ann ̸= 0

⇐⇒ a11 ̸= 0, a22 ̸= 0, · · · , ann ̸= 0

⇐⇒ A invertible since diagonal entries are non-zero

(3.38)

Theorem 3.48.
detA = detAT

Proof. First consider the explicit representation of row operations:

Tij =



j i

1
i 0 1

1
j 1 0

1

 (3.39a)

Lij(λ) =



j

1
i 1 λ

1
1

1

 (3.39b)
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Thus we can see
det(Tij) = det

(
T Tij
)
= −1 (3.40a)

det(Lij(λ)) = det
(
Lij(λ)

T
)
= 1 (3.40b)

Let T be one of those matrices. Then

det
(
(TA)T

)
= det

(
AT · T T

)
= detAT · detT T

= detAT · detT
(3.41)

and
detTA = detA · detT (3.42)

And therefore
det
(
(TA)T

)
= det(TA) ⇐⇒ detAT = detA (3.43)

Now w.l.o.g. let A be in row echelon form. Let A be non-invertible, i.e. the last row is
a zero row. Thus detA = 0. This implies that AT has a zero column. Row operations
that bring AT into row echelon form (w.l.o.g.) perserve this zero column. Therefore the
resulting matrix must also have a zero column, and thus det

(
AT
)
= 0.

Now assume A is invertible, and use row operations to bring A into a diagonalised form
(w.l.o.g.). For diagonalised matrices we know that

A = AT =⇒ detA = detAT (3.44)

Remark 3.49. Let Aij be the matrix you get by removing the i-th row and the j-th column
from A.

detA =
n∑
i=1

(−1)i+j · aij · det(Aij), j ∈ {1, · · · , n}

Remark 3.50 (Leibniz formula). Let n ∈ N, and let there be a bijective mapping

σ : {1, · · · , n} −→ {1, · · · , n}

σ is a permutation. The set of all permutations is labeled Sn, and it contains n! elements.
Then

detA =
∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σ(i)

A permutation that swaps exactly two elements is called elementary permutation. Every
permutation can be written as a number of consecutively executed elementary permutations.

sgn(σ) = (−1)k

where σ is the permutation in question and k is the number of elementary permutations it
consists of.
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3.4 Scalar Product

In this section V will always denote a vector space and K a field (either R or C).

Definition 3.51. A scalar product is a mapping

⟨·|·⟩ : V × V −→ K

that fulfils the following conditions: ∀v1, v2, w1, w2 ∈ V, λ ∈ K

Linearity ⟨v1|w1 + λw2⟩ = ⟨w1|w1⟩+ λ ⟨v1|w2⟩
Conjugated symmetry ⟨v1|w1⟩ = ⟨w1|v1⟩

Positivity ⟨v1|v1⟩ ≥ 0

Definedness ⟨v1|v2⟩ = 0 =⇒ v1 = 0

Conjugated linearity ⟨v1 + λv2|w1⟩ = ⟨v1|w1⟩+ λ ⟨v2|w1⟩

The mapping

∥·∥ : V −→ K

v 7−→
√

⟨v|v⟩

Example 3.52. On Rn the following is a scalar product

〈
(x1, x2, · · · , xn)T

∣∣(y1, y2, · · · , yn)T 〉 = n∑
k=1

xkyk

The norm is then equivalent to the Pythagorean theorem

∥v∥ =
√

⟨v|v⟩ =
√
x21 + x22 + · · ·+ x2n

Analogously for Cn

〈
(u1, u2, · · · , un)T

∣∣(v1, v2, · · · , vn)T 〉 = n∑
k=1

ukvk

Remark 3.53. � The length of v ∈ V is ∥v∥

� The distance between elements v, w ∈ V is ∥v − w∥

� The angle ϕ between v, w ∈ V is cosϕ = ⟨v|w⟩
∥v∥·∥w∥

Theorem 3.54. Let v, w ∈ V . Then

Cauchy-Schwarz-Inequality | ⟨v|w⟩ | ≤ ∥v∥∥w∥
Triangle Inequality ∥v + w∥ ≤ ∥v∥+ ∥w∥
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Proof. For λ ∈ K we know that

0 ≤ ⟨v − λw|v − λw⟩ = ⟨v − λw|v⟩ − λ ⟨v − λw|w⟩
= ⟨v|v⟩ − λ ⟨w|v⟩ − λ ⟨v|w⟩+ λλ︸︷︷︸

|λ|2
⟨w|w⟩ (3.45)

Let λ = ⟨w|v⟩
∥w∥2 . Then

0 ≤ ∥v∥2 − ⟨w|v⟩
∥w∥2

· ⟨w|v⟩ − ⟨w|v⟩
∥w∥2

· ⟨v|w⟩+ | ⟨w|v⟩ |2

∥w∥4
∥w∥2

= ∥v∥2 − | ⟨w|v⟩ |2

∥w∥2
−

�
�

�
��| ⟨w|v⟩ |2

∥w∥2
+

�
�

�
��| ⟨w|v⟩ |2

∥w∥2

= ∥v∥2 − | ⟨w|v⟩ |2

∥w∥2

(3.46)

Through the monotony of the square root this implies that

| ⟨w|v⟩ | ≤ ∥v∥∥w∥ (3.47)

To prove the triangle inequality, consider

||v + w||2 = ⟨v + w|v + w⟩
= ⟨v|v⟩︸ ︷︷ ︸

∥v∥2

+ ⟨v|w⟩+ ⟨w|v⟩︸ ︷︷ ︸
⟨v|w⟩

+ ⟨w|w⟩︸ ︷︷ ︸
∥w∥2

≤ ∥v∥2 + 2 · Re ⟨v|w⟩+ ∥w∥2

≤ ∥v∥2 + 2∥v∥∥w∥+ ∥w∥2

= (∥v∥+ ∥w∥)2

(3.48)

Using the same argument as above, this implies

∥v + w∥ ≤ ∥v∥+ ∥w∥ (3.49)

Definition 3.55. v, w ∈ V are called orthogonal if

⟨v|w⟩ = 0

The elements v1, · · · , vm ∈ V are called an orthogonal set if they are non-zero and they are
pairwise orthogonal. I.e.

∀i, j ∈ {1, · · · ,m} : ⟨vi|vj⟩ = 0

If ∥vi∥ = 1, then the vi are called an orthonormal set. If their span is V they are an
orthonormal basis.
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Theorem 3.56. If v1, · · · , vn are an orthonormal set, they are linearly independent.

Proof. Let α1, · · · , αn ∈ K, such that

0 = α1v1 + α2v2 + · · ·+ αnvn (3.50)

Then

0 = ⟨vi|0⟩ = ⟨vi|α1v1 + α2v2 + · · ·+ αnvn⟩
= α1 ⟨vi|v1⟩+ α2 ⟨vi|v2⟩+ · · ·+ αn ⟨vi|vn⟩
= αi ⟨vi|vi⟩ i ∈ {1, · · · , n}

(3.51)

Since vi is not a zero vector, ⟨vi|vi⟩ ̸= 0, and thus αi = 0. Since i is arbitrary, the vi are
linearly independent.

Example 3.57. (i) The canonical basis in Rn is an orthonormal basis regarding the canon-
ical scalar product.

(ii) Let ϕ ∈ R. Then

v1 = (cosϕ, sinϕ)T v2 = (− sinϕ, cosϕ)T

are an orthonormal basis for R2

Theorem 3.58. Let v1, · · · , vn be an orthonormal basis of V . Then for v ∈ V :

v =
n∑
i=1

⟨vi|v⟩ vi

Proof. Since v1, · · · , vn is a basis,

∃α1, · · · , αn ∈ K : v =

n∑
i=1

αivi (3.52)

And therefore, for j ∈ {1, · · · , n}

⟨vj |v⟩ =
n∑
i=1

αi ⟨vj |vi⟩ = αj ⟨vj |vj⟩︸ ︷︷ ︸
∥vj∥2=1

(3.53)

Theorem 3.59. Let A ∈ Km×n and ⟨·|·⟩ the canonical scalar product on Kn. Then

⟨v|Aw⟩ =
〈
AHv

∣∣w〉
Proof. First consider
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(Aw)i =
n∑
j=1

Aijwi (3.54a) (AHw)j =
n∑
i=1

Ajivi (3.54b)

Now we can compute

⟨v|Aw⟩ =
n∑
i=1

vi(Aw)i =

n∑
i=1

vi · n∑
j=1

Aijwj

 =

n∑
i=1

n∑
j=1

Aijviwj

=

n∑
j=1

(
n∑
i=1

Aijvi

)
wj =

n∑
j=1

(
n∑
i=1

Aijvi

)
wj

=

n∑
j=1

(AHv)j · wj

=
〈
AHv

∣∣w〉

(3.55)

Definition 3.60. A matrix A ∈ Rn×n is called orthogonal if

ATA = AAT = I

or
AT = A−1

The set of all orthogonal matrices

O(n) :=
{
A ∈ Rn× n

∣∣ATA = I
}

is called the orthogonal group.

SO(n) =
{
A = Rn× n

∣∣ATA = I ∧ detA = 1
}
⊂ O(n)

is called the special orthogonal group.6

Example 3.61. Let ϕ ∈ [0, 2π], then

A =

(
cosϕ − sinϕ
sinϕ cosϕ

)
is orthogonal.

Remark 3.62. (i) Let A,B ∈ Kn×n, then

AB = I =⇒ BA = I

(ii)
1 = det I = detATA = detAT · detA = det2A
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(iii) The i-j-component of ATA is equal to the canonical scalar product of the i-th row of
AT and the j-th column of A. Since the rows of AT are the columns of A, we can
conclude that

A orthogonal ⇐⇒ ⟨ri|rj⟩ = δij

where the ri are the columns of A. In this case, the ri are an orthonormal basis on
Rn. This works analogously for the rows.

(iv) Let A be orthogonal, and x, y ∈ Rn

⟨Ax|Ay⟩ =
〈
ATAx

∣∣y〉 = ⟨x|y⟩

∥Ax∥ =
√

⟨Ax|Ax⟩ =
√

⟨x|x⟩ = ∥x∥

A perserves scalar products, lengths, distances and angles. These kinds of operations
are called mirroring and rotation.

(v) Let A,B ∈ O(n)
(AB)T · (AB) = BTATAB = BT IB = I

This implies (AB) ∈ O(n). It also implies I ∈ O(n). Now consider A ∈ O(n). Then

(A−1)TA−1 = (AT )T ·AT = AAT = I

This implies A−1 ∈ O(T ). Such a structure (a set with a multiplication operation,
neutral element and multiplicative inverse) is called a group.

Example 3.63. O(n), SO(n), R \ {0}, C \ {0}, Gl(n) (set of invertible matrices) and Sn are
all groups.

Definition 3.64. A matrix U ∈ Cn×n is called unitary if

UHU = I = UUH

We also introduce {
U ∈ Cn× n

∣∣UHU = I
}

the unitary group, and {
U ∈ Cn× n

∣∣UHU = I ∧ detU = 1
}

the special unitary group.
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3.5 Eigenvalue problems

Definition 3.65. Let A ∈ Kn×n. Then λ ∈ K is called an eigenvalue of A, if

∃v ∈ Kn, v ̸= 0 : Av = λv

Such a vector v is called eigenvector. We call

{v ∈ Kn |Av = λv} =: Eλ

eigenspace belonging to λ.

Example 3.66. Let

A =

2 1 −1
0 1 0
0 0 1


Then

A ·

1
0
0

 =

2
0
0

 = 2 ·

1
0
0


A ·

 1
−1
0

 =

 1
−1
0

 = 1 ·

 1
−1
0


A ·

1
0
1

 =

1
0
1

 = 1 ·

1
0
1


The eigenspaces are

E2 =

κ ·

1
0
0

∣∣∣∣∣∣κ ∈ R


E1 =

κ ·

 1
−1
0

+ ρ ·

1
0
1

∣∣∣∣∣∣κ, ρ ∈ R

 = span


 1
−1
0

 ,

1
0
1


Remark 3.67. The eigenspace to an eigenvalue λ is a linear subspace.

Remark 3.68. We want to find λ ∈ K, v ∈ Kn such that

Av = λv ⇐⇒ (A− λI︸ ︷︷ ︸
∈Kn×n

)v = 0

If (A−λI) is invertible, then v = 0. So the interesting case is when (A−λI) not invertible.

(A− λI) not invertible ⇐⇒ det(A− λI) = 0



3.5. EIGENVALUE PROBLEMS 71

This determinant is called the characteristic polynomial. This polynomial has degree n,
and the eigenvalues are the roots of that polynomial. So let λ be an eigenvalue of A, then

(A− λI)v = 0

is a linear equation system for the components of v.

Example 3.69. Let

A =

(
0 1
−1 0

)
∈ C2×2

The characteristic polynomial is

det(A− λI) =

∣∣∣∣−λ 1
−1 −λ

∣∣∣∣ = λ2 + 1

Its roots are

λ1 = i λ2 = −i

To find the eigenvector belonging to λ1, we declare v1 = (x, y) ∈ C2 and solve the linear
equation system

(A− λ1I)v1 = 0 −ix+ 1y = 0

−1x− iy = 0

It has the solutions x = −i and y = 1, so

v1 =

(
−i
1

)
Doing the same for v2 yields

v2 =

(
i
1

)
It is to be noted that the eigenvectors aren’t unique (multiples of eigenvectors are also
eigenvectors).

Example 3.70. Let D be a diagonal matrix, with the diagonal entries λj . Then

det(D − λI) =

∣∣∣∣∣∣∣∣∣
λ1 − λ

λ2 − λ
. . .

λn − λ

∣∣∣∣∣∣∣∣∣
The roots (eigenvalues) are λ1, λ2, · · · , λn, and the eigenvectors are Dei = λiei.
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Definition 3.71. A ∈ Kn×n is called diagonalizable if there exists a basis of Kn that
consists of eigenvectors.

Theorem 3.72. A matrix A ∈ Kn×n is diagonalizable, if and only if there exists a diagonal
matrix D and a invertible matrix T such that

D = T−1AT

Proof. Let e1, e2, · · · , en be the canonical basis of Kn. Define TDT−1 = A, and let
λ1, · · · , λn be the diagonal entries of D. Then we know that

Dei = λiei, ∀i ∈ {1, · · ·n} (3.56)

Since T is invertible, the Te1, · · ·Ten form a basis.

A(Tei) = T (T−1AT )ei = TDei = Tλiei = λi(Tei) (3.57)

Therefore Tei is an eigenvector of A to the eigenvalue λi. Now let v1, · · · , vn be a basis of
Kn and

Avi = λivi, λ1, · · · , λn ∈ Kn (3.58)

Write write v1, · · · , vn as the columns of a matrix, therefore

T = (v1, v2, · · · , vn) (3.59a)

D =

λ1 ...
λn

 (3.59b)

So Tei = vi, and thus

A(Tei) = Avi = λivi = λi(Tei) = Tλiei = TDei (3.60)

This means that (AT − TD)ei = 0, ∀i ∈ {1, · · · , n}.

=⇒ AT = TD (3.61)

T is invertible (left as an exercise for the reader), and thus

=⇒ T−1AT = D (3.62)

Example 3.73. (i) Let

A =

(
0 1
−1 0

)
The eigenvalues and eigenvectors are
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A ·
(
−i
1

)
= i

(
−i
1

)
A ·
(
i
1

)
= −i

(
i
1

)
Therefore

T =

(
−i i
1 1

)
which has the inverse

T−1 =
1

2

(
i 1
−i 1

)
Finally,

T−1AT =
1

2

(
i 1
−i 1

)(
1 1
i −i

)
=

1

2

(
2i 0
0 −2i

)
=

(
i 0
0 −i

)
This is a diagonal matrix, therefore A is diagonalizable.

(ii) The matrix (
0 1
0 0

)
is not diagonalizable since its only eigenvector is (1, 0)T .

Remark 3.74. For diagonal matrices the following is true
λ1

λ2
. . .

λ3


k

=


λk1

λk2
. . .

λk3


If T−1AT = D (where D is a diagonal matrix), then

Dk = (T−1AT )k = T−1AT · T−1AT · · · ·︸ ︷︷ ︸
k times

= T−1AkT

=⇒ Ak = TDkT−1

Theorem 3.75. Let A ∈ Rn×n be a symmetric matrix, i.e. A = AT . (Or if A ∈ Cn×n a
self-adjoint matrix A = AH). Then A has an orthonormal basis consisting of eigenvectors
and is diagonalizable.

Proof. Let λ ∈ C be an eigenvalue of A ∈ Kn×n with eigenvector v ∈ Kn and A = AH .
Then

λ ⟨v|v⟩ = ⟨v|λv⟩ = ⟨v|Av⟩ =
〈
AHv

∣∣v〉 = ⟨Av|v⟩ = ⟨λv|v⟩ = λ ⟨v|v⟩ (3.63)

Therefore
(λ− λ) ⟨v|v⟩︸ ︷︷ ︸

0

= 0 (3.64)
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=⇒ (λ− λ) = 0 =⇒ λ = λ =⇒ λ ∈ R (3.65)

Now let λ, ρ ∈ R be eigenvalues to the eigenvectors v, w, and require λ ̸= ρ. Then

ρ ⟨v|w⟩ = ⟨v|Aw⟩ = ⟨Av|w⟩ = λ ⟨v|w⟩ = λ ⟨v|w⟩ (3.66)

And thus
(ρ− λ)︸ ︷︷ ︸

̸=0

⟨v|w⟩︸ ︷︷ ︸
=0

= 0 =⇒ v ⊥ w (3.67)
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4.1 Limits and Functions

In this chapter we will introduce the notation

Bϵ(x) = (x− ϵ, x+ ϵ)

Definition 4.1. Let D ⊂ R and x ∈ R. x is called a boundary point of D if

∀ϵ > 0 : D ∩Bϵ(x) ̸= 0

The set of all boundary points of D is called closure and is denoted as D.

Example 4.2. (i) x ∈ D is always a boundary point of D, because

x ∈ D ∩Bϵ(x)

(ii) Boundary points don’t have to be elements of D. If D = (0, 1), then 0 and 1 are
boundary points, because

ϵ

2
∈ (0, 1) ∩Bϵ(0) = (−ϵ, ϵ) ∀ϵ > 0

(iii) Let D = Q. Every x ∈ R is a boundary point, because ∀ϵ > 0, Bϵ(x) contains at least
one rational number. I.e. Q = R.

Remark 4.3. If x is a boundary point, then

∀ϵ > 0 ∃y ∈ D : |x− y| < ϵ

If x is not a boundary point, then

∃ϵ > 0 ∀y ∈ D : |x− y| ≥ ϵ

Theorem 4.4.

x ∈ R is a boundary point of D ⊂ R ⇐⇒ ∃ (xn) ⊂ D such that xn → x

Proof. Let x be a boundary point of D. Then

∀n ∈ N ∃xn ∈ D ∩
(
x− 1

n
, x+

1

n

)
(4.1)

The resulting sequence (xn) is in D, and

|x− xn| ≤
1

n
(4.2)

holds. Therefore, xn converges to x. Now let (xn) ⊂ D, with xn → x. This means

∀ϵ > 0 ∃N ∈ N : |x− xN | < ϵ (4.3)

Then
xN ∈ D ∩Bϵ(x) (4.4)

Since ϵ is arbitrary, x is a boundary point of D.
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Definition 4.5. Let D ⊂ R and f : D → R. Let x0 be a boundary point of D. We say
that f converges to y ∈ R for x→ x0 and write

lim
x→x0

f(x) = y

if
∀ϵ > 0 ∃δ > 0 : |x− x0| < δ =⇒ |f(x)− f(y)| < ϵ

Remark 4.6. This definition only makes sense for boundary points x0 of D. The most
imoprtant case is

D = (x0 − a, x0 + a) \ {x0}

Example 4.7. (i) Let a ∈ R

f : R −→ R
x 7−→ ax

Consider a ̸= 0: Let ϵ > 0. We want that

|f(x)− 0| = |a||x|
!
< ϵ

Choose δ = ϵ
|a| . Then we have

|x| = |x− 0| < δ =⇒ |f(x)− 0| = |a||x| < |a|δ = |a| ϵ
|a|

= ϵ

Therefore
lim
x→0

f(x) = 0

(ii) Consider

f : R −→ R

x 7−→

{
1, x > 0

−1, x < 0

f doesn’t converge for x → 0. Assume y ∈ R is the limit of x at 0. This means that
there is a δ > 0 such that

|f(x)− y| < 1 if |x| = |x− 0| < δ

Then, for any x ∈ (0, δ) we have

2 = |f(x)− f(−x)| ≤ |f(x)− y|︸ ︷︷ ︸
<1

+ |y − f(−x)|︸ ︷︷ ︸
<1

< 2

which is a contradiction.
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Theorem 4.8. Let f : D → R, x0 a boundary point of D and y ∈ R. Then

lim
x→x0

f(x) = y ⇐⇒ ∀ (xn) ⊂ D with xn −→ x0 : lim
n→∞

f(xn) = x0

Proof. Assume that limx→x0 f(x) and that there is (xn) ⊂ D converging to x. Let ϵ > 0,
then

∃δ > 0 : |x− x0| < δ =⇒ |f(x)− y| < ϵ (4.5)

Since xn → x0, we know that

∃N ∈ N ∀n > N : |xn − x0| < δ (4.6)

For such n, the epsilon criterion |f(xn)− y| < ϵ also holds, and thus

f(xn)
n→∞−−−→ y (4.7)

Now to prove the ” ⇐= ” direction, assume that limx→x0 f(x) ̸= y, i.e.

∃ϵ > 0 ∀δ > 0 ∃x ∈ D : |x− x0| < δ ∧ |f(x)− y| ≥ ϵ (4.8)

Choose ∀x ∈ N one xn such that

|xn − x0| <
1

n
but |f(xn)− y| ≥ ϵ (4.9)

Then xn → x0, but |f(xn)− y| ≥ ϵ ∀n ∈ N, so

lim
n→∞

f(xn) ̸= y (4.10)

This indirectly proves ” ⇐= ”.

Example 4.9. Consider D = R ⊂ {0}, we want to prove

lim
x→0

1

1− x
= 1

So let (xn) ⊂ D with xn → 0. Then

1

1− xn

n→∞−−−→ 1

=⇒ lim
x→0

1

1− x
= 1

However, the limit limx→1 doesn’t exist. Let xn = 1
n + 1 with xn → 1. Then

1

1− ( 1n + 1)
= −n n→∞−−−→ −∞

This doesn’t converge, thus there is no limit.
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Corollary 4.10. Let f, g : D → R, x0 a boundary point and y, z ∈ R such that

lim
x→x0

f(x) = y lim
x→x0

g(x) = z

Then

lim
x→x0

(f(x) + g(x)) = y + z

lim
x→x0

(f(x) · g(x)) = y · z

If z ̸= 0, then

lim
x→x0

(
f(x)

g(x)
) =

y

z

Proof. Here we will only prove the last statement. Let limx→x0 = z ̸= 0. Then

∃δ > 0 ∀x ∈ Bδ(x0) : |g(x)− z| < |z| (4.11)

g doesn’t have any roots on Bδ(x0). Let (xn) ⊂ D ∩ Bδ(x0) converge to x0. According to
prerequisites, we have

lim
n→∞

f(xn) = y (4.12a) lim
n→∞

g(xn) = z ̸= 0 (4.12b)

Thus

=⇒ lim
n→∞

f(xn)

g(xn)
=
y

z
=⇒ lim

x→x0

f(x)

g(x)
=
y

z
(4.13)

Corollary 4.11 (Squeeze Theorem). Let f, g, h : D → R and x a boundary point of D. If
for y ∈ R

lim
x→x0

f(x) = y = lim
x→x0

h(x)

and
f(x) ≤ g(x) ≤ h(x) ∀x ∈ Bϵ(x0)

then
lim
x→x0

g(x) = y

Example 4.12. Consider exp(x). We already know that

1 + x ≤ exp(x) ∀x ∈ R

This also implies that

1− x ≤ exp(−x) = 1

exp(x)
∀x ∈ R
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So

1 + x ≤ exp(x) ≤ 1

1− x

The limits of these terms are

lim
x→0

(1 + x) = 1 lim
x→0

(
1

1− x

)
= 1

And using the squeeze theorem this results in

lim
x→0

exp(0) = 1

Definition 4.13. Let f : D → R and x0 a boundary point of D. We say f diverges to
infinity for x→ x0 and write

lim
x→x0

f(x) = ∞

if
∀K ∈ (0,∞) ∃δ > 0 : |x− x0| < δ =⇒ f(x) ≥ K

Definition 4.14. Let D ⊂ R be unbounded above. We say f converges for x → ∞ to
y ∈ R and write

lim
x→∞

f(x) = y

if
∀ϵ > 0 ∃K ∈ (0,∞) ∀x > K : |f(x)− y| < ϵ

Remark 4.15. Let f : D → C and x0 a boundary point of D. Then

lim
x→x0

f(x) = y ∈ C

⇐⇒ lim
x→x0

Re(f(x)) = Re(y) ∧ lim
x→x0

Im(f(x)) = Im(y)

⇐⇒ lim
x→x0

|f(x)− y| = 0

Definition 4.16. Let D ⊂ K, f : D → K and x0 ∈ D. f is called continuous in x0 if

∀ϵ > 0 ∃δ > 0 : |x− x0| < δ =⇒ |f(x)− f(x0)| < ϵ

If f is continuous in every point of D, we call f continuous.
f is called Lipschitz continuous if

∃L ∈ (0,∞) ∀x, y ∈ D : |f(x)− f(y)| ≤ L|x− y|

L is called Lipschitz constant

Remark 4.17. Let f : D → K

f is continuous in x0 ∈ D ⇐⇒ lim
x→x0

f(x) = f(x0)



4.1. LIMITS AND FUNCTIONS 81

Example 4.18. We want to show that

f : R −→ R
x 7−→ x2

is continuous. To do that, let x0 ∈ R, ϵ > 0. We want

|f(x)− f(x0)| = |x2 − x20| = |x− x0||x+ x0|
!
≤ ϵ

So we choose

δ = min

{
1,

ϵ

2|x0|+ 1

}
> 0

Then for every x with |x− x0| < δ

|f(x)− f(x0)| = |x− x0||x+ x0| ≤ δ(|x|+ |x0|) ≤ δ(|x0|+ δ + |x0|)

≤ δ(2|x0|+ 1) ≤ ϵ

2|x0|+ 1
(2|x0|+ 1) = ϵ

Theorem 4.19. Every Lipschitz continuous function is continuous

Proof. Let f : D → K be a Lipschitz continuous function with Lipschitz constant L > 0.
I.e.

∀x, y ∈ D : |f(x)− f(y)| ≤ L|x− y| (4.14)

Let x0 ∈ R and ϵ > 0. Choose δ = ϵ
L . Then |x− x0| < δ implies

|f(x)− f(x0)| ≤ L|x− x0| ≤ L · δ = ϵ (4.15)

Example 4.20. (i) Consider the constant function x 7→ c, c ∈ K.

|f(x)− f(y)| = |c− c| = 0 ≤ 1 · |x− y|

(ii) Consider the linear function x 7→ cx, c ∈ K.

|f(x)− f(y)| = |cx− cy| = |c||x− y|

These two functions are Lipschitz continuous, and therefore continuous.

(iii) Consider x 7→ Re(x). Then

|Re(x)− Re(y)| = |Re(x− y)| ≤ |x− y|

Analogously this works for Im(x). Both of those are Lipschitz continuous.
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(iv) Lipschitz continuity depends on D. E.g.

f : [0, 1] −→ R
x 7−→ x2

is Lipschitz continuous:

|f(x)− f(y)| = |x− y||x+ y| ≤ 2 · |x− y|

However,

g : R −→ R
x 7−→ x2

is NOT Lipschitz continuous, because

|g(n+ 1)− g(n)|
(n+ 1)− n

= 2n+ 1
n→∞−−−→ ∞

Remark 4.21. Let f : D → K.

f is continuous in x0 ∈ D

⇐⇒
∀ (xn) ⊂ D with xn → x0 : lim

n→∞
f(xn) = f(x0)

If f, g are continuous in x0, then f + g and f · g are also continuous in x0, and if g(x0) ̸= 0
then f/g is also continuous in x0. Notably, polynomials are continuous. A rational function
(the quotient of two polynomials) is continuous in all points that are not roots of the
denominator.

Theorem 4.22. Let D ⊂ K, and let

f : D −→ K continuous in x0 ∈ D (4.16a)

g : f(D) −→ K continuous in f(x0) (4.16b)

Then g ◦ f is also continuous in x0.

Proof. Let ϵ > 0. Since g is continuous in f(x0),

∃δ1 > 0 : |y − f(x0)| < δ1 =⇒ |g(y)− g(f(x0))| < ϵ (4.17)

Since f is continuous in x0,

∃δ2 > 0 : |x− x0| < δ2 =⇒ |f(x)− f(x0)| < δ1 (4.18)

For such x the following holds

|(g ◦ f)(x)− (g ◦ f)(x0)| = |g(f(x))− g(f(x0))| < ϵ (4.19)

which implies that g ◦ f is continuous in x0.
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Example 4.23. Consider the following mappings

f : R −→ R, x 7−→ |x|

g : R −→ R \ {−1} , y 7−→ 1− y

1 + y

h : R −→ R, x 7−→ 1− |x|
1 + |x|

It is clear that h = g ◦ f . Since f , g are continuous, h must also be continuous.

Example 4.24. The functions exp, sin and cos are continuous. We know that

lim
h→0

exp(k)− 1

h
= 1

From this follows that
lim
h→0

exp(k) = exp(0) = 0

Thus, exp is continuous in 0. Let x0 ∈ R, then

lim
x→x0

exp(x) = lim
h→0

exp(x0 + h) = lim
h→0

exp(x0) exp(h)

= exp(x0)− lim
h→0

exp(h) = exp{x0}

Now, consider the function x 7→ exp(ix). For x0 ∈ R

| exp(i(x0 + h))︸ ︷︷ ︸
exp(ix0) ˙exp(ih)

− exp(ih0)| = | exp(ix0)|︸ ︷︷ ︸
1

| exp(ih)− 1|

≤ 1 ·

∣∣∣∣∣
∞∑
k=0

(ih)k

k!
− 1

∣∣∣∣∣ =
∣∣∣∣∣
∞∑
k=1

(ih)k

k!

∣∣∣∣∣
≤

∞∑
k=1

∣∣∣∣(ih)kk!

∣∣∣∣
=

∞∑
k=1

|h|k

k!
=

∞∑
k=0

|h|k

k!
− 1 = exp(|h|)− 1

For h→ 0, the absolute function converges |h| → 0, and therefore

limh0| exp(i(x0 + h))− exp(ix)| = 0

due to the squeeze theorem. I.e., x 7→ exp(ix) is also continuous. Thus

cosx = Re(exp(ix)) sinx = Im(exp(ix))

are also continuous due to the concatination of continuous functions.
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Lemma 4.25. Let a, b ∈ R with a < b, and let

f : [a, b] −→ R

be a continuous function. Furthermore, let y ∈ R. Now if the set

{x ∈ [a, b] | f(x) ≥ y}

is non-empty, it has a smallest element.

Proof. Let M be non-empty. Set x0 = inf {M}. Then it is to be shown that x0 ∈ M , or
that f(x0) ≥ y. There exists a sequence (xn) ⊂ M such that xn → x0. Because of the
continuity of f ,

f(x0) = f( lim
n→∞

xn) = lim
n→∞

f(xn) ≥ y (4.20)

holds, thus x0 ∈M .

Theorem 4.26 (Extreme value theorem). Let a, b ∈ R with a < b, and let f : [a, b] → R
continuous. Then the function f attains a maximum, i.e.

∃x0 ∈ [a, b] ∀x ∈ [a, b] : f(x) ≤ f(x0)

Proof. First we show that f is bounded. Assume f is unbounded above, i.e.

{x ∈ [a, b] | f(x) ≥ n} =:Mn, n ∈ N (4.21)

According to the last lemma, every Mn has a smallest element xn. The sequence (xn)n∈N
is monotonically increasing (Mn+1 ⊂Mn) and bounded above by b. Thus, xn converges to
some x0 ∈ [a, b]. Now consider the sequence (f(xn))n∈N. By definition

lim
n→∞

f(xn) ≥ lim
n→∞

n = ∞ (4.22)

And since f is continuous, limn→∞ f(xn) = f(x0) must hold. This contradicts the assump-
tion, so f is bounded.

Now set
y = sup {f(x) |x ∈ [a, b]} (4.23)

In case f is equal to y everywhere, there is nothing to show. So assume that there are values
for which f ̸= y. According to the definition of the supremum, the sets{

x ∈ [a, b]

∣∣∣∣ f(x) ≥ y − 1

n

}
(4.24)

are non-empty for all n ∈ N, and thus they have a smallest element xn. The sequence
(xn)n∈N is monotonically increasing and bounded, i.e. it converges to x0 ∈ [a, b]. Therefore

y ≥ f(x0) = lim
n→∞

f(xn) ≥ lim
n→∞

y − 1

n
= y (4.25)

From this follows

f(x0) = y =⇒ f(x0) upper bound of {f(x) |x ∈ [a, b]} (4.26)
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Theorem 4.27 (Intermediate value theorem). Let a, b ∈ R with a < b, and f : [a, b] → R
a continuous function with f(a) < f(b).

y ∈ (f(a), f(b)) =⇒ ∃x0 ∈ (a, b) : f(x0) = y

Proof. Without proof.

Example 4.28. cos has in [0, 2] exactly one root. Consider the definition

cosx =

∞∑
k=0

(−1)kx2k

(2k)!

We know that cos 0 = 1. Furthermore we can show that

−1 = 1− 22

2!︸ ︷︷ ︸
2nd partial sum

≤ cos(2) ≤ 1− 22

2!
+

24

4!︸ ︷︷ ︸
3rd partial sum

< 0

The intermediate value theorem tells us that there exists a root in [0, 2]. Now we need to
show that cos is strictly monotonically decreasing on [0, 2]. Choose z ∈ [0, 2]. Then

z ≤ sin z ≤ z − z3

3!

The addition theorem tells us that

cos(x)− cos(y) = −2 sin

(
x+ y

2

)
sin

(
x− y

2

)
< 0

for x, y ∈ (0, 2] and x > y. Thus cos is strictly monotonically decreasing on [0, 2].

Corollary 4.29. Let I be an interval and f : I → R continuous. Then f(I) is also an
interval.

Proof. Left as an exercise for the reader.

Theorem 4.30. Let I be an interval, f : I → R continuous. If f is strictly monotonically
increasing, then the inverse function f−1 : f(I) → I exists and is continuous.

Heuristic Proof. f(I) is an interval, and f is injective. This is because if f(x) = f(x̃), then
x = x̃ or else f wouldn’t be strictly monotonic. This means

∃g : f(I) −→ R : f(x) = y ⇐⇒ g(y) = x (4.27)

Let y0 ∈ f(I) and ϵ > 0. We require that x0 is not a boundary point of I. Then choose
0 < ϵ̃ < ϵ such that (x0 − ϵ̃, x0 + ˜epsilon) ∈ I. Choose

δ = min

f(x0 + ϵ̃)− y0︸ ︷︷ ︸
>0

, y0 − f(x0 − ϵ̃)︸ ︷︷ ︸
>0

 > 0 (4.28)
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If y ∈ f(I) with |y − y0| < δ then

f(xo − ˜epsilon) ≤ x0 − δ < y < y0 + δ ≤ f(x0 + ϵ̃) (4.29)

From the strict monotony of g we can conclude

x0 − ˜epsilon < g(y) < x0 + ϵ̃ (4.30)

so
|g(y)− g(y0)| = |g(y)− x0| < ϵ̃ < ϵ (4.31)

Thus, g is continuous in y0. Since y0 ∈ f(I) was chose arbitrarily, all of g is continuous. To
prove the monotony of g, assume y < ỹ and g(y) ≥ g(ỹ) for y, ỹ ∈ f(I). From the monotony
of f we know that

y ≥ ỹ (4.32)

which is a contradiction, so g is strictly monotonic.

Example 4.31. (i) Let n ∈ N and consider

f : [0,∞) −→ R
x 7−→ xn

f is continuous and strictly monotonically increasing. Thus the inverse function

n
√
· : [0,∞) −→ R+

is also continuous.

(ii) Consider exp : R → R. It’s clear that exp(R) = (0,∞), so the mapping

ln : (0,∞) → R

is continuous and strictly monotonically increasing.

(iii) Equal arguments can be made for the trigonometric functions.

4.2 Differential Calculus

Definition 4.32. Let I be an open interval ((a, b), a < b, a, b = ∞ possible). Let f : I → K
and x ∈ I. f is called differentiable in x if

f ′(x) = lim
h→0

f(x+ h)− f(x)

h︸ ︷︷ ︸
Difference quotient

exists. f ′(x) is called the differential quotient, or derivative of f in x. f is called differen-
tiable if it is differentiable in every x.
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Example 4.33. (i) Let f(x) = c with c ∈ K be a constant function

f ′(x) = lim
h→0

c− c

h
= 0

(ii) For n ∈ N consider f : R → R x 7→ xn

f ′(x) = lim
h→0

(x+ h)n − xn

h
= lim

h→0

n∑
k=0

(
n

k

)
hk−1xk−1 = nxn−1

(iii) Consider the exponential function

f ′(x) = lim
h→0

exp(x+ h)− exp(x)

h
= lim

h→0
exp(x)

exp(h)− 1

h
= exp(x)

Theorem 4.34. Let f : I → K be differentiable in x. Then f is also continuous in x.

Proof. Let f be continuous in x. Then

lim
h→0

(f(x+ h)− f(x)) = 0 (4.33)

Assume f to be uncontinuous in x. This means that

∃ϵ > 0 ∀δ > 0 ∃h ∈ (−δ, δ) : |f(x+ h)− f(x)| ≥ ϵ (4.34)

In particular, for every n there exists an hn ∈
(−1
n ,

1
n

)
⊂ {0}, such that

|f(x+ hn)− f(x)| ≥ ϵ (4.35)

hn is a null sequence and ∣∣∣∣f(x+ hn)− f(x)

hn

∣∣∣∣ ≥ ϵ
1
n

= n · ϵ −→ ∞ (4.36)

So the above term doesn’t converge, thus

f(x+ h)− f(x)

h
−→ ∞ (4.37)

Therefore, f isn’t differentiable in x.

Remark 4.35. The inverse is not true.

Theorem 4.36. Let I be an open interval and f, g : I → K differentiable in x ∈ I. Then
f + g and f · g are differentiable too, and if g(x) ̸= 0 then f/g is also differentiable.

(f + g)′(x) = f ′(x) + g′(x)

(f · g)′(x) = f ′(x)g(x) + f(x)g′(x)(
1

g

)′
(x) =

−g′(x)
g(x)2
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Proof. Left as an exercise for the reader.

Theorem 4.37 (Chain rule). Let I, J be open intervals, and let

g : J −→ I f : i −→ K

g and f are to be differentiable in x and f(x) respectively. Then f ◦ g is differentiable in x
and

(f ◦ g)′ = g′(x) · f ′(g(x))

Proof. Consider the following function

ϕ : J −→ K ϕ(ξ) =

{
f(g(x)+ξ)−f(g(x))

ξ , ξ ̸= 0

f ′(g(x)), ξ = 0
(4.38)

ξ is continuous, since f is continuous and

lim
ξ→0

ϕ(ξ) = f ′(g(x)) = ϕ(0) (4.39)

∀ξ ∈ J the following holds

f(g(x) + ξ)− f(g(x)) = ϕ(ξ) · ξ (4.40)

With this we can now show that

f(g(x+ h))− f(g(x))

h
=
f(g(x) + (g(x+ h)− g(x)))− f(g(x))

h

=
ϕ(g(x+ h)− g(x))(g(x+ h)− g(x))

h

= ϕ(g(x+ h)− g(x))︸ ︷︷ ︸
h→0−−−→0

· g(x+ h)− g(x)

h︸ ︷︷ ︸
h→0−−−→g′(x)

h→0−−−→ g′(x) · f ′(g(x))

(4.41)

Definition 4.38. Let I be an interval and f : I → R. x0 ∈ I is called a global maximum if

f(x) ≤ f(x0) ∀x ∈ I

x0 ∈ I is called a local maximum if

∃ϵ > 0 : f(x) ≤ f(x0) ∀x ∈ (x0 − ϵ, x0 + ϵ)

An extremum is either maximum or minimum.
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Example 4.39. (i) Let f : [−1, 1] → R, f(x) = x2.

� x0 = 0 is a local and global minimum

� x0 = ±1 is a local and global maximum

(ii) Consider

f : R −→ R

x 7−→ cosx+
x

2

f has infinitely many local extrema, but no global ones!

x

y

f(x)

(iii) Consider

f : R −→ R

x 7−→

{
1, x rational

0, x irrational

� x0 rational is a global maximum

� x0 irrational is a global minimum

Theorem 4.40. Let I be an open interval, and f : IRR a function with a local extremum
at x0 ∈ I. Then

f differentiable in x0 =⇒ f ′(x0) = 0
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Proof. Assume f ′(x0) ̸= 0 (w.l.o.g. f ′(x0) > 0, otherwise consider −f). Then

∃δ > 0 :

∣∣∣∣f(x0 + h)− f(x)

h
− f ′(x0)

∣∣∣∣ < f ′(x0) ∀h ∈ (−δ, δ) (4.42)

Especially

0 <
f(x0 + h)− f(x0)

h
∀h ∈ (−δ, δ) (4.43)

For h > 0 this means f(x0 + h) > f(x0). And for h < 0 this means that f(x0 + h) < f(x0).
Thus x0 is not an extremum.

Remark 4.41. Let f : I → R be differentiable. To find the extrema of f , calculate f ′

and find its roots. However, the roots are to be insepcted more closely, as f ′(x0) = 0 is
not a sufficient criterion (The function could have inflection points or behave badly at the
boundaries of I).

Theorem 4.42 (Mean value theorem). Let a, b ∈ R with a < b, and let f, g : [a, b] → R be
differentiable. Then ∃ξ ∈ (a, b) such that

(f(b)− f(a))g′(ξ) = f ′(ξ)(g(b)− g(a))

a ξ b

f(a)

f(b)

g(x)

f(x)

Proof. Consider all

h(x) = (f(b)− f(a))g(x)− f(x)(g(b)− f(a)) (4.44)

h is differentiable, which means h is continuous on [a, b]:

h(a) = f(b)g(a)− f(a)g(b) = h(b) (4.45)

We need to show that h′ has a root in [a, b]. If h is constant, this is trivial. So we assume
∃x ∈ (a, b) such that h(x) > h(a). Since h is continuous on (a, b) there exists a global
maximum x0 ∈ [a, b] with x0 ̸= a and x0 ̸= b. This implies that h′(x0) = 0. If h(x) < h(a)
the same argument can be made.
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Remark 4.43. This theorem is often written as

f(b)− f(a)

g(b)− g(a)
=
f ′(ξ)

g′(ξ)

And if g(x) = x
f(b)− f(a)

b− a
= f ′(ξ)

Corollary 4.44. Let I be an open interval and f : I → R differentiable. Then

(i) f ′(I) ⊂ [0,∞) ⇐⇒ monotonically increasing

(ii) f ′(I) ⊂ (0,∞) =⇒ strictly monotonically increasing

(iii) f ′(I) ⊂ (−∞, 0] ⇐⇒ monotonically decreasing

(iv) f ′(I) ⊂ (−∞, 0) =⇒ striuctly monotonically decreasing

Proof. We will only show the ” =⇒ ” direction for (i). Assume f isn’t monotonically
increasing, then ∃x, y ∈ I such that x < y but f(x) > f(y). The mean value theorem thus
states, ∃ξ ∈ (x, y) such that

f ′(ξ) =
f(y)− f(x)

y − x
< 0 (4.46)

All other statements are proven in the same fashion.

Example 4.45. f strictly monotonically increasing does NOT imply that f ′(I) ⊂ (0,∞).
Consider f(x) = x3.

Corollary 4.46 (L’Hôpital’s rule). Let a, b, x0 ∈ R, with a < x0 < b and let f, g : (a, b) → R
be a differentiable function. We require f(x0) = g(x0) = 0. If g′(x) ̸= 0 ∀x ∈ I \ {x0} and
if

lim
x→x0

f ′(x)

g′(x)

exists, then

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)

Proof. Between two roots of g there must be at least one root of g′. I.e. g(x) ̸= 0 ∀x ∈
I \ {x0}. This means, that

∀x ∈ (a, x0) ∃ξx :
f(x)

g(x)
=
f(x)− f(x0)

g(x)− g(x0)
=
f ′(ξx)

g′(ξx)
=⇒ lim

x→x0

f ′(x)

g′(x)
(4.47)

Since ξx ∈ (x, x0)

ξx
x→x0−−−→ x0 (4.48)
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For the limit from the left, this implies

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)
(4.49)

This argument can be made for the limit from the right as well.

Remark 4.47. (i) For the computation of the limit it is enough to consider f and g on
(x0 − δ, x0 + δ) with δ > 0.

(ii) L’Hôpital’s rule also works for one-sided limits

(iii) Let f, g : (a, b) \ {x0} → R be differentiable. Then it is enough to require

lim
x→x0

f(x) = lim
x→x0

g(x) = 0

(iv) L’Hôpital’s rule doesn’t generally apply to complex valued functions.

(v) By substituring f̃(x) = f
(
1
x

)
and g̃(x) = g

(
1
x

)
we can also use

lim
x→∞

f̃(x)

g̃(x)
= lim

x→∞

f̃ ′(x)

g̃′(x)

(vi) The inverse

L = lim
x→x0

f(x)

g(x)
=⇒ lim

x→0

f ′(x)

g′(x)
= L

is NOT true.

Example 4.48. Consider

lim
x→0

x2

1− cosx
=

“0

0

”

The functions here are

f(x) = x2 g(x) = 1− cosx

with the derivatives

f ′(x) = 2x g′(x) = sinx

However, the limit of the derivatives is still

lim
x→0

2x

sinx
=

“0

0

”

We can derive the functions again

f ′′(x) = 2 g′′(x) = cosx

And thus

lim
x→0

2

cosx
= 2 =⇒ lim

x→0

x2

1− cosx
= 2
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Theorem 4.49 (Derivative of inverse functions). Let I be an open inverval, and f : I → R
differentiable with f ′(I) ⊂ (0,∞). Then f has a differentiable inverse function f−1(x) :
f(I) → R and for y ∈ f(I) we have(

f−1
)′
(y) =

1

f ′ (f−1(y))

Proof. f is strictly monotonically increasing, thus f−1 exists and is continuous. Let y ∈
f(I), x := f−1(y) and

ξ(h) = f−1(y + h)− f−1(y)︸ ︷︷ ︸
x

(4.50)

Then
x+ ξ(h) = f−1(y + h) =⇒ f(x+ ξ(h)) = y + h = f(x) + h (4.51)

Which in turn implies
f(x+ ξ(h))− f(x) = h (4.52)

Now we have

f−1(y + h)− f−1(y)

h
=

ξ(h)

f(x+ ξ(h))− f(x)

=

(
f(x+ ξ(h))− f(x)

ξ(h)

)−1

h→0−−−→
(
f ′(x)

)−1
=

1

f ′(f−1(y))
> 0

(4.53)

Example 4.50. (i) Let n ∈ N and consider

f : (0,∞) −→ R
x 7−→ xn

The derivative is f ′(x) = nxn−1. The inverse function is

g(y) = n
√
y g′(y) =

1

f ′(g(y))
=

1

n
(

n
√
y
)n−1 =

1

n
· y(

1
n
−1)

(ii) The natural logarithm. Let f(x)0 expx and g(y) = ln y. Then

(ln y)′ =
1

exp(ln(y))
=

1

y

(iii) Let f(x) = x3. Then

f−1(y) =

{
3
√
y, y ≥ 0

− 3
√
y, y < 0

f−1 is not differentiable in y = 0.
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Definition 4.51. Let I be an open interval. f : I → R is said to be (n + 1)-times
differentiable if the n-th derivative of f (f (n)) is differentiable.

f is said to be infinitely differentiable (or smooth) if f is n times differentiable for all
n ∈ N.

f is said to be n times continuously differentiable if the n-th derivative f (n) is continuous.

Definition 4.52. Let I be an open interval, and f : I → R n times differentiable in x ∈ I.
Then

Tnf(y) =

n∑
k=0

f (k)(x)

k!
(y − x)k

is called the Taylor polynomial of n-th degree at x of f .

Theorem 4.53 (Taylor’s theorem). Let I be an open interval and f : I → R an (n + 1)-
times differentiable function. Let x ∈ I and h : I → R differentiable. For every y ∈ I, there
exists a ξ between x and y such that

(f(y)− Tnf(y)) · h′(ξ) =
f (n+1)(ξ)

n!
(y − ξ)n(h(y)− h(x))

Proof. Let

g : I −→ R

t 7−→
n∑
k=0

f (k)(t)

k!
(y − t)k

(4.54)

Apply the mean value theorem to g and h to get

g′(ξ)(h(y)− h(x)) = (g(y)− g(x))h′(ξ) = (f(y)− Tnf(y))h
′(ξ) (4.55)

and thus

g′(t) =
n∑
k=0

(
f (k+1)(t)

k!
(y − t)k − f (k)(t)

k!
k(y − t)k−1

)
︸ ︷︷ ︸

Telescoping series

=
fn+1(t)

n!
(y − t)n

(4.56)

By inserting ξ we receive the desired equation.

Remark 4.54. (i) This is useful for when h′(ξ) ̸= 0

(ii) The choice of h can yield different errors

Rn+1(y, x) := f(y)− Tnf(y)
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(iii) The Langrange error bound is for h(t) = (y − t)n+1:

Rn+1(y, x) =
f (n+1)(ξ)

(n+ 1)!
(y − x)n+1

(iv) This theorem makes no statement about Taylor series.

Corollary 4.55. Let (a, b) ⊂ R and f : (a, b) → R a n-times continuously differentuable
function with

0 = f ′(x) = f ′′(x) = · · · = f (n−1)(x)

and f (n) ̸= 0. If n is odd, then there is no local extremum in x. If n is even then

f (n)(x) > 0 =⇒ x is a local maximum

f (n)(x) < 0 =⇒ x is a local minimum

Proof. W.l.o.g. f (n) > 0. We will use the Taylor series with Lagrange error bound. Accord-
ing to prerequisites, f (n) is continuous, i.e. ∃ϵ > 0 such that f (n)(ξ) > 0 on (x − ϵ, x + ϵ).
The Taylor formula tells us, that ∀y ∈ (x− ϵ, x+ ϵ) ∃ξy ∈ (x− ϵ, x+ ϵ) such that

f(y)− Tn−1(f(y)) = f(y)− f(x) =
f (n)(ξy)

n!
(y − x)n (4.57)

For n odd, f(y)− f(x) assumes positive and negative values in every neighbourhood of x.
If n is even then f(y)− f(x) cannot be negative, thus x is a local minimum.
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5.1 Metric and Normed spaces

Definition 5.1 (Metric space). A metric space (X, d) is an ordered pair consisting of a set
X and a mapping

d : X ×X −→ [0,∞]

called metric. This mapping must fulfil the following conditions ∀x, y, z ∈ X:

� d(x, y) ≥ 0 (Positivity)

� d(x, y) = 0 ⇐⇒ x = y (Definedness)

� d(x, y) = d(y, x) (Symmetry)

� d(x, y) ≤ d(x, z) + d(z, y) (Triangle inequality)

Example 5.2. (i) Let M be a set. Then

d(x, y) =

{
1, x ̸= y

0, else

is called the discrete metric.

(ii) Let X be the set of edges of a graph.

d(x, y) := Minimum amount of edges that have

to be passed to get from x to y

1

2

3

x

y

(iii) Let X be the surface of a sphere.

d(x, y) := ”Bee line”

(iv) Let X be the set of points of the European street network.

d(x, y) := Shortest route along this network
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(v) Let (X, dX), (Y, dY ) be metric spaces. Then

dX×Y ((x1, y1), (x2, y2)) := dX(x1, x2) + dY (y1, y2)

defines a metric on X × Y .

Definition 5.3 (Normed space). (V, ∥·∥) is said to be a normed space if V is a vector space
and

∥·∥ : V −→ [0,∞)

is a mapping (called norm) with the following properties

� ∥x∥ ≥ 0 (Positivity)

� ∥x∥ = 0 ⇐⇒ x = 0 (Definedness)

� ∥λx∥ = |λ|∥x∥

� ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (Triangle inequality)

To every norm belongs a unique induced metric

d(x, y) = ∥x− y∥

Example 5.4 (Rn with Euclidian norm).

∥·∥ : Rn −→ [0,∞)

(x1, x2, · · · , xn) 7−→
√
x21 + x22 + · · ·+ x2n

Then (Rn, ∥·∥) is a normed space.

Example 5.5. (i) (x1, x2, · · · , xn) 7→ |x1|+ |x2|+ · · ·+ |xn| is also a norm on Rn.

(ii) On
V = {f : [0, 1] −→ R | f continuous}

we can define the supremum norm

∥f∥∞ = sup {|f(x)| |x ∈ [0, 1]}

(iii) We can define sequence spaces as

ℓp =

{
(xn) ⊂ Cn

∣∣∣∣∣
∞∑
n=1

|xn|p <∞

}
with the norm

∥(xn)∥p :=

√√√√ ∞∑
n=1

|xn|2

A special space is ℓ2, called Hilbert space



5.2. SEQUENCES, SERIES AND LIMITS 99

Remark 5.6. The Minkowski metric is not a metric in this sense.

Definition 5.7 (Balls and Boundedness). Let (X, d) be a metric space, and x ∈ X, r > 0.
We then define

Br(x) = {y ∈ X | d(x, y) < r} Open ball

Kr(x) = {y ∈ X | d(x, y) ≤ r} Closed ball

A subset M ⊂ X is called bounded if

∃x ∈ X, r > 0 : M ⊂ Br(x)

5.2 Sequences, Series and Limits

Definition 5.8 (Sequences and Convergence). Let (X, d) be a metric space. A sequence is
a mapping N → X. We write (xn)n∈N or (xn).

The sequence (xn) is said to be convergent to x ∈ X if

∀ϵ > 0 ∃N ∈ N ∀n ≥ N : d(xn, x) < ϵ

x is said to be the limit, and sequences that aren’t convergent are called divergent.

Remark 5.9. On R the metric is the Euclidian metric | · |, therefore this new definition of
convergence is merely a generalization of the old one.

Theorem 5.10. Let (xn) be a sequence in the metric space (X, d) and x ∈ X. Then the
following statements are equivalent:

(i) (xn) converges to x

(ii) ∀ϵ > 0 Bϵ(x) contains all but finitely many elements of the sequence (almost every
(a.e.) element)

(iii) (d(x, xn)) is a null sequence

Proof. (ii) is merely a reformulation of (i), and (ii) ⇐⇒ (iii) follows from

d(xn, x) = |d(xn, x)− 0| (5.1)

Theorem 5.11. Let
(
x(n)

)
= (x

(n)
1 , x

(n)
2 , · · · , x(n)d ) ⊂ Rd and

x = (x1, · · · , xd) ∈ Rd(
x(n)

)
is said to converge to x if and only if x

(n)
i converges to xi for all i in {1, · · · , d}
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Proof. For y = (y1, · · · , yd) ∈ Rd we have

∥yi∥ < ∥y∥ ∀i ∈ {1, · · · , d} (5.2)

If
(
x(n)

)
converges to x, then∣∣∣x(n)i − xi

∣∣∣ ≤ ∥∥∥x(n) − x
∥∥∥ −−−→ 0 (5.3)

If (x
(n)
i ) converges to xi ∀i ∈ {1, · · · d}, then

∀ϵ > 0 ∃N ∈ N ∀n > N :
∣∣∣x(n)i − xi

∣∣∣ < ϵ√
d

∀i ∈ {1, · · · d} (5.4)

Thus ∥∥∥x(n) − x
∥∥∥ =

√
(x

(n)
1 − x1)2 + (x

(n)
2 − x2)2 + · · ·+ (x

(n)
d − xd)2

≤
√
ϵ2

d
+
ϵ2

d
+ · · ·+ ϵ

2

= ϵ

(5.5)

So
(
x(n)

)
converges to x.

Theorem 5.12. Every convergent sequence has exactly one limit and is bounded.

Proof. Assume that x, y are limits of (xn) with x ̸= y. Then d(x, y) > 0. There exists
N1, N2 ∈ N, such that

d(xn, x) <
d(x, y)

2
∀n ≥ N1 (5.6a)

d(xn, x) <
d(x, y)

2
∀n ≥ N2 (5.6b)

From this follows that

d(x, y) ≤ d(x, xn) + d(xn, y) < d(x, y) ∀max {N1, N2} (5.7)

which is a contradiction, thus sequences can have only one limit.
Now if (xn) converges to x, then

∃N ∈ N ∀n ≥ N : d(xn, x) < 1 (5.8)

Then
d(xn, x) ≤ max {d(x1, x), d(x2, x), · · · , d(xN−1, x), 1} (5.9)
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Theorem 5.13. Let (V, ∥·∥) be a normed space over K. Let (xn) , (yn) ⊂ V be sequences
with limits x, y ∈ V and (λn) ⊂ K a sequence with limit λ ∈ K. Then

xn + yn −→ x+ y λnxn −→ λx

Proof. Left as an exercise for the reader.

Definition 5.14 (Cauchy sequences and completeness). A sequence (xn) in a metric space
(X, d) is called Cauchy sequence if

∀ϵ > 0 ∃N ∈ N : d(xn, xm) < ϵ ∀m,n ≥ N

A metric space is complete if every Cauchy sequence converges. A complete normed space
is called Banach space.

Example 5.15.

(R, |·|) and (C, |·|) are complete

(Q, |·|) is not complete

Theorem 5.16. Every convering series is a Cauchy sequence

Proof. Let (xn) −−−→ x. This means that

∀ϵ > 0 ϵN ∈ N : d(xn, x) <
ϵ

2
∀n ≥ N (5.10)

Then
d(xn, xm) ≤ d(xn, x) + d(x, xm) < ϵ ∀m,n ≥ N (5.11)

Theorem 5.17. Rn with the Euclidian norm is complete.

Proof. Let
(
x(n)

)
⊂ Rn be a Cauchy sequence. We know that

∀y ∈ Rn : |yi| ≤ ∥y∥ ∀i ∈ {1, · · · , n} (5.12)

We also know that (x
(n)
i ) are Cauchy sequences because∣∣∣(x(n)i − xmi )

∣∣∣ ≤ ∥∥∥x(n) − x(m)
∥∥∥ ∀i ∈ {1, . . . , n} (5.13)

Thus x
(n)
i −−−→ xi and therefore

(
x(n)

)
−−−→ x.
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Definition 5.18 (Series and (absolute) convergence). Let (V, ∥·∥) be a normed space and
(xn) ⊂ V . The series

∞∑
k=1

xk

is the sequence of partial sums

sn =

n∑
k=1

xk

If the series converges then
∑∞

k=1 xk also denotes the limit. The series is said to absolutely
convergent if

∞∑
k=1

∥xk∥ <∞

Theorem 5.19. In Banach spaces every absolutely convergent series is convergent.

Proof. Let (V, ∥·∥), (xn) ⊂ V and require
∑∞

n=1(V, ∥·∥)xn < ∞. We need to show that
sn =

∑n
k=1 xk is a Cauchy sequence. Let ϵ > 0 and tn =

∑n
k=1 ∥xk∥. (tn) is convergent in

R, and thus a Cauchy sequence. I.e.

∃N ∈ N : |tn − t| < ϵ ∀m,n ≥ N (5.14)

For n > m > N :

∥sn − sm∥ =

∥∥∥∥∥
n∑

k=m+1

xk

∥∥∥∥∥ ≤
n∑

k=m+1

∥xk∥ = tn − tm = |tn − tm| < ϵ (5.15)

Theorem 5.20. Let (V, ∥·∥) be a Banach space,
∑∞

k=1 xk absolutely convergent and let
σ : N → N be a bijective mapping. Then

∞∑
k=1

xk =

∞∑
k=1

xσ(k)

Proof. Analogous to Theorem 2.55

5.3 Open and Closed Sets

Definition 5.21 (Inner points and Boundary points). Let (X, d) be a metric space, A ⊂ X
and x ∈ X.

(i) x is said to be an inner point of A, if

∃ϵ > 0 : Bϵ(x) ⊂ A
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(ii) x is said to be a boundary point of A if

∀ϵ > 0 : Bϵ(x) ∩A ̸= ∅︸ ︷︷ ︸
Bϵ(x) contains
points from A

∧Bϵ(x) ∩ (X \A) ̸= ∅︸ ︷︷ ︸
Bϵ(x) contains points
from outside of A

(iii) The set
{x ∈ X |x is inner point of A}

is called the interior of A, and is denoted as Å.

(iv) The set
{x ∈ X |x is boundary point ofA}

is called the boundary of A, and is denoted as ∂A.

(v) A ∪ ∂A is said to be the closure of A, and is denoted as A.

X

A

x

Bϵ(x)

x

Example 5.22. Consider X = R2. Then

A = {(x, y) ∈ R | 0 ≤ y < 1}
Å =

{
(x, y) ∈ R2

∣∣ 0 ≤ y < 1
}

∂A =
{
(x, y) ∈ R2

∣∣ y = 1 ∨ y = 0
}

A =
{
(x, y) ∈ R2

∣∣ 0 ≤ y ≤ 1
}

Remark 5.23. (i) Å ⊂ A

(ii) Boundary points of A can be elements of A or not.

(iii) A ⊂ Å ∪ ∂A, Å ∩ ∂A = ∅
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(iv) ∂A = ∂X \A

Theorem 5.24. Let (X, d) be a metric space, A ⊂ X and x an interior point or boundary
point of A. Then

∃ (xn) ⊂ A : xn −−−→ x

Proof. If x ∈ A then this is trivial, so let x /∈ A. Then

∀n ∈ N ∃xn ∈
(
B 1

n
(x) ∩A ̸= ∅

)
(5.16)

We need to show that (xn) converges to x.

∀ϵ > 0 ϵN ∈ N :
1

N
< ϵ (5.17)

For n ≥ N we have
1

n
≤ 1

N
< ϵ (5.18)

and thus

d(xn, x) <
1

n
< ϵ (5.19)

Definition 5.25 (Open and Closed sets). Let (X, d) be a metric space. A ⊂ X is said to
be

(i) open, if every point in A is an interior point

(ii) closed, if A contains all its boundary point

(iii) neighbourhood of x ∈ A, if x is an interiot point of A

Theorem 5.26. Let (X, d) be a metric space and A ⊂ X.

A open ⇐⇒ X \A closed

Proof.

A open ⇐⇒ ∀x ∈ A : x ∈ Å (5.20a)

⇐⇒ ∀x ∈ A : x ∈ ∂A (5.20b)

⇐⇒ X \A contains all boundary point of A (5.20c)

⇐⇒ X \A contains all boundary points of X \A (5.20d)

⇐⇒ X \A closed (5.20e)

Remark 5.27. That doesn’t mean A has to be either open and closed.
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Example 5.28. Let (X, d) be a metric space, x ∈ X and r > 0. Then

Br(x) = {y ∈ X | d(x, y) < r} is open

Kr(x) = {y ∈ X | d(x, y) < r} is closed

Remark 5.29. Consider the special case a, b ∈ R with a < b

(a, b) = B b−a
2

(
a+ b

2

)
open

[a, b] = K b−a
2

(
a+ b

2

)
closed

Theorem 5.30. Let (X, d) be a metric space and A ⊂ X.

A closed ⇐⇒ ∀ (xn) ⊂ A convergent : lim
n→∞

xn ∈ A

Proof. Assume A is closed. Let (xn) ⊂ A be convergent to x. then

∀ϵ > 0 ∃N ∈ N : xn ∈ Bϵ(x) ∀n ≥ N (5.21)

This means that every ϵ-ball around x contains at least one point from A. I.e. x is always
a point (or a boundary point) of A. From A closed follows x ∈ A.

Now assume x ∈ ∂A. Then

∃ (xn) ⊂ A : (xn) −−−→ x (5.22)

According to the prerequisites, x ∈ A.

Theorem 5.31. Let (X, d) be a metric space, and τ the set of all open subsets. Then

(i) ∅ ∈ τ , X ∈ τ

(ii) The union of any number of sets from τ is an open set⋃
t∈τ

t ∈ τ

(iii) The intersection of finitely many sets from τ is an open set⋂
t∈τ

t ∈ τ

Proof. Left as an exercise for the reader.

Remark 5.32. (i) τ is said to be the topology induced by d

(ii) � ∅, X are also closed
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� The intersection of any number of closed sets is closed

� The union of finitely many closed sets is closed

(iii) Infinitely many intersections of open sets are not open in general.

Theorem 5.33. Let (X, d) be a metric space and A ⊂ X. Then

Å open =⇒ ∂A,A closed

Proof. Let Å be open and x ∈ Å ⊂ A. This means

∃ϵ > 0 : Bϵ(x) ⊂ A (5.23)

We have to show that Bϵ(x) ⊂ Å. Let y ∈ Bϵ(x). Since Bϵ(x) is open

∃δ > 0 : Bδ(y) ⊂ Bϵ(x) ⊂ A (5.24)

This means that y ∈ Bϵ(x) is interior point A. I.e. ⊂ (x) ⊂ Å, and thus x is interior point
of Å.

Let B = X \A. Then ∂A = ∂B

X = A ∪B = Å ∪ ∂A ∪ B̊ ∪ ∂B = Å ∪ ∂A ∪ B̊ (5.25)

Then

A and B are disjoint =⇒ Å, B̊ disjoint (5.26a)

=⇒ ∂A disjoint to Å, B̊ (5.26b)

This results in
∂A = X \ (Å ∪ B̊︸ ︷︷ ︸

open

) =⇒ ∂A closed (5.27)

and
A = A ∪ ∂A = Å ∪ ∂A = X \ B̊ closed (5.28)

Theorem 5.34. Let (X, d) be a metric space and A ⊂ X⋃
O open
O⊂A

O = Å and
⋂

C closed
A⊂C

C = A

Proof. Let Å is open and Å ⊂ A

=⇒
⋃

O⊂A open

⊃ Å (5.29)

Now let O ⊂ A be open and x ∈ O, i.e.

∃ϵ > 0 : Bϵ(x) ⊂ O ⊂ A =⇒ x ∈ Å (5.30)

This implies that O ⊂ Å. Since this holds for all open O ⊂ A, this statement is proven.
The other statement follows from the complement.



5.3. OPEN AND CLOSED SETS 107

Theorem 5.35. Let (X, d) be a complete space and A ⊂ X be closed. Then (A, dA) is
complete.

Proof. Left as an exercise for the reader.

Remark 5.36. Topological terms (open, closed, continuous, compact) don’t just depend on
A, but also on X.

Definition 5.37. Let (X, d) be a metric space and x ∈ X.

(i) x is said to be an isolated point if ∃ϵ > 0 such that Bϵ(x) = {x}.

(ii) x is said to be a limit point if it’s not an isolated point.

Definition 5.38 (Punctured neighbourhood, Punctured ball). U̇ ⊂ X is said to be a
punctured neighbourhood, if there is a neighbourhood U of x with U̇ = U \ {x}

A punctured ball is Ḃϵ(x) = Bϵ \ {x}.

Definition 5.39 (Limit of mappings). Let (X, dX), (Y, dY ) and x a limit point of X. Let
U̇ be a punctured neighbourhood of x and f : U̇ → Y . Then f converges to y ∈ Y in x (y
is said to be the limit of f in x), if

∀ϵ > 0 ∃δ > 0 : f(x̃) ∈ Bϵ(y) [d(f(x̃), y) < ϵ]

if x̃ ∈ Ḃϵ(x) [d(x̃, x) < δ]

Example 5.40. Let f, g : R2 \ {0} → R.

f(x) := ∥x∥2 g(x) :=
1

∥x∥

Then limx→0 f(x) = 0, because for ϵ > 0 and δ =
√
ϵ we have

d(x̃, 0) = ∥x̃− 0∥ = x̃ < δ =⇒ d(f(x̃), 0) =
∣∣∣∥x̃∥2 − 0

∣∣∣ = ∥x̃∥2 < ϵ = δ2

Theorem 5.41.

f converges to y ∈ Y in x ⇐⇒ ∀ (xn) ⊂ X : f(xn)
xn→x−−−→ y

Proof. Let (xn) ⊂ X with xn −−−→ x. Let ϵ > 0, then

∃δ > 0 : f(x̃) ∈ Bϵ(y) if x̃ ∈ Bδ(x) (5.31)

Furthermore
∃N ∈ N : xn ∈ Bδ(x) ∀n ≥ N (5.32)

Then
f(xn) ∈ Bϵ(y) ∀n ≥ N (5.33)
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To prove the other direction, assume f doesn’t converge to y in y. This means

∃ϵ > 0 : ∃x̃ ∈ Bδ(x) but f(x̃) /∈ Bϵ(y) ∀δ > 0 (5.34)

Therefore
∀n ∈ N : ∃xn ∈ B 1

n
(x) (5.35)

We know that xn −−−→ x since d(xn, x) <
1
n , but f(xn) doesn’t converge to y since

d(f(xn), y) ≥ ϵ.

Corollary 5.42. Let (X, d) be a metric space, x ∈ X a limit point and U̇ a punctured
neighbourhood of x. Let f, g : U̇ → K with

lim
x̃→x

f(x̃) = y1 lim
x̃→x

g(x̃) = y2

Then

lim
x̃→x

(f + g)(x̃) = y1 + y2 lim
x̃→x

(f · g)(x̃) = y1 · y2

lim
x̃→x

(
f

g

)
(x̃) =

y1
y2

Heuristic Proof. Draw parallels back to number sequences

5.4 Continuity

X Y
f

x y

Bδ(x) Bϵ(y)

Definition 5.43. Let (X, dX), (Y, dY ) be metric spaces. f : x→ y is said to be continuous
in x ∈ X if

∀ϵ > 0 ∃δ > 0 : x̃ ∈ Bδ(x) =⇒ f(x̃) ∈ Bϵ(f(x))

f is said to be continuous is it is continuous in every point.

Example 5.44. (i) Let (X, d) be a metric space.

id : X −→ X

x 7−→ x

is continuous (choose δ = ϵ).
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(ii) The function

f : R2 −→ R2

(x, y) 7−→ (x,−y)

is continuous. For (x̃, ỹ), (x, y) ∈ R2 we have

∥f(x̃, ỹ)− f(x, y)∥2 = ∥(x̃− x, y − ỹ)∥2 = (x̃− x)2 + (y − ỹ)2

= ∥(x̃, ỹ)− (x, y)∥2

(iii) Consider

f : R2 −→ R

(x, y) 7−→

{
0, x · y = 0

1, x · y ̸= 0

f is non continuous in (0, 0).

Remark 5.45. (i)

f continuous in x ⇐⇒ ∀ϵ > 0 ∃δ > 0 : f(Bδ(x)) ⊂ Bϵ(f(x))

(ii) Continuity is a local property, this means if x ∈ X, U a neighbourhood of x and f, g
functions with f |U = g|U , then

f continuous ⇐⇒ g continuous

Theorem 5.46. Let x0 ∈ X, g : X → Y and f : Y → Z. If g is continuous in x0 and f is
continuous in g(x0), then f ◦ g is continuous in x0.

X Y Z
g f

x0 g(x0) f(g(x0))

Proof. Since f, g are continuous we know that

∀ϵ > 0 ∃δ > 0 : y ∈ Bδ(g(x0)) =⇒ f(y) ∈ Bϵ(f(g(x0))) (5.36a)

∀δ > 0 ∃ρ > 0 : x ∈ Bρ(x0) =⇒ g(x) ∈ Bδ(g(x0)) (5.36b)

Then ∀x ∈ Bρ(x0) we have

(f ◦ g)(x0) = f(g(x0)) ∈ Bϵ(f(g(x0))) (5.37)
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Definition 5.47 (Lipschitz continuity). A function f : X → Y is said to be Lipschitz
continuous if

∃L > 0 : dY (f(x), f(y)) ≤ L ·DX(x, y)

L is called Lipschitz constant. If L = 1, f is called contraction.

Example 5.48. Let f, g : [0, 1] → R.

f(x) = x2 g(x) =
√
x

f is Lipschitz continuous, g is not.

Theorem 5.49. Every Lipschitz continuous function is continuous.

Proof. Let f : X → Y be Lipschitz continuous, with Lipschitz constant L. Let ϵ > 0, then
for x ∈ B ϵ

L
(x0)

d(f(x), f(x0)) ≤ L · d(x, x0) < ϵ (5.38)

Thus, f is continuous in x0, and since we chose an arbitrary x0, f is continuous everywhere.

Example 5.50. (i) Consider

πi : Kn −→ K
(x1, x2, · · · , xn) 7−→ xi

Then
|πi(x)− πi(y)| = |xi − yi| ≤ ∥x− y∥

So πi is a contraction.

(ii) Let (X, d), (X ×X, dX×X) be metric spaces. Then

d : X ×X −→ R
(x, y) 7−→ d(x, y)

is a contraction. Let x1, x2, y1, y2 ∈ X and apply the triangle inequality

d(x1, y1) ≤ d(x1, x2) + d(x2, y1) ≤ d(x1, x2) + d(y2, y1) + d(x2, y2)

This implies

|d(x1, y1)− d(x2, y2)| ≤ d(x1, x2) + d(y1, y2)

= dX×X((x1, x2), (y1, y2))

which means the metric is continuous.

(iii) Analogously, this works for ∥·∥.
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Theorem 5.51. Let f : X → Y .

f is continuous in x ∈ X ⇐⇒ x is an isolated point in X
or limx̃→x f(x̃)=f(x)

Proof. Let f be continuous in x ∈ X. If x is an isolated point there is nothing to show, so
let x be a limit point. Then

∀ϵ > 0 ∃δ > 0 : f(x̃) ∈ Bϵ(f(x)) ∀x̃ ∈ Bδ(x) (5.39)

Now let x be an isolated point, i.e. ∃δ > 0 such that Bδ(x) = {x}. Then

f(Bdelta(x)) = {f(x)} ⊂ Bϵ(f(x)) ∀ϵ > 0 (5.40)

If x is a limit point and limx̃→x f(x̃) = f(x), then let ϵ > 0

∃δ > 0 : f(Ḃδ(x)) ⊂ Bϵ(f(x)) (5.41)

This then implies
f(Bδ) ⊂ Bϵ(f(x)) (5.42)

Corollary 5.52.

f : X → Y continuous in x ∈ X ⇐⇒ ∀ (xn) ⊂ X : f(xn)
xn→x−−−→ f(x)

This means, for continuous f we have

lim
n→∞

f(xn) = f( lim
n→∞

xn)

Corollary 5.53. Let f1, · · · , fn : Rm → ℜ. Then define

f : Rm −→ Rn

x 7−→ (f1(x), f2(x), · · · , fn(x))

f is continuous if and only if f1, · · · , fn are continuous.

Corollary 5.54. Let f, g : X → R be continuous in x ∈ X. Then

f + g f · g

are continuous in x, and if g(x) ̸= 0 then

f

g

is also continuous in x.
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Example 5.55. Let η = (η1, · · · , ηn) ∈ Nn0 and x ∈ Kn. Define

xη = xη11 · xη22 · xη33 · · · · · xηnn

η is called multi index. We set

|η| := η1 + η2 + η3 + · · ·+ ηn

Let cη ∈ K ∀η with |η| ≤ N N ∈ N. Then we call

f : Kn −→ K

x 7−→
∑
|η|≤N

cη · xη

a polynomial with n variables. Such polynomials are continuous. Example:

(x1, x2) 7−→ x21 + x22 + x91 + x172

Remark 5.56. In the context of polynomials (and power series) we define

00 = 1

Reminder: If f : X → Y and U ⊂ Y then f−1(U) is said to be the preimage of U under f .
It’s the set of all points of X that get mapped to U .

f−1(U) = {x ∈ X | f(x) ∈ U}

Theorem 5.57. Let f : X → Y

(i)

f is continuous in x ⇐⇒ f−1(U) is a neighbourhood of
x ∀Uneighbourhood of f(x)

(ii)
f is continuous ⇐⇒ f−1(O) is open ∀O ⊂ Y open

(iii)
f is continuous ⇐⇒ f−1(C) is closed ∀C ⊂ Y closed

Proof. We will prove (i). Let U be a neighbourhood of f(x), i.e.

∃ϵ > 0 : Bϵ(f(x)) ⊂ U (5.43)

Since f is continuous
∃δ > 0 : f(Bδ(x)) ⊂ Bϵ(f(x)) (5.44)

which in turn means
Bδ(x) ⊂ f−1(Bϵ(f(x))) ⊂ f−1(U) (5.45)
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so f−1(U) is a neighbourhood of f(x). Now let ϵ > 0. Since Bϵ(f(x)) is a neighbourhood
of f(x), f−1(Bϵ(f(x))) is a neighbourhood of x. This means

∃δ > 0 : Bδ(x) ⊂ f−1(Bϵ(f(x))) (5.46)

Thus f(Bδ(x)) ⊂ Bϵ(f(x)) which means f is continuous in x.
(ii) and (iii) are left to the reader.

Definition 5.58 (Subsequences and (sequential) compactness). Let (X, d) be a metric
space, and (xn) ⊂ X, (nk) ⊂ N are strictly monotonically increasing. Then (xnk

) is said to
be a subsequence of (xn).

A subset A ⊂ X is said to be (sequentially) compact, if every sequence (xn) ⊂ A has a
subsequence convergent in A.

Remark 5.59. If (xn) converges to x ∈ X, then every subsequence of (xn) converges to x.
However, consider

(xn) = (−1)n

This sequence doesn’t converge, but the subsequences (x2n) and (x2n+1) converge to (dif-
ferent) values.

Example 5.60. Let X = R, then (0, 1) and N are not compact. Because

(xn =
1

n
) ⊂ (0, 1) (xn = n) ⊂ N

have no convering subsequences.

Theorem 5.61.
A ⊂ Rn is compact ⇐⇒ A closed and bounded

Proof. Assume A is not closed, i.e. for x ∈ ∂A \A

∃ (xn) ⊂ A with xn −−−→ x (5.47)

Every subequence of (xn) converges to x, but x ̸= A. From this follows that A is not
compact. Assume A is not bounded, i.e. A \ Bn(0) ̸= ∅ ∀n ∈ N. Now choose (xn) ⊂ A
such that ∥(xn)∥ ≥ n. (xn) cannot have a convergent subsequence, because on the one hand
for (xnk

) convergent to x we have ∥xnk
∥ → ∥x∥, but on the other hand ∥xnk

∥ ≥ nk −→ ∞.
This proves the ” =⇒ ” direction, to prove the inverse, consider the case n = 1: Let A ⊂ R
be bounded and closed. Then

∃K > 0 : A ⊂ I1 = [−K,K] (5.48)

Let (xn) ⊂ A be a sequence. We recursively define more intervals. Let Ik = [a, b) such that
xn ∈ Ik for infinitely many n ∈ N. Half the interval:

Ik+1 =

[
a,
b− a

2

)
or Ik+1 =

[
b− a

2
, b

)
(5.49a)
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such that xn ∈ Ik+1 for infinitely many n ∈ N. By doing this we are creating a sequence of
nested intervals of length K · 2−k+2. Now set n1 = 1, and then recursively define

nk+1 > max {n1, · · · , nk} and xnk+1
∈ Ik+1 (5.50)

We now need to show that (xnk
) is convergent. Apply the Cauchy criterion: For l > k we

know that xnk
and xnl

∈ Ik, i.e.

|xnk
− xnl

| ≤ K · 2−k+2 k→∞−−−→ 0 (5.51)

This means, xnk
is a Cauchy sequence, so it converges to x ∈ R. Since A is closed, we have

x ∈ A.

Theorem 5.62. Continuous mappings map compact sets to compact sets.

Proof. Let f : X → Y be continuous and A ⊂ X compact. Let (xn) ⊂ f(A). We need to
show that (xn) has a convergent subsequence. We know that

∃ (yn) ⊂ A : xn = f(yn) (5.52)

Since A is compact, there must be subsequences (ynk
) with ynk

k→∞−−−→ y ∈ A. Because of
the continuity of f , we have

f(ynk
)︸ ︷︷ ︸

xnk

−−−→ f(y) ∈ f(A) (5.53)

Thus, f(A) is compact.

Remark 5.63. Let f : Rn → Rn be a continuous mapping. f maps closed, bounded sets to
closed, bounded sets. In general, closed sets are NOT mapped to closed sets, and bounded
sets are NOT mapped to bounded sets.

Example: f : (0,∞) → R, x 7→ x−1

f( (0, 1)︸ ︷︷ ︸
bounded

) = (1,∞)︸ ︷︷ ︸
unbounded

f([1,∞]︸ ︷︷ ︸
closed

) = (0, 1]︸ ︷︷ ︸
not closed

Corollary 5.64. Let A ⊂ Rn be compact and f : A → R continuous. Then f assumes its
maximum on A. I.e.

∃x ∈ A : f(y) ≤ f(x) ∀y ∈ A

Proof. f(A) is compact, so it’s closed and bounded. We want to show that compact subsets
K of R have a maximum M := supK such that xn −−−→ M . Since K is closed we know
that M ∈ K, so M is a maximum. Especially, ∃z ∈ f(A) maximum and ∃x ∈ A with
f(x) = z

Theorem 5.65. Let A ⊂ Rn, B ⊂ Rm be compact subsets and f : A → B a bijective,
continuous mapping. Then f−1 is also continuous.
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Proof. Define g := f−1. g is also bijective and maps B → A. Let C ⊂ A be closed. Since
A is bounded, C is also bounded. Thus, f(C) is also compact (i.e. bounded and closed),
and we have

f(C) = {f(x) ∈ B |x ∈ C}
= {f(g(y)) ∈ B | g(y) ∈ C}
= {y ∈ B | g(y) ∈ C} = g−1(C)

(5.54)

So g−1(C) is bounded, and since C was an arbitrary closed set, g is also continuous.

5.5 Convergence of Function sequences

Definition 5.66 (Pointwise convergence). Let M be a set, fn : M → K ∀n ∈ N and
f :M → K. The sequence (fn) is said to be pointwise convergent to f if

lim
n→∞

fn(x) = f(x) ∀x ∈M

Example 5.67. Consider

fn : [0, 1] −→ R

x 7−→

{
1− nx, x ∈ [0, 1n ]

0, else

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f1

f2

f3f4

The fn are continuous for all n ∈ N and converge pointwise to

f : [0, 1] −→ R

x 7−→

{
1, x = 0

0, x ̸= 0

f is not continuous.
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Remark 5.68. Let M be a set. Then

B(M) = {fn :M −→ K | ∃K ∈ R : |f(x)| < K ∀x ∈M}

is a linear subspace of the space of all functions M → K. We can define the supremum
norm

∥·∥∞ : B(M) −→ R
f 7−→ sup

x∈M
{|f(x)|}

Proof. We will now proof that ∥·∥∞ is a norm. It is defined, because

∥f∥∞ = 0 =⇒ |f(x)| = 0 ∀x ∈M (5.55)

This implies
f(x) = 0 ∀x ∈M =⇒ f = 0 (5.56)

The triangle inequality is proven by first considering

|f(x)| ≤ ∥f∥∞ ∀f ∈ B(M) ∀x ∈M (5.57)

Let f, g ∈ B(M), then

|f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ ∥f∥∞ + ∥g∥∞ ∀x ∈M (5.58)

Which implies
∥f + g∥∞ = sup

x∈M
|f(x) + g(x)| ≤ ∥f∥∞ + ∥g∥∞ (5.59)

Definition 5.69 (Uniform convergence). A sequence of bounded functions (fn),

fn :M −→ K

is said to be uniformly convergent to f :M → K if its norm converges.

∥fn − f∥∞
n→∞−−−→ 0

Remark 5.70. Formally, pointwise convergence means

∀ϵ > 0 ∀x ∈M ∃N ∈ N ∀n ≥ N : |fn(x)− f(x)| < ϵ

and uniform convergence means

∀ϵ > 0 ∃N ∈ N ∀x ∈M ∀n ≥ N : |fn(x)− f(x)| < ϵ

Theorem 5.71. The function space B(M) is complete.
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Proof. Let (fn) ⊂ B(M) be a Cauchy sequence in terms of ∥·∥∞. Firstly, we have for some
fixed x ∈M

|fn(x)− fm(x)| ≤ ∥fn − fm∥∞ (5.60)

Since (fn) is a Cauchy sequence, (fn(x)) is also a Cauchy sequence in K0. Because K is
complete, (fn(x)) converges, and we define

f(x) = lim
n→∞

fn(x) (5.61)

thus (fn) converges pointwise to f . Let ϵ > 0. Then

∃N ∈ N : ∥fn · fm∥∞ < ϵ ∀n,m ≥ N (5.62)

Then ∀x ∈M, ∀n,m ≥ N we have

|fn(x)− fm(x)| ≤ ∥fn − fm∥∞ < ϵ (5.63)

We can find the limit for m→ ∞

|f(x)− fn(x)| ≤ ϵ (5.64)

and
∥f∥∞ = sup

x∈M
|f | ≤ sup

x∈M
|f(x)− fn(x)|+ sup

x∈M
|fn(x)| = ϵ+ ∥fn∥∞ (5.65)

Thus, f is bounded. Furthermore

∥f − fn∥∞ = sup
x∈M

|f(x)− fn(x)| ≤ ϵ (5.66)

which in turn implies
∥f − fn∥∞

n→∞−−−→ 0 (5.67)

Definition 5.72. Let (X, d) be a metric space, then Cb(X) is said to be the space of all
continuous bounded functions.

Remark 5.73. If X is compact (e.g. a bounded, closed subset of Rn) then all continuous
functions are bounded. We then write C(X) for Cb(X).

Theorem 5.74. Let (X, d) be a metric space. Cb(X) is closed in B(X). In other words,
every uniformly convergent sequence of continuous functions converges to a continuous func-
tion.

Proof. Let (fn) ⊂ Cb(X) be a sequence that uniformly converges to f ∈ B(X). Let x ∈ X
and ϵ > 0, then

∃N ∈ N : ∥f − fn∥∞y
ϵ

3
∀n ≥ N (5.68)
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Choose a fixed n ≥ N . Since fn is continuous, this means that

∃δ > 0 : |fn(x)− fn(y)| <
ϵ

3
∀y ∈ Bδ(x) (5.69)

Then we have for all such y

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|
≤ 2 · ∥f − fn∥∞ + fn(x)− fn(y) < ϵ

(5.70)

This proves the continuity of f in x. Since x ∈ X was chosen arbitrarily, f is continuous
everywhere.

Definition 5.75. Let x0 ∈ K and (an) ⊂ K. Then

∞∑
n=1

an(x− x0)
n

is called a power series around x0. The number

ρ := sup

{
|x− x0|

∣∣∣∣∣
∞∑
n=1

an(x− x0)
n converges

}

is the convergence radius.

x0

ρ

x

Remark 5.76. All results so far (including proofs) can be extended to Rn-valued functions,
or functions with values in a Banach space in general.

Theorem 5.77. Let
∑∞

n=1 an(x − x0)
n be a power series with convergence radius ρ ∈

[0,∞) ∪ {∞}. If |x− x0| < ρ then the series converges absolutely, for |x− x0| > ρ it
diverges.

1

ρ
= lim sup

n→∞
n
√
|an|
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Proof. W.l.o.g. choose x0 = 0: For |x| > ρ the series diverges by definition. If |x| < ρ then
there exists y ∈ K such that |x| < |y| ≤ ρ and

∑∞
n=1 any

n convergent. Especially, (any
n) is

a null sequence. This means ∃C > 0 such that |anyn| ≤ C ∀n ∈ N

∞∑
n=1

|anxn| =
∞∑
n=1

|anyn|
∣∣∣∣xy
∣∣∣∣n ≤ C ·

∞∑
n=1

∣∣∣∣xy
∣∣∣∣n <∞ (5.71)

This statement only holds for ρ > 0.

Remark 5.78. (i) We have

ρ = sup

{
a ∈ [0,∞)

∣∣∣∣∣
∞∑
n=1

|an|an converges

}

(ii) If the following limit exists, then

ρ = lim
n→∞

|an|
|an+1|

Example 5.79. The series
∞∑
n=1

xn

is convergent on (−1, 1), so ρ = 1. The limit function is

x 7−→ 1

1− x

Theorem 5.80. Let
∑∞

n=1 an(x − x0)
n be a power series with convergence radius ρ > 0.

Let 0 < a < ρ. Then this power series converges uniformly on Ka(x0). Especially

f : Bρ(x0) −→ R

x 7−→
∞∑
n=1

an(xn − x0)
n

Proof. W.l.o.g. choose x0 = 0. Let 0 < a < ρ. We know that
∑∞

n=1 anx
n converges on

Ka(0).
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ρ

a

Define

fn : Ka(0) −→ K
x 7−→ xn ∀n ∈ N

(5.72)

We can see that
∥f∥∞ = sup

x∈Ka(0)
|fn| = sup

x∈Ka(0)
= an (5.73)

and thus
∞∑
n=1

anfn =⇒
∞∑
n=1

∥anfn∥∞ =
∞∑
n=1

|an|n <∞ (5.74)

because a < ρ. The series
∑∞

n=1 anfn is absolutely convergent in C(Ka(0)). Since C(Ka(0))

is complete,
∑∞

n=1 anfn is convergent because the partial sums
∑N

n=1 anfn are continuous
∀N ∈ N. Therefore f is also continuous on Ka(0). Let x ∈ Bρ(0). Then there exists some
a > 0 such that |x| < a < ρ. Thus, f is continuous on Ka(0). Since Ka(0) contains a
neighbourhood of x, and continuity is a local property, f is also continuous in x. Because
x ∈ Bρ(0) was chosen arbitrarily, f is continuous.

Remark 5.81. exp, sin, cos are continuous.

Example 5.82. The statements above can be extended to Banach space-valued power series
(e.g. matrix-valued functions). The norm on Rn×n is

∥A∥ = sup {∥Ax∥ | ∀x ∈ B1(0)}

Define

exp(A) :=
∞∑
0=1

An

n!
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This converges ∀A ∈ Rn×n, because

∞∑
n=1

∥∥∥∥Ann!
∥∥∥∥ =

∞∑
n=1

1

n!
∥An∥ ≤

∞∑
n=1

1

n!
∥A∥n

= exp(∥A∥) <∞

Thus,
∑∞

n=1
An

n! converges absolutely. Now consider the function

R −→ Rn×n

t 7−→ exp(At)

This is a matrix-valued power series

exp(At) =
∞∑
n=1

(At)n

n!
=

∞∑
n=1

An

n!
tn

with a convergence radius of ρ = ∞. In this case exp(A+B) doesn’t necessarily have to
equal exp(A) · exp(B).
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6.1 Partial and Total Differentiability

Definition 6.1. Let U ⊂ Rn be open, x ∈ (x1, · · · , xn) ∈ U and define the function
f : U → Rm. The mapping f is said to be partially differentiable in x in terms of xi if

t 7−→ f(x1, · · · , xi−1, t, xi+1, · · · , xn)

is differentiable in xi, i.e.

∂if(x) = lim
h→0

f(x1, · · · , xi−1, xi + h, xi+1, · · · , xn)− f(x1, · · · , xn)
h

exists. ∂if(x) is said to be the partial derivative of f in x in terms of xi. Another notation
is

∂f

∂xi
This mapping is said to be partially differentiable in x if it is partially differentiable in terms
of xi ∀i ∈ {1, · · · , n}.

Example 6.2. Consider

f : R2 −→ R

(x, y) 7−→

{
1, x = 0 ∨ y = 0

0, else

f is partially differentiable in (0, 0), but not continuous.

Theorem 6.3. Let U ⊂ R be open, x ∈ U and f : U → K.

f is differentiable in x

⇐⇒
∃a ∈ K, ϕ : U → K : f(y) = f(x) + a(y − x) + ϕ(y) ∀y ∈ U

and

lim
y→x

ϕ(x)

|y − x|
= 0

Proof. We will first prove the ” ⇐= ” direction. So let a, ϕ be as demanded in the theorem.
Then

f(y)− f(x)

y − x
= a+

ϕ(y)

|y − x|
· |y − x|
y − x

y→x−−−→ a (6.1)

which means f is differentiable in x and f ′(x) = a. Now let f be differentiable, and set

ϕ(y) = f(y)− f(x)− f ′(x)(y − x) (6.2)

Which is equivalent to the equation in the theorem, with a = f ′(x). Then

lim
y→x

ϕ(x)

|y − x|
=

(
f(y)− f(x)

y − x
− f ′(x)

)
· y − x

|y − x|
= 0 (6.3)
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Definition 6.4. Let U ⊂ Rn, x ∈ U and f : U → Rm. f is said to be (totally) differentiable
in x if a matrix A ∈ Rm×n and a mapping ϕ : U → Rm exist, such that

f(y) = f(x) +A(y − x) + ϕ(x) ∀y ∈ U

and

lim
y→x

ϕ(y)

∥y − x∥
= 0

f is said to be (totally) differentiable if it is (totally) differentiable in every point x ∈ U .

Theorem 6.5. Let U ⊂ Rn be open, x ∈ U and f : U → Rm with

f = (f1, · · · , fm), f1, · · · , fm : U −→ R

If f is totally differentiable in x, then it is partially differentiable as well, and the matrix A
is given by

aji = ∂ifj(x)

Proof. Let A, ϕ be as demanded above. Let e1, · · · , en be the canonical basis for Rn. We
insert y = x+ hei and receive

f(x+ hei) = f(x) + h ·Aei + ϕ(x+ hei) (6.4)

By rearranging this yields

f(x+ hei)− f(x)

h
= Aei +

ϕ(x+ hei)

|h|
· |h|
h

h→0−−−→ Aei (6.5)

Thus, f is partially differentiable in x in terms of xi with ∂if(x) = Aei.

Definition 6.6. The matrix (∂ifj(x))ij is called the Jacobian matrix of f in x. We write
Df(x). If f is totally differentiable, then Df(x) is said to be the (total) derivative of f in
x.

For m = 1 (so f : Rn → R), the Jacobian matrix has one column, and we call it gradient

Df(x) =: ∇⃗f(x)

Note: I will adhere to the physical notation of the gradient, using the Nabla operator ∇.

Example 6.7. Let A ∈ Rm×n and define

fA : Rn −→ Rm

x 7−→ Ax

Then we have
fA(y) = Ay = Ax+A(y − x) = fA(x)− fA(y − x)
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Thus, fA is differentiable (ϕ = 0) and the derivative is

DfA(x) = A ∀x ∈ Rn

For another example, let

f : (0,∞)× (0, 2π) −→ R2

(r, ϕ) 7−→ (r cosϕ, r sinϕ)

Then f is partially differentiable.

Df(r, ϕ) =

(
cosϕ −r sinϕ
sinϕ r cosϕ

)
So f is also totally differentiable (We’ll get back to this later).

Remark 6.8. (i) Let U ⊂ Rn be open and f : U → Rm differentiable, then the derivative
Df is a function U → Rm×n

(ii) Total differentiability is also called local linear approximation. Linearity is the prop-
erty

A(x+ λy) = Ax+ λAy ∀x, y ∈ Rn λ ∈ R

(iii) For arbitrary vector spaces V,W , a mapping V →W is said to be linear if

A(x+ λy) = Ax+ λAy ∀x, y ∈ Rn λ ∈ R

So we can analogously define differentiability for mappings f : V → W between
arbitrary normed vector spaces.

(iv) f is totally differentiable in x if and only if the Jacobian matrix exists and

lim
x→y

f(y)− f(x)−Df(x)(y − x)

∥y − x∥
= 0

(v) Let f = (f1, · · · , fm) with f1, · · · , fm : U → R.

f totally differentiable ⇐⇒ fi totally differentiable ∀i ∈ {1, · · · , n}

The Jacobian matrix Dfi(x) is the i-th row of Df(x).

(vi) Total differentiability implies continuity.

(vii) Partial and total differentiability are local properties.

(viii) The mapping h 7→ Df(x) · h is linear.

(ix) The derivative x 7→ Df(x) is not linear in general.
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Theorem 6.9 (Chain rule). Let U ⊂ Rn be open, V ⊂ Rm open, x ∈ U , g : U → V
differentiable in x, and f : V → Rk differentiable in g(x). Then f ◦ g is differentiable and

D(f ◦ g) = Df(g(x)) ·Dg(x)

Proof. Differentiability of g in x means

∃ϕg : U −→ Rm : g(y)− g(x) = Dg(x)(y − x) + ϕg(y) (6.6)

Differentiability of f in g(x) means

∃ϕf : V → Rk :: lim
z→g(x)

ϕf (z)∥z − g(x)∥−1 = 0 (6.7)

and
f(z) = f(g(x)) +Df (g(x))(z − g(x)) + ϕf (z) (6.8)

Now set z = g(y), then

f(g(y))︸ ︷︷ ︸
(f◦g)(y)

= f(g(x))︸ ︷︷ ︸
(f◦g)(x)

+Df (g(x)) ·Dg(x)(y − x)

+ (Df (g(x))ϕg(y) + ϕf (g(y)))

(6.9)

And we finally need to show

Df (g(x))ϕg(y) + ϕf (g(y))

∥y − x∥
y→x−−−→ 0 (6.10)

We know that

Df(g(x))
ϕg(y)

∥y − x∥
−−−→ 0 (6.11)

because
z 7−→ Df(g(x))z linear and thus continuous (6.12)

We define a new mapping

ψ : U −→ R

z 7−→

{
ϕf (z)− ∥z − g(x)∥−1, z ̸= g(x)

0, z = g(x)

(6.13)

ψ is continuous in g(x). Then ∀y ∈ U we have

ϕf (g(y))

∥y − x∥
= ψ(g(y))︸ ︷︷ ︸

y→x−−−→0

·∥g(y)− g(x)∥
∥y − x∥

(6.14)
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and

∥g(y)− g(x)∥
∥y − x∥

=

∥∥∥∥Dg(x) y − x

∥y − x∥
+

ϕg(y)

∥y − x∥

∥∥∥∥
≤
∥∥∥∥Dg(x) y − x

∥y − x∥

∥∥∥∥︸ ︷︷ ︸
≤∥Dg(x)∥

+

∥∥∥∥ ϕg(y)

∥y − x∥

∥∥∥∥︸ ︷︷ ︸
y→x−−−→0

(6.15)

thus ψ is bounded.

=⇒ ψ(g(y)) · ∥g(y)− g(x)∥
∥y − x∥

−−−→ 0 (6.16)

Theorem 6.10. Let U ⊂ Rn and f : U −→ Rm. If ∀x ∈ U the partial derivatives ∂if(x)
exist and are continuous ∀i ∈ {1, · · · , n}. then f is totally differentiable.

Proof. Without proof.

Definition 6.11. Let U ⊂ Rn be open. f : U → Rm is said to be continuously differentiable
if all partial derivatives exist and are continuous. The vector space of all such functions is
denoted as C1(U,Rm), or in the special case m = 1 as C1(U).

Example 6.12. 1. Coming back to a previous example, we consider

Df(r, ϕ) =

(
cosϕ −r sinϕ
sinϕ cosϕ

)
Thus, f is continuously differentiable, and therefore totally differentiable.

2. LetN ∈ N and cη ∈ K for every multiindex η ∈ Nn0 with |η| ≤ N . Then the polynomial

P : Rn −→ K

x 7−→
∑
η

|η|≤N

cηx
η

is continuously differentiable, and therefore totally differentiable.

∂ix
η = ∂i (x

η1
1 , x

η2
2 , · · · , x

ηn
n )

= ηix
η1
1 · · ·xηi−1

i−1 x
ηi−1

i x
ηi+1

i+1 · · ·xηnn

This is another polynomial, and therefore continuous.

We introduce the following new notation, for x, y ∈ Rn:

Sx,y := {x+ t(y − x) | t ∈ (0, 1)}
Sx,y := {x+ t(y − x) | t ∈ [0, 1]}

They denote the connecting line between x and y.
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x

y

Sx,y

Theorem 6.13 (Intermediate value theorem for R-valued functions). Let U ⊂ Rn be open,
x, y ∈ U and Sx,y ⊂ U . Now let f : U → R differentiable on Sx,y and continuous in x, y.
Then

∃ξ ∈ Sx,y : f(y)− f(x) = Df(ξ)(y − x)

Proof. Consider

g : [0, 1] −→ R
t 7−→ f(x+ t(y − x))

(6.17)

Apply the one dimensional intermediate value theorem. Due to the chain rule, g fulfils the
prerequisites. ∃θ ∈ (0, 1) such that

f(y)− f(x) = g(1)− g(0) = g(θ) = Df(x+ θ(y − x))(y − x) (6.18)

For ξ = x+ θ(y − x) follows the initial statement.

Theorem 6.14 (Intermediate value theorem). Let U ⊂ Rn be open, Sx,y ⊂ U and f : U →
Rm differentiable on Sx,y and continuous in x, y. Then

∃ξ ∈ Sx,y : ∥f(y)− f(x)∥ ≤ ∥Df(ξ)(y − x)∥

Proof. For a ∈ Rm, consider the (real) helper function

aT f(x) = ⟨a|f(x)⟩ (6.19)

According to the previous theorem

∃ξ ∈ Bϵ : aT f(y)− aT f(x) = aTDf(ξ)(y − x) (6.20)

In this implication the chain rule has been applied. We can rewrite this using the scalar
product

∥f(y)− f(x)∥2 = |⟨f(y)− f(x)|Df(ξ)(y − x)⟩|
≤ ∥f(y)− f(x)∥∥Df(ξ)(y − x)∥

(6.21)

Corollary 6.15. Let U ⊂ Rn be open and f : U → Rm a differentiable function.

Df = 0 on U =⇒ ∃V ⊂ U : f constant on V
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Proof. Let x ∈ U , choose ϵ > 0 such that Bϵ(x) ⊂ U . Then

∀y ∈ Bϵ(x) ∃ξ ∈ Sx,y : ∥f(y)− f(x)∥ ≤ ∥Df(ξ)(y − x)∥ = 0 (6.22)

This implies
∥f(y)− f(x)∥ = 0 =⇒ f(y) = f(x) ∀y ∈ Bϵ(x) (6.23)

Remark 6.16. Functions with vanishing derivatives must be constant. Consider

f : (−2,−1) ∪ (1, 2) −→

x 7−→

{
−1, x < 0

1, x > 0

Local constancy implies constancy on connected sets.

6.2 Higher Derivatives

Definition 6.17. Let U ⊂ Rn and let f be (the only) partial derivative of order 0. Now
define recursively

(i) f is said to be (k+1)-times partially differentiable if all partial derivatives of order k
are partially differentiable.

(ii) The partial derivatives of order (k + 1) are the functions ∂ig i ∈ {1, · · · , n} where g
is the partial derivative of order k of f .

The k-th partial derivative in terms of i of f is denoted as

∂ki f

f is said to be k-times continuously differentiable if all partial derivatives of order k are
continuous. Ck(U,Rm) is the vector space of all k-times continuously differentiable func-
tions.

f is said to be infinitely differentiable (or smooth) is it is k-times differentiable ∀k ∈ N,
and the vector space of all infinitely differentiable functions is denoted as C∞(U,Rm).

For total differentiability we have

f : Rn −→ Rm Df : Rm −→ Rm×n

Remark 6.18. Let f : Rn → Rm be sufficiently often differentiable. Consider for u ∈ Rn

x 7−→ Df(x)u = lim
k→0

f(x+ hu)− f(x)

h︸ ︷︷ ︸
Directional derivative along u
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Now consider for fixed x

D2f(x) : Rn × Rn −→ Rm

(u, v) 7−→ D(Df(·)u)(x)v

D2f(x) is linear in v and u, and

D2f(x)(u1 + λu2, v) = D(Df(·)(u1 + λu2))(x)v

= D(Df(·)u1 + λDf(·)u2)(x)v
= D(Df(·)u1)(x)v + λD(Df(·)u2)(x)v
= D2f(x)(u1, v) + λD2f(x)(u2, v)

D2f(x) is a bi-linear mapping.

Definition 6.19. Let U ⊂ Rn and f : U → Rm. Define recursively for k ≥ 1:

(i) f is said to be (k+1) times (totally) differentiable on U , if the term Dk(·)(u1, · · · , uk)
is differentiable on U∀u1, · · · , uk ∈ Rn.

(ii) The (k + 1)-th derivative of f in x ∈ U is the multi-linear mapping

Dk+1f(x) : (Rn)k+1 −→ Rm

(u1, · · · , uk, v) 7−→ D(Dkf(·)(u1, · · · , uk))(x)v

Remark 6.20. Let f1, · · · , fm : U → R, then the function

f : U −→ Rm

x 7−→ (f1(x), · · · , fm(x))

is k-times totally differentiable if and only if the f1, · · · , fn are totally differentiable.

(Dkf(x)(u1, · · · , Uk))j = Dkfj(x)(u1, · · · , uk)

Remark 6.21. Dkf(x) really is multi-linear (linear in every point) ∀k ∈ N. Other multi-
linear mappings are

(i) The scalar product on Rn
Rn × Rn −→ R

(ii) The determinant
Rn×n −→ R
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Remark 6.22. A matrix A ∈ Rm×n is uniquely determined by its effect on the canonical
basis e1, · · · , en. This means if v ∈ R, then ∃α1, · · · , an ∈ R that are uniquely determined
such that

v = α1, e1 + · · ·+ αnen

Then
Av = α1Ae1 + · · ·+ αnAen

Aei is the i-th column of A. An analogous statement for multi-linear mappings would be,
that

A : Rn×k −→ Rm

is uniquely determined if A(ei1 , ei2 , · · · , eik) known ∀i1, · · · , ik ∈ {1, · · · , n}.

Theorem 6.23. Let U ⊂ Rn be open, f : U → Rm k-times differentiable in x and let
e1, · · · , en be the canonical basis of Rn. Then

Dkf(x)(ei1 , · · · , eik) = ∂ik · · · ∂i1f(x)

∀ii, · · · , ik ∈ {1, · · · , n}.

Proof. For k = 1 this is already proven. So we can use proof by induction; assume the
statement holds for a k, i.e. ∀i1, · · · , ik ∈ {1, · · · , k}

Dkf(x)(ei1 , · · · , eik) = ∂ik · · · ∂i1f(x)

Then for i1, · · · , ik, ik+1 ∈ {1, · · · , n}

Dk+1f(x)(ei1,··· ,eik ) = D(Dkf(· · · )(ei1 , · · · , eik))(x) · eik+1

= D(∂ik , · · · ∂i1f(·))(x)eik+1

= ∂ik+1
∂ik · · · ∂i1f(x)

(6.24)

The order in which partial derivatives are applied is important!

Example 6.24. Consider

f : R2 −→ R
(x1, x2) 7−→ x21 cos(x2)

Then we can calculate

D2f(x)(u, v) u = u1e1 + u2e2, v = v1e1 + v2e2

As follows

D2f(x)(u, v) = u1v1D
2f(x)(e1, e1) + u1v2D

2f(x)(e1, e2)

+ u2v1D
2f(x)(e2, e1) + u2v2D

2f(x)(e2, e2)

= u1v1 · 2 · cos(x2)− 2x1 sin(x2)u1v2

− 2x1 sin(x2)v1u2 − x21 cos(x2)u2v2
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Theorem 6.25. Let U ⊂ Rn be open, and f : U → Rm k-times continuously differentiable.
Then f is k-times totally differentiable.

Proof. This is already proveb for k = 1. So we can use induction over k; assume the
statement is correct for k ∈ N. Let u1, · · · , uk ∈ Rn, then Dkf(·)(u1, · · · , uk) is a linear
combination of the partial derivative of f of order k, and is thus continuously differentiable
once more. Therefore D2f(·)(u1, · · · , uk) is totally differentiable, and thus f is (k+1)-times
totally differentiable.

Theorem 6.26 (Theorem of Schwarz). Let U ⊂ Rn be open, and also f ∈ C2(U,Rm).
Then

∀x ∈ U ∀u, v ∈ Rn : D2f(x)(u, v) = D2f(x)(v, u)

and
∀x ∈ U ∀i1, i2 ∈ {1, · · · , n} : ∂i1∂i2f(x) = ∂i2partiali1f(x)

Proof. Let m = 1, x ∈ U , ϵ > 0 such that Bϵ(x) ⊂ U . If u = 0 or v = 0 then both sides of
the equation vanish, so let u, v ∈ Rn \ {0} and

0 < t < c :=
ϵ

2 ·max {∥u∥, ∥v∥}
(6.25)

Define the helper function

g1 : [0, t] −→ R
s 7−→ f(x+ tv + su)− f(x+ su)

(6.26)

And apply the one dimensional intermediate value theorem. ∃ξ ∈ (0, t) such that

g1(t)− g1(0) = g′1(ξ) · t = (Df(x+ tv + ξu)u−Df(x+ ξu)u) · t (6.27)

Analogously, define and apply the intermediate value theorem to

g2 : [0, t] −→ R
s 7−→ Df(x+ sv + ξu)u

(6.28)

and get η ∈ (0, t)

g2(t)− g2(0) = g′2(η)t = D(Df(·)u)(x+ ηv + ξu)uvt

= D2f(x+ ηv + ξu)(u, v)t
(6.29)

using these results, we can get ξ, η ∈ (0, t) for all t ∈ (0, c) such that

f(x+tv + tu)− f(x+ tv)− f(x+ tu) + f(x)

= g1(t)− g1(0) = (Df(x+ tv + ξu)u−Df(x+ ξu)u)t

= (g2(t)− g2(0))t = D2f(x+ ηv + ξu)(u, v)t2
(6.30)
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So we can write

lim
t→0

f(x+ tv + tu)− f(x+ tv)− f(x+ tu) + f(x)

t2

= lim
t→0

D2f (x+ ηv + ξu)︸ ︷︷ ︸
−−−→x

(u, v)

= D2f(x)(u, v)

(6.31)

The left side is symmetric in terms of swapping u and v, so the right side must be as
well.

Note, that

D2f(x)(ei1 , ei2) = ∂i2∂i1f(x) = ∂i1∂i2f(x) = D2f(x)(ei2 , ei1)

Remark 6.27. Via induction:

(i) Dkf(x)(u1, · · · , uk) is independent from the order of the ui, if D
kf is continuous.

(ii) The limit of the second derivaative is useful in the numerical discussion of differential
equations.

Theorem 6.28 (Taylor’s Theorem). Let U ⊂ Rn be open, f : U → R be (l + 1)-times
differentiable and h ∈ Rn such that x+ th ∈ U ∀t ∈ [0, 1]. Then ∃θ ∈ [0, 1] such that

f(x+ h) =
l∑

k=1

1

k!
Dkf(x)(h, · · · , h) + 1

(l + 1)!
Dl+1f(x+ θh)(h, · · · , h)

Heuristic Proof. Apply the one dimensional Taylor theorem with Lagrange error bound
onto a helper function

g : [0, 1] −→ R
t 7−→ f(x+ th)

(6.32)

Remark 6.29. (i) Consider h =
∑n

i=1 hiei. Then

D2f(x)(h, h) =
n∑

i,j=1

hihjD
2f(x)(ei, ej) =

n∑
i,j=1

∂i∂jf(x)hihj

(ii) Analogously to one dimension, we can formulate criteria for local extrema:

Df(x) = 0, · · · , Dl−1f(x) = 0 and Dlf(x) ̸= 0

� x is a local minimum if l is even and Dlf(x) is positive.

� x is a local maximum if l is even and Dlf(x) is negative.

� x is no local extremum of l is odd or if Dlf(x) is undefined.

Definedness is complicated to determine for l > 2.
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6.3 Function Sequences and Differentiability

Example 6.30. Consider (fn):

fn : R −→ C

x 7−→ 1

n
einx

Then

∥fn∥∞ =
1

n
−−−→ 0

⇐⇒
(fn) converges uniformly to the zero function

But
f ′n(x) = ieinx = i(eix)n

converges (pointwise even) only for x = 2kπ, k ∈ Z.
Remark 6.31. Let f : X → V where V is a normed vector space. Define

∥f∥∞ = sup {∥f(x)∥ |x ∈ X}

the supermum norm. Also define

� B(X,V ) the space of bounded functions from X → V

� CB(X,V ) the space of continuous, bounded functions from X → V

Theorem 6.32. Let U ⊂ Rn be open and fn : U → Rm continuously differentiable ∀n ∈ N.
If (fn) and (Dfn) converge uniformly to f : U → Rm and g : U → Rm×m, then f is
differentiable and Df = g.

Proof. First consider m = 1. We use the operator norm on Rm×m. First, let Dfn be
continuous ∀n and thus g is continuous. Choose x ∈ U and ϵ > 0, then

∃δ > 0 : ∥g(y)− g(x)∥ < ϵ

3
if ∥y − x∥ < δ (6.33)

Furthermore
∃N ∈ N : ∥Dfn − g∥∞ <

ϵ

3
∀n > N (6.34)

Let y ∈ Bδ(x). Then according to the intermediate value theorem,

∀n ∈ N ∃ξn ∈ Sx,y = {x+ t(y − x) | t ∈ [0, 1]} (6.35)

such that
fn(y)− fn(x) = Dfn(ξn)(y − x) (6.36)
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We have ξm ∈ Bδ(x). Then

1

∥y − x∥
|fn(y)− fn(x)−Dfn(x)(y − x)|

=
1

∥y − x∥
|(Dfn(ξn)−Dfn(x))(y − x)|︸ ︷︷ ︸

∥Dfn(ξn)∥−Dfn(x)∥y−x∥

≤∥Dfn(ξn)−Dfn(x)∥
≤∥Dfn(ξn)− g(ξn)∥+ ∥g(ξn)− g(x)∥+ ∥g(x)−Dfn(x)∥
≤∥Dfn − g∥∞ + ∥g(ξn)− g(x)∥+ ∥g −Dfn∥∞
=2∥Dfn − g∥∞ + ∥g(ξn)− g(x)∥ < ϵ

(6.37)

For n→ ∞ we have

1

∥y − x∥
|f(y)− f(x)− g(x)(y − x)| < ϵ ∀y ∈ Bδ(x) (6.38)

Since ϵ > 0 is arbitrary, we get

lim
y→x

1

∥y − x∥
|f(y)− f(x)− g(x)(y − x)| = 0 (6.39)

This means that f is differentiable in x with Df(x) = g(x).

Remark 6.33. On C1
B(U,Rm) (the space of continuous, differentiable and bounded functions

with bounded derivative) we can define a norm:

∥f∥C1
:= ∥f∥∞ + ∥Df∥∞

Then the above theorem is equivalent to the statement that C1
B(U,Rm) with ∥f∥C1

is
complete.

Theorem 6.34. Let f(x) =
∑∞

n=0 anx
n be a power series with positive convergence radius

ρ. Then f is differentiable on Bρ(0) and

f ′(x) =
∞∑
n=0

nanx
n−1

Proof. We need to inspect the convergence radius R of

∞∑
n=0

nanx
n−1 =

1

x

∞∑
n=0

nanx
n (6.40)

( n
√
n) converges to 1, so ∃ϵ > 0 such that for sufficiently big n we have

(1− ϵ) n
√
an ≤

√
nan ≤ (1 + ϵ)n

√
an (6.41)
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and thus
1− ϵ

ρ
= (1− ϵ) · lim sup

n→∞
n
√

|an| ≤ lim sup
n→∞

n
√
|nan| =

1

R
≤ 1 + ϵ

ρ
(6.42)

So

=⇒ 1− ϵ

ρ
≤ 1

R
≤ 1 + ϵ

ρ
(6.43)

Since this holds for every ϵ, this implies ρ = R. Now for x ∈ Bρ(0) set

g(x) :=
∞∑
k=1

nanx
n−1 (6.44)

Let x ∈ Bρ(0) be fixed and choose a > 0 such that |x| < a < ρ. This means that

fN (x) :=
N∑
n=0

anx
n and gN (x) :=

N∑
n=0

anx
n−1

converge uniformly on Ba(0) to f and g. Obviously, f ′N = gN , so f is differentiable and f ′ =
g. Since differentiabiility is a local property, the desired statement follows ∀x ∈ Bρ(0).

Corollary 6.35. Let f(x) =
∑∞

n=0 anx
n be a power series with convergence radius ρ > 0.

Then f ∈ C∞(Br(0)), and
ak = f (k)(0) · (−1k!)

Furthermore, the series representation (if it exists) is unique.

Proof. The infinite Differentiability follows inductively from the previous theorem. Also
inductively we have

f (k)(x) =
∞∑
n=0

n(n− 1) · · · (n− k + 1)anx
n−k (6.45)

Choose x = 0 and receive

f (k)(0) = n(n− 1) · · · (n− k + 1)an (6.46)

Example 6.36 (Derivative of the exponential function).

(ex)′ =
∞∑
n=0

(
xn

n!

)′
=

∞∑
n=1

nxn−1

n!
=

∞∑
n=1

xn−1

(n− 1)!
=

∞∑
n=0

xn

n!
= ex

Remark 6.37 (Taylor Series). We can define the Taylor series for f : K → K
∞∑
n=0

f (n)(0)

n!
xn = f(x)
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� In general, this doesn’t hold true for all x, not even for f ∈ C∞.

� The convergence radius could be 0

� There are examples of convergent Taylor series that don’t converge to the initial
function, e.g.

f : x 7→

{
exp

(
− 1
x

)
, x > 0

0, else

f is infinitely continuously differentiable in 0, but the Taylor series would converge to
0.

Definition 6.38. Let aη ∈ K (Multiindex notation) be coefficients ∀η ∈ Nd0. Then∑
η∈Nd

0

aηx
η

is said to be a (formal) power series with d variables.
A function f : U → K with U neighbourhood around 0 is said to be analytic in 0, if and

only if

∃ϵ > 0, aη ∈ K : f(x) =
∑
η∈Nd

0

aηx
η ∀x ∈ Bϵ(0)

Remark 6.39. (i) The convergence of the series to S(x) can be defined as follows: ∀ϵ >
0 ∃A ⊂ Nd0 finite such that ∀B ⊃ A finite we have∣∣∣∣∣∣

∑
η∈B

aηx
η − S(x)

∣∣∣∣∣∣ < ϵ

(ii) If the series converges in (y1, · · · , yn), then it also absolutely converges in the open
cuboid {

x ∈ Rd
∣∣∣ |xi| < |yi| ∀i ∈ {1, · · · , d}

}
which means ∑

η∈Nd
0

|aη|(|x1|, · · · , |xd|)η <∞

(iii) If the power series converges on a neighbourhood U around 0, then it is infinitely
differentiable and

aη =
∂ηf(0)

η!

with

∂η := ∂η11 ∂
η2
2 · · · ∂ηdd η! := η1!η2! · · · ηd!
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(iv) The formula above is only rarely useful to calculate the Taylor series. By inverting it
we can calculate the derivative of a known series representation. E.g.

f(x) = xex
2
= x ·

∞∑
k=0

(x2)k

k!
=

∞∑
=1

k = 0∞
x2k+1

k!
∀x ∈ K

f (k)(0) = 0 is k is even, and it is something else if k is odd.

(v) Cω(U) is the space of all analytic functions.

C(U) ⊃ C1(U) ⊃ C2(U) ⊃ · · · ⊃ Ck(U) ⊃ · · · ⊃ C∞(U) ⊃ Cω(U)

(vi) The analytic functions are closed among sums, products and concatinations. A power
series is analytic within its converges radius.

Example 6.40. Consider the power series

∞∑
n=0

(xy)n =
∑
η∈N2

0

(xy)η · aη

with

aη = 1 if η1 = η2

aη = 0 else

This series converges on
{(x, y) | |xy| < 1}

to 1
1−xy .
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So the convergence area must not necessarily be a sphere. The limit function is also
defined outside of the convergence area.

6.4 The Banach Fixed-Point Theorem and the Implicit Func-
tion Theorem

Theorem 6.41 (Banach Fixed-Point Theorem). Let (X, d) be a complete metric space, and
ϕ : X → X strictly contractive, i.e.

∃C ∈ (0, 1) : d(ϕ(x), ϕ(y)) ≤ Cd(x, y) ∀x, y ∈ X

Then there exists exactly one fixed point x of ϕ, i.e. ϕ(x) = x.

Proof. First, ϕ is Lipschitz continuous, and thus continuous. Let x0 ∈ X, and recursively
define xn+1 = ϕ(xn). Then

d(xn+1, xn) = d(ϕ(xn), ϕ(xn−1)) ≤ Cd(xn, xn−1) (6.47)

and via induction
d(xn+k, xn+k−1) ≤ Ckd(xn, xn−1) ∀k, n ∈ N (6.48)
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Especially,
d(xn, xn−1) ≤ Cn−1d(x1, x0) (6.49)

Using the triangle inequality we can compute

d(xn+k, xn−1) ≤ d(xn+k, xn+k−1) + d(xn+k−1, xn+k−2) + · · ·+ d(xn, xn−1)

≤ (Ck + Ck−1 + Ck−2 + · · ·+ 1)d(xn, xn−1)

≤ 1− Ck+1

1− C
· d(xn, xn−1)

≤ 1− Ck+1

1− C
Cn−1d(x1, x0)

≤ Cn−1

1− C
d(x1, x0)

n→∞−−−→ 0

(6.50)

This means
∀ϵ > 0 ∃N ∈ N : d(xn+k, xn−1) < ϵ ∀n > N ∀k ∈ N (6.51)

Which in turn means that (xn) is a Cauchy sequence, and thus convergent. (xn) converges
to x ∈ X

x = lim
n→∞

xn = lim
n→∞

ϕ(xn−1) = ϕ( lim
n→∞

xn−1) = ϕ(x) (6.52)

To prove the uniqueness, let x, y both be fixed points. Then

d(x, y) = d(ϕ(x), ϕ(y)) ≤ Cd(x, y) (6.53)

Since C < 1, we have
d(x, y) =⇒ x = y (6.54)

Remark 6.42. The Banach fixed-point theorem implies that every map that is within the
area it is mapping, will have a point on the map that lies directly on top of the point in the
real world that it maps.

Example 6.43. Consider the equation

x− y2 = 0

with the solutions

y =
√
x y = −

√
x

on (0,∞). For a point (ξ, η) that solves the equation, there exists a neighbourhood U and
a function f such that all solutions of the equation on U are of the form (x, f(x)).
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Remark 6.44. Let F : RP × RQ → RQ, and consider x1, · · · , xP ∈ R as independent
variables, and y1, · · · , yQ ∈ R as dependent variables of the equation system

F (x, y) = 0, x = (x1, · · · , xP ), y = (y1, . . . , yQ)

Let (ξ, η) be a solution. The question is wether a f : RP → RQ exists, such that (x, f(x))
are solutions ∀x ∈ U , where U is a neighbourhood of ξ.

x 7−→ F (x, f(x))

If F is differentiable, then let DyF (x, η) ∈ RQ×Q denote the total derivative of the function.
Analogously this works for y as the variable. We approximately have

F (x, y) ≈ F (x, η) +DyF (x, η)(y − η) = 0

Theorem 6.45 (Implicit Function Theorem). Let U ⊂ RP , V ⊂ RQ be open, and

F : U × V → RQ

continuously differentiable. Choose ξ ∈ U, η ∈ V such that F (ξ, η) = 0, and DyF (ξ, η)
invertible. Then there exists a neighbourhood Ũ ⊂ U of ξ, a neighbourhood Ṽ ⊂ V of η and
a continuous function f : Ũ → Ṽ such that f(ξ) = η and

F (x, f(x)) = 0 ∀x ∈ Ũ

.

Proof. Set D = DyF (ξ, η). Then consider

ϕ : function −→ function

ϕ(g)(x) 7−→ g(x)−D−1F (x, g(x))
(6.55)

where g : RP → RQ. Then we have

ϕ(g) = g ⇐⇒ D−1F (x, g(x)) = 0 ⇐⇒ F (x, g(x)) = 0 (6.56)

Since this is a fixed point problem, our goal is to apply the Banach fixed-point theorem.
Let I : RQ → RQ be the identity mapping. Then the function

(x, y) 7−→
∥∥I −D−1DyF (x, y)

∥∥ (6.57)

is continuous and vanishes in (ξ, η). ∃δ, ϵ > 0 such that Bδ(ξ) ⊂ U , and Bϵ(η) ⊂ V and∥∥I −D−1DyF (x, y)
∥∥ ≤ 1

2
∀x ∈ Bδ(ξ), y ∈ Bϵ(η) (6.58)

Because of the continuity of
x 7−→

∥∥D−1F (x, η)
∥∥ (6.59)
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we can choose a (possibly smaller) δ > 0, such that∥∥D−1F (x, η)
∥∥ ≤ ϵ

4
∀x ∈ Bδ(ξ) = Ũ (6.60)

Now let X denote the set of all continuous functions g : Ũ → RQ

g(ξ) = η (6.61a)

∥g(x)− η∥ ≤ ϵ

2
∀x ∈ Ũ (6.61b)

Equation (6.61b) implies that g(x) ∈ Bϵ(η) ⊂ V . Furthermore X is a subset of CB(Ũ ,RQ),
which is a complete set with the norm

∥g∥∞ = sup
{
∥g(x)∥

∣∣∣x ∈ Ũ
}

(6.62)

X is non-empty (for example, it contains g(ξ) = η) and bounded, which means X is also
complete. Now, for a fixed x ∈ Ũ and Ṽ ⊂ Bϵ(η) consider the mapping

Φ : Ṽ −→ RQ

y 7−→ y −D−1F (x, y)
(6.63)

From the intermediate value theorem we can conclude

∥Φ(y)− Φ(z)∥ ≤ sup
y∈Ṽ

∥∥I −D−1DyF (x, y)
∥∥︸ ︷︷ ︸

DΦ(x,y)

∥y − z∥

≤ 1

2
∥y − z∥

(6.64)

Now, for g1, g2 ∈ X and x ∈ Ũ we can see that

∥ϕ(g1)(x)− ϕ(x2)(x)∥ = ∥Φ(g1(x))− Φ(g2(x))∥

≤ 1

2
∥g1(x)− g2(x)∥

(6.65)

and by choosing the supremum over all x ∈ Ũ we can see that

∥ϕ(g1)− ϕ(g2)∥∞ ≤ 1

2
∥g1 − g2∥∞ (6.66)

Thus ϕ is strictly contractive on x. It is only left to show that ϕ(X) ⊂ X. From the
definition of ϕ we have ∀g ∈ X

ϕ(g)(ξ) = g(ξ) = η (6.67)
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So ϕ(g) is continuous, and finally

∥ϕ(g)(x)− η∥ ≤ ∥ϕ(g)(x)− ϕ(η)(x)∥+ ∥ϕ(η)(x)− η∥

≤ 1

2
∥g(x)− η∥︸ ︷︷ ︸

≤ ϵ
2

+
∥∥D−1F (x, η)

∥∥︸ ︷︷ ︸
≤ ϵ

4

≤ ϵ

2

(6.68)

Thus, ϕ maps X to X, and the Banach fixed-point theorem tells us

∃!f ∈ X : ϕ(f) = f ⇐⇒ F (x, f(x)) = 0 ∀x ∈ Ũ (6.69)

Remark 6.46 (About uniqueness). We know there is exactly one function f in X such that

F (x, f(x)) = 0 ∀x ∈ Ũ

f(x) the only solution in Ṽ , for x ∈ Ũ , because if F (x, y) = 0 for y ∈ V , then

∥y − f(x)∥ = ∥Φ(y)− Φ(f(x))∥ ≤ 1

2
∥y − f(x)∥

which implies y = f(x)

Theorem 6.47. There is a possibly smaller neighbourhood Ũ around ξ on which f ∈
C1(Ũ , Ṽ ). The derivative is given by

Df(x) = −(DyF (x, f(x)))
−1DxF (x, f(x))

Proof. Without proof.

Corollary 6.48 (Inverse Function Theorem). Let U ⊂ Rn and f : U → Rm continuously
differentiable. If Df(ξ) is invertible for some ξ ∈ U , then there exists a neighbourhood Ũ
around ξ and a neighbourhood Ṽ around f(ξ) =: η such that f bijectively maps Ũ to Ṽ , and
the inverse function

g : Ṽ −→ Ũ

y 7−→ f−1(y)

is continuously differentiable. Furthermore

Dg(η) = (Df(ξ))−1

Heuristic Proof. Use the implicit function theorem on the equation system

F (x, y) = f(x)− y = 0 (6.70)

and solve that for x.
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Example 6.49 (Inverse function of the complex exponential function). Let

z 7−→ exp(z)

be a function R2 → R2, i.e. z = x+ yi and

exp(z) = exp(x) exp(yi) = exp(x)(cos y + i sin y)

Consider

ϕ : R2 −→ R2

(x, y) 7−→ (exp(x) · cos y, exp(x) · sin y)

This mapping is continuously differentiable (analytic even) and Dϕ(x, y) is invertible ev-
erywhere. Thus ϕ has a locally differentiable inverse function on exp(C) (the logarithm).

One can show that exp(C) = C \ {0}. Typically, the main branch of the complex
logarithm is defined as

ln :C \ {x ∈ R |x ≤ 0}
=⇒ R× (−π, π)

One can choose from many other domains, however there is no continuous logarithm on
C \ {0}.
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7.1 Contents and Measures

Definition 7.1. A set M is said to be countable if there exists a surjective mapping from
N to M , i.e.

∃ (xn) ⊂M : ∀y ∈M ∃n ∈ N : xn = y

A set M is said to be countably infinite if it is countable and unbounded.

Remark 7.2. (i) Countably infinite sets are the smallest kind of infinite sets.

(ii) Subsets of countable sets are countable.

(iii) The union of two countable sets is countable. Let (xn) ⊂ M, (yn) ⊂ K by surjective
sequences, then

(x1, y1, x2, y2, · · · )
is a surjective sequence forM ⊂ K. This argument can be used to prove Z is countable.

(iv) The union of countably many countable sets is countable. LetM be a countable set of
countable sets, and (An) ⊂M a surjective sequence. Then ∀n ∈ N exists a surjective
mapping (xnk

)k∈N ⊂ An

x11 x12 x13

x21 x22 x23

x31 x32 x33

· · ·

· · ·

· · ·

...
...

...
. . .

1 2

3

4

5

6

This sequence is surjective on ⋃
A∈M

A

Especially, for countable M,K we have

M ×K =
⋃
x∈M

{(x, y) | y ∈ K}

Thus N× N, N, Z and Q are countable.

(v) There exist uncountable sets, like [0, 1], R and P(R).

Definition 7.3. Let Ω be a set. A family of subsets

(Ai)i∈I ⊂ P(Ω) (I denotes the index set)

is said to be pairwise disjoint is

Ai ∩Aj = ∅ ∀i, j ∈ I, i ̸= j
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Remark 7.4. (i) Let A ⊂ P(Rn) be a family of sets. A mapping

µ : A → [0,∞]

is said to be the content of A, if ∀A1, · · · , Ak ∈ A pairwise disjoint the following holds:

A1 ∪ · · · ∪Ak ∈ A =⇒ µ(A1 ∪ · · · ∪Ak) =
k∑
l=1

µ(Al)

The content is a generalization of the concept of length (R), area (R2), volume (R3)
etc.

(ii) In the context of contents, measures and integrals we define

c+∞ = ∞ ∀c ∈ R ∪ {∞}
c · ∞ = ∞ ∀c ∈ (0,∞]

0 · ∞ = 0

(iii) The goal is to choose the domain of the content as big as possible. Ideal would be
A = PRn. This introduces the Banach-Tarski paradox:

� Let B1(0) ⊂ R3 be the unit sphere

� One can show: There exists a disjoint decomposition

A1 ∪ · · · ∪AP ∪B1 ∪ · · · ∪BQ = B1(0)

and a set of translations and rotations

D1, · · · , DP , · · ·T1, · · · , TQ

such that

D1A1 ∪D2A2 ∪ · · · ∪DPAP = B1(0)

T1B1 ∪ T2B2 ∪ · · · ∪ TQBQ = B1(0)

Definition 7.5. Let Ω be a set, A a family of subsets of Ω (so A ⊂ P(Ω)). A is sait to be
a σ-algebra, if

(i) ∅ ∈ A

(ii) A ∈ A =⇒ AC = Ω \A ∈ A

(iii) For a countable subset {A1, · · · , An} ⊂ A follows⋃
i∈N

Ai ⊂ A



7.1. CONTENTS AND MEASURES 148

A mapping
µ : A → [0,∞]

is said to be a measure, if

µ

(⋃
i∈N

Ai

)
=
∑
i∈N

µ(Ai) (σ-additivity)

for pairwise disjoint (Ai)i∈N ⊂ A and µ(∅) = 0. The pair (Ω,A) is called a measureable
space, and (Ω,A, µ) is called measure space.

Example 7.6. (i) Let Ω be an arbitrary set, and let there be a disjoint decomposition

A1 ∪ · · · ∪An = Ω

Then {⋃
i∈I

Ai

∣∣∣∣∣ I ⊂ {1, · · · , n}

}
is a σ-algebra.

(ii) Let Ω be arbitrary and x ∈ Ω. Then

δx : P(Ω) −→ [0,∞]

A 7−→

{
1, x ∈ A

0, x /∈ A

is a measure.

(iii) Let Ω be arbitrary, then

# : P(Ω) −→ [0,∞]

A 7−→

{
Number of elements in A, A finite

∞, A infinite

is the so called counting measure. It is useful for finite, countable sets.

(iv) Let Ω be countable and (aw)w∈R ⊂ [0,∞]. Then

µ : P(Ω) −→ [0,∞]

A 7−→
∑
w∈A

aw

a measure.
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(v) Let (Ω,A, µ) be a measure space and A ∈ A. Define the to A confined σ-algebra

A|A := {B ∩A |B ∈ A}

Then (A,A|A, µ) is a measure space.

Remark 7.7. For countable subsets A = {A1, · · · , An, · · ·} ⊂ σ-algebra we have

⋂
i∈N

Ai =

(⋃
i∈N

ACi

)C
⊂ A

If A,B ∈ A =⇒ A \B ∈ A then we can write

A \B = A ∩BC

A measure µ is monotonic, which means if A,B ∈ A and A ⊂ B, then

µ(B) = µ(B \A) + µ(A) ≥ µ(A)

Definition 7.8. A mapping µ : P(Ω) → [0,∞] is said to be an outer measure, if µ(∅) = 0
and

A ⊂
⋃
i∈N

Ai =⇒ µ(A) ≤
∑
i∈N

µ(Ai)

Just like measures, outer measures are monotonic. Let I be the family of bounded intervals,
i.e.

I =
⋃
x,y∈R
x<y

{[x, y], [x, y), (x, y], (x, y)}

We define
l([x, y]) := l([x, y)) := l((x, y]) := l((x, y)) = y − x

Theorem 7.9. The mapping

λ : P(R) −→ [0,∞]

A 7−→ inf

{ ∞∑
i=1

l(Ii)

∣∣∣∣∣A ⊂
⋃
i∈N

Ii, Ii ∈ I ∀i ∈ N

}

defines an outer measure on the real numbers. Analogously one can create outer measures
on R2,R3.

Proof. We know
λ(∅) ≤ l([0, ϵ)) = ϵ ∀ϵ > 0 (7.1)

which implies λ(∅) = 0. We have to show that

A ⊂
⋃
k∈N

Ak =⇒ λ(A) ≤
∑
k∈N

λ(Ak) (7.2)
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If the right side is ∞ there is nothing to show. So let
∑

k∈N λ(Ak) < ∞. Let ϵ > 0, then
∀k ∈ N ∃(Iki) ⊂ I such that

Ak ⊂
⋃
i∈N

Iki and
∑
i∈N

l(Iki) ≤
(
λ(Ak) +

ϵ

2k

)
(7.3)

Then

A ⊂
∞⋃
k=1

Ak ⊂
⋃
i,k∈N

Iki (7.4)

and
λ(A) ≤

∑
k,i∈N

l(Iki) ≤
∑
k∈N

(
λ(Ak) +

ϵ

2k

)
=
∑
k∈N

λ(Ak) + ϵ (7.5)

Since this inequality holds ∀ϵ > 0

λ(A) ≤
∑
k∈N

λ(Ak) (7.6)

must be true. The outer measure is not additive.

Theorem 7.10. Let µ be an outer measure on (Ω,P(Ω)). Then the family of measureable
sets

A :=
{
A ⊂ Ω

∣∣µ(E) ≥ µ(E ∩A) + µ(E ∩AC) ∀E ∈ P(Ω)
}

is a σ-algebra, and µ|A a measure.

Theorem 7.11. Firstly, we always have

µ(E) ≤ µ(E ∩A) + µ(E ∩AC) (7.7)

which means A is measureable if and only if

µ(E) = µ(E ∩A) + µ(E ∩AC) ∀E ∈ P(Ω) (7.8)

It’s easy to see that ∅ is measurable, and that

A measurable ⇐⇒ AC measurable (7.9)

We have

E ∩ (A ∪B) = (E ∩A) ∪ (E ∩B)

= (E ∩A) ∪ (E ∩B ∩AC)
(7.10)

Which means that ∀A,B measurable and ∀E ∈ P(Ω):

µ(E) = µ(E ∩A) + µ(E ∩AC)
= µ(E ∩A) + µ(E ∩AC ∩B) + µ(E ∩AC ∩BC)

≥ µ(E ∩ (A ∪B)) + µ(E ∩ (A ∩B)C) ≥ µ(E)

(7.11)
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So A ∪B is measurable and it follows for disjoint A,B

µ(E ∩A) + µ(E ∩AC ∩B) = µ(E ∩ (A ∪B)) (7.12a)

=⇒ µ(E ∩A) + µ(E ∩B) = µ(E ∩ (A ∪B)) (7.12b)

=⇒ µ is additive for measurable sets (7.12c)

Then by using induction we can see that finite unions of measurable sets are measurable
and that for A1, · · · , An measurable, pairwise disjoint sets

µ

(
n⋃
i=1

Ai

)
=

n∑
i=1

µ(Ai) (7.13)

holds. Now let (Ai)i∈N be pairwise disjoint measurable sets, and let

Sn :=
n⋃
i=1

Ai S :=
∞⋃
i=1

Ai (7.14)

Then ∀E ∈ P(Ω)

µ(E ∩ Sn) =
n∑
i=1

µ(E ∩Ai) (7.15)

To check measurability, consider

µ(E) ≥ µ(E ∩ Sn) + µ(E ∩ SCn )

≥
n∑
i=1

µ(E ∩Ai) + µ(E ∩ SC)
(7.16)

For n→ ∞:

µ(E) ≥
∞∑
i=1

µ(E ∩Ai) + µ(E ∩ SC)

≥ µ (E ∩ S)︸ ︷︷ ︸⋃∞
i=1 E∩Ai

+µ(E ∩ SC)

≥ µ(E)

(7.17)

Thus S is measurable
∞∑
i=1

µ(E ∩Ai) = µ

(
E ∩

∞⋃
i=1

Ai

)
(7.18)

For E = Ω the σ-additivity follows. It is left to show that for measurable (but not necessarily
disjoint) Ai, that

⋃∞
i=1Ai is also measurable. To do that define

Bi = Ai \

i−1⋃
j=1

Aj

 (7.19)
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Then the Bi are disjoint and measurable. Thus

∞⋃
i=1

Bi =
∞⋃
i=1

Ai (7.20)

is measurable.

Definition 7.12. Application of the previous theorem on the outer measure from Theorem 7.9
gives us the σ-algebra of Lebesgue-measurable sets and the Lebesgue-measure λ.

Remark 7.13. A ⊂ R is said to be a null set if its outer measure is 0. Obviously

λ({0}) = 0

For countable A we have

λ(A) = λ (∪x∈A {x}) ≤
∑
x∈A

λ({x}) = 0

So N, Z and Q are null sets. Null sets are measurable, because

∀E ∈ P(R) : λ(E ∩A)︸ ︷︷ ︸
0

+λ(E ∩AC) = λ(E ∩AC) ≤ λ(E)

Theorem 7.14. Intervals are Lebesgue measurable and

λ([a, b]) = b− a

Proof. Let A be a bounded interval. Decompose R into the intervals

R = IL ∪A ∪ IR (7.21)

For I ∈ I we have I ∩ IL, I ∩A, I ∩ IR bounded (or empty) intervals. Now let E ⊂ P(R)
and

E ⊂
⋃
i∈N

Ii (7.22)

a covering. Then

E ∩A ⊂
⋃
i∈N

Ii ∩A E ∩AC ⊂
⋃
i∈N

((Ii ∩ IL) ∪ (Ii ∩ IR)) (7.23)

are coverings of countably many intervals, and we have∑
i∈N

l(Ii) =
∑
i∈natn

l(Ii ∩A) +
∑
i∈N

(l(Ii ∩ IL) + l(Ii ∩ IR))

≥ λ(E ∩A) + λ(E ∩AC)
(7.24)



7.1. CONTENTS AND MEASURES 153

λ is the infimum of all possible coverings

λ(E) ≥ λ(E ∩A) + λ(E ∩AC) (7.25)

And thus A is measurable. It is left to show that

A = [a, b] =⇒ λ(A) = b− a (7.26)

So let (In) ⊂ I such that

l =
∑
n∈N

(In) < b− a (7.27)

First, let all In be open. Choose

An = A \

(
n⋃
i=1

Ii

)
(7.28)

Those An are non-empty, since A cannot be covered by finitely many intervals of length
< b − a. Choose a sequence xn ∈ An ∀n ∈ N. Since A is a compact there exists a
toward x ∈ A convergent subsequence of xn. The point x cannot be contained in any In,
since because the In are open, infinitely many xn would be contained in In, which would
contradict the construction of An.

=⇒ (In) do not cover A (7.29)

For arbitrary In (so not necessarily open), let (xk) be the sequence of the (countably many)
boundary points of the intervals.

ϵ =
b− a− l

4
> 0 (7.30)

And thus {
I̊i

∣∣∣ i ∈ N
}
∪
{(
xk −

ϵ

2k
, xk +

ϵ

2k

) ∣∣∣∀k ∈ N
}

(7.31)

is a covering of A by countably many open intervals of total length

≤ l +
∞∑
k=1

2ϵ

2k
= l +

b− a− l

2
=
b− a+ l

2
< b− a (7.32)

which is impossible due to our construction above.

Theorem 7.15. Open and closed sets are Lebesgue measurable.

Proof. Let O ⊂ R be open. It is to show that

O =
⋃
l,r∈Q

(l,r)⊂O

(l, r) =⇒ O Lebesgue measurable (7.33)
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Let x ∈ O, since O is open
∃ϵ > 0 : (x− ϵ, x+ ϵ) ⊂ O (7.34)

Since Q is dense in R

∃l, r ∈ Q : x− ϵ < l < x and x < r < ϵ+ x (7.35)

So x ∈ (l, r) ⊂ O. If C is a closed set, then R \ C is open and thus Lebesgue measurable.

=⇒ C = R \ (R \ C) Lebesgue measurable (7.36)

Remark 7.16. The Lebesgue-σ-algebra contains many more sets. All sets that are ”created
by normal means” are Lebesgue measurable.

Remark 7.17. For A ⊂ R and x ∈ R we define

A+ x := {y + x | y ∈ A}

A measure on R is said to be invariant under translation, if

µ(A) = µ(A+ x) ∀A ∈ A, x ∈ R

Since translations of intervals result in intervals, the (outer) Lebesgue measure is invari-
ant under translation. One can show that the Lebesgue measure is the only translational
symmetric measure on R, with

λ([0, 1]) = 1

Theorem 7.18. Let (Ω,A, µ) be a measure space. For a monotonically increasing sequence
(An) ⊂ A (this means An ⊂ An+1 ∀n ∈ N), we have

µ

(⋃
n∈N

An

)
= lim

n→∞
µ(An) = sup

n∈N
µ(An)

For a monotonically decreasing sequence (Bn) ⊂ A we have

µ

(⋂
n∈N

Bn

)
= lim

n→∞
µ(Bn) = inf

n∈N
µ(Bn)

if µ(BN ) <∞ for N ∈ N

Proof. If µ(An) = ∞ for some n ∈ N there is nothing to show. So let

µ(An) <∞ ∀n ∈ N (7.37)

Set A0 = ∅ and define
Cn := An \An−1 (7.38)
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These Cn are pairwise disjoint, and thus

µ

(⋃
n∈N

An

)
= µ

(⋃
n∈N

Cn

)
=

∞∑
n=1

µ(Cn) =
∞∑
n=1

(µ(An)− µ(An−1))︸ ︷︷ ︸
Telescoping series

= lim
n→∞

µ(An)− µ(A0)︸ ︷︷ ︸
=0

(7.39)

Now let µ(BN ) <∞ → µ(Bn) <∞ ∀n ≥ N . Set

Dn = BN \Bn ∀n ≥ N (7.40)

(Dn) is monotonically increasing and thus

∞⋃
n=N

Dn =
∞⋃
n=N

BN ∩BC
n = BN ∩

( ∞⋂
n=N

Bn

)
︸ ︷︷ ︸

B

C

= BN ∩BC = BN \B (7.41)

Which in turn implies

µ(BN )− µ(B) = µ(BN \B) = lim
n→∞

µ(BN \Bn)︸ ︷︷ ︸
µ(BN )−µ(Bn)

= µ(BN )− lim
n→∞

µ(Bn)

(7.42)

Remark 7.19. µ(BN ) <∞ for some N ∈ N is a necessarily requirement.

7.2 Integrals

Let (Ω,A, µ) be a measure space. The most important example is on R with the Lebesgue-
σ-algebra and the Lebesgue measure. We have one technical requirement, and that is that
(Ω,A, µ) is a σ-finite measure space, i.e.

∃ (En) ⊂ A :
⋃
n∈N

En = Ω and µ(En) <∞ ∀n ∈ N

On R this requirement is fulfilled by defining En = [−n, n].
Remark 7.20 (Notation). Let Φ(x) be a statement depending on x ∈ Ω. We write [Φ] for

{x ∈ Ω |Φ(x)}

Example: y ∈ C
[f = y] = {x ∈ Ω | f(x) = y} = f−1(y)
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We write ”Φ holds” for ”Φ(x) holds ∀x ∈ Ω”. For example ”f > g” instead of ”f(x) >
g(x) ∀x ∈ Ω”.

Φ is said to hold ”almost everywhere” (a.e.) if the set

{x | ¬Ω(x)}

is a null set. For example, ”f > g almost everywhere” means µ([f ≤ g]) = 0. The sequence
(fn) converges pointwise a.e. towards f if[

lim
n→∞

fn ̸= f
]
=
{
x ∈ Ω

∣∣∣ lim
n→∞

fn(x) ̸= f(x)
}

is a null set.

Definition 7.21. Let A ∈ A, then

1A : Ω −→ R

ω 7−→

{
1, x ∈ A

0, else

is said to be the characteristic function of A. A is the support of 1A. With this we can
define the space of simple functions

X =

{
n∑
i=1

ai1A

∣∣∣∣∣n ∈ N, Ai ∈ A, µ(Ai) <∞, ai ∈ C

}

X+ notates the non-negative, simple functions.

Remark 7.22. (i) Let A,B ∈ A

1A∩B = 1A · 1B
1A∪B = 1A + 1B − 1A∩B = 1A + 1B − 1A1B

(ii) The set X is a vector space, and the product of characteristic functions is another
characteristic function, i.e.

f, g ∈ X =⇒ f · g ∈ X

Thus X is an algebra.

(iii) If A1, · · · , An is a decomposition of Ω, which means they are disjoint and

n⋃
i=1

Ai = Ω

then

(1i) = 1Ω =

n∑
i=1

1Ai
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(iv) The representation of simple functions as a linear combination is not unique

1[0,2] + 1[2, 3] = 1[0, 1] + 1[1, 3]

(v) One can easily see that simple functions can only assume finitely many values, and
their support [f ̸= 0] has a finite measure. The canonical representation is

f =
∑

y=f(Ω)

g · 1[f=y]

Definition 7.23 (Integrals of simple functions). Let f ∈ X in canonical representation

f =
∞∑
i=1

ai1Ai

Then we define �
f dµ :=

n∑
i=1

aiµ(Ai)

Remark 7.24. This sum is always finite, the only Ai with infinite measure is that where
ai = 0

ai ·Ai = 0 · ∞ = 0

Let f =
∑m

j=1 bj1Bj be another representation of f , so B1, · · · , Bm is a decomposition. If
Ai ∩Bj ̸= ∅ i.e.

∃x ∈ Ai ∩Bj : f(x) = ai = bj

Then

�
f dµ =

n∑
i=1

aiµ(Ai) =
n∑
i=1

aiµ

Ai ∩ m⋃
j=1

Bj


︸ ︷︷ ︸⋃m

j=1(Ai∩Bj)

=
n∑
i=1

ai

m∑
j=1

µ(Ai ∩Bj)

=

n∑
i=1

m∑
j=1

bjµ(Ai ∩Bj) =
m∑
j=1

bjµ

((
n⋃
i=1

Ai

)
∩Bj

)

=
m∑
j=1

bjµ(Bj)

Theorem 7.25. Let f, g be simple functions, α ∈ C. Then�
(f + αg) dµ =

�
f dµ+ α

�
g dµ

If f, g are real-valued and f ≤ g a.e., then�
f dµ ≤

�
g dµ
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And especially if f = g a.e. �
f dµ =

�
g dµ

Finally, the triangle inequality holds∣∣∣∣� f dµ

∣∣∣∣ ≤ � |f | dµ

Proof. Let f, g be in canonical representation

f =

n∑
i=1

ai1Ai (7.43a) g =

m∑
j=1

bj1Bj (7.43b)

Then

f + αg =
n∑
i=1

ai1Ai + α
m∑
j=1

bj1Bj

=
n∑
i=1

ai1Ai

 m∑
j=1

1Bj


︸ ︷︷ ︸

1

+α
m∑
j=1

bj1Bj

(
n∑
i=1

1Ai

)
︸ ︷︷ ︸

1

=
n∑
i=1

m∑
j=1

(ai + αbj)1Ai∩Bj

(7.44)

Ai ∩Bj with i ∈ {1, · · · , n} , j ∈ {1, · · · ,m} is a decomposition of Ω

m
n⋃
i=1
j=1

Ai ∩Bj =
n⋃
i=1

Ai ∩

 m⋃
j=1

Bj


︸ ︷︷ ︸

Ω

= Ω (7.45)

This means that

�
(f + αg) dµ =

n∑
i=1

m∑
j=1

(ai + αbj)µ(Ai ∩Bj)

=
n∑
i=1

aiµ

A ∩

 m⋃
j=1

Bj

+ α
m∑
j=1

bjµ

((
n⋃
i=1

Ai

)
∩Bj

)

=

�
f dµ+ α

�
g dµ
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Now let f ≥ 0 almsot everywhere, i.e. [f < 0] is a null set. If ai < 0, then Ai ⊂ [f < 0], and
then µ(Ai) = 0 and thus the integral is a sum over non-negative values, so it is non-negative
itself. If f ≤ g a.e., then g − f ≥ 0 a.e.:

0 ≤
�
(g − f) dµ =

�
g dµ−

�
f dµ (7.46)

Finally to show the triangle inequality∣∣∣∣� f dµ

∣∣∣∣ =
∣∣∣∣∣
n∑
i=1

aiµ(Ai)

∣∣∣∣∣ ≤
n∑
i=1

|ai|µ(Ai) =
�

|f |dµ (7.47)

Remark 7.26. From linearity follows, that f can be in any representation

f =

n∑
i=1

ai1Ai

and the integral will still be �
f dµ =

n∑
i=1

aiµ(Ai)

Remark 7.27. Notice how the integrals so far did not have any integration variables. The
integrals map functions (not their values!) to numbers. If the integration variable is of
concern, we can write �

f(x) dµ(x)

For Lebesgue integrals we define

�
f(x) dx =

� ∞

−∞
f(x) dx

Definition 7.28. f : Ω → Ω is said to be measurable, if there is a sequence of simple
functions (fn) ⊂ X that converge pointwise towards f .

Remark 7.29. (i) For real-valued functions f

f measurable ⇐⇒ [f ≤ y] ∈ A ∀y ∈ A

(ii) Simple functions and characteristic functions are measurable.

(iii) Continuous functions are Lebesgue measurable.

(iv) Sums, products, quotients (if existant) of measurable sets are measurable.
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(v) If (fn) is a sequence of measurable functions, then

sup
n∈N

fn lim sup
n→∞

fn lim
n→∞

fn

are measurable if they exist.

All functions from now on will be considered measurable.

Definition 7.30. Let f : Ω → [0,∞), then

�
f dµ := sup

{�
g dµ

∣∣∣∣ g ∈ X+, g < f

}
Remark 7.31. (i) This integral can be ∞.

(ii) If f is a non-negative, simple function, then ∀h that are non-negative, simple functions
with h ≤ f �

hdµ ≤
�
f dµ

The old integral (integral over simple functions) is identical to this one.

(iii) Let f, g be non-negative and f ≤ g a.e. Define A = [f ≤ g]. Then for all simple h < f
we have

h · 1A ≤ g

and �
hdµ =

�
h · 1A dµ ≤

�
g dµ

Which implies �
f dµ = sup

h

�
hdµ ≤

�
g dµ

Especially �
f dµ =

�
g dµ if f = g a.e.

(iv) If [f > 0] is a null set, then f is the zero function a.e. and

�
f dµ = 0

The inverse is also true�
f dµ = 0 and f ≥ 0 =⇒ f = 0 a.e.

Let Ak := [f ≥ 1
k ] ∈ A, then

1

k
1Ak

≤ f ∀k ∈ N
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Since
�
f dµ = 0, this implies

�
1

k
1Ak

dµ =
1

k
µ(Ak) = 0

=⇒ µ(Ak) = 0 ∀k ∈ N

The Ak are monotonically increasing, and thus due to the continuity of the measure

0 = lim
n→∞

µ(Ak) = µ

(⋃
k∈N

[f ≥ 1

k
]

)
= µ([f = 0])

(v) The definition means ∃ (fn) ⊂ X+ such that fn ≤ f

�
fn dµ

n→∞−−−→
�
f dµ

Define gn = max {f1, · · · , fn}. These are also simple functions and fn ≤ gn ≤ f ∀n ∈
N.

=⇒
�
fn dµ ≤

�
gn dµ ≤

�
f dµ

And thus �
fn dµ −−−→

�
f dµ

↓�
gn dµ −−−→

�
f dµ

The sequence gn is monotonic.

(vi) Let (gn) be convergent to g : Ω → [0,∞). Then

g ≤ f =⇒
�
g dµ ≤

�
f dµ

∀n ∈ N we have gn ≤ g, and thus

lim
n→∞

�
gn dµ ≤

�
g dµ

∀f ≥ 0 there exists a monotonically increasing sequence of simple function such that

�
gn dµ −−−→

�
f dµ

and thus g = f a.e.
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(vii)

�
(cf) dµ = c

�
f dµ c ∈ [0,∞)

�
f dµ+

�
g dµ ≤

�
(f + g) dµ

Theorem 7.32 (Monotone Convergence Theorem). Let f ≥ 0 and (fn) a monotonically
increasing sequence of functions converging pointwise to f a.e. Then

lim
n→∞

�
fn dµ =

�
f dµ

Proof. First, let limn→∞ fn = f everywhere. Since (fn) is monotonic, this must also hold
for
�
fn dµ, so

lim
n→∞

�
fndµ ≤

�
fdµ (7.48)

First, consider the special case (An) ⊂ A monotonically increasing, with⋃
n∈N

An = Ω (7.49)

Then

lim
n→∞

�
f1Andµ =

�
fdµ (7.50)

For f = 1B

lim
n→∞

�
1B1An︸ ︷︷ ︸
1B∩An

dµ = lim
n→∞

µ(B ∩An)

= µ(
⋃
n∈N

B ∩An)

= µ(B) =

�
1Bdµ

(7.51)

Since both sides are lienear in f (at least for simple functions), the equality holds for
arbitrary simple functions. Now let f ≥ 0 be arbitrary and h ∈ X+, such that for ϵ > 0

�
hdµ ≥

�
fdµ− ϵ

2
(7.52)

and thus h ≤ f . From this it follows that

∃N ∈ N ∀n ≥ N :

�
h1Andµ ≥

�
hdµ− ϵ

2
(7.53)
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And thus

∀n ≥ N :

�
h1Andµ ≥

�
fdµ− ϵ (7.54)

which proves Equation (7.50) for arbitrary f ≥ 0. Now let c ∈ (0, 1), and set

An = [fn ≥ cf ] (7.55)

Since fn are monotonic, the An are as well, and⋃
n∈N

An = Ω (7.56)

Then �
fndµ ≥

�
fn1Andµ ≥

�
cf1Andµ = c

�
f1Andµ (7.57)

Thus

c

�
f1Andµ

n→∞−−−→ c

�
fdµ (7.58)

Which in turn implies

lim
n→∞

�
fndµ ≥ c

�
fdµ (7.59)

For c→ 1 we have

lim
n→∞

�
fndµ =

�
fdµ (7.60)

And if fn → f only a.e.
A = [ lim

n→∞
fn = f ] (7.61)

then Ω \A is a null set.

lim
n→∞

�
fndµ = lim

n→∞

�
fn1Adµ

=

�
f1Adµ

=

�
fdµ

(7.62)

Example 7.33. Calculate the integral of f(y) = y1[0,x](x)

fn =
2n−1∑
k=0

k
1

2n
1[k x

2n
,(k+1) x

2n
]
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is a monotonically increasing sequence which converges to f on R \ {x}.
�
fndµ =

2n−1∑
k=0

k
x

2n
·
( x
2n

)
=
x2

22n

2n−1∑
k=0

k

=
x2

22n
2n(2n − 1)

2 · 2n

=
x2

2

2n− 1

2n

−−−→x2

2

y

f(y)

x

fn

f

Example 7.34. Consider fn = n1(0, 1
n
). This sequence converges pointwise to the zero func-

tion. But �
fndµ = n · 1

n
= 1 ̸= 0

This is due to fn not being monotonic increasing.

Example 7.35. Let (an) ⊂ C, and define

fn = an1[n,n+1]

This sequence converges pointwise to 0, but
�
fndλ = an

depends on (an) and can converge to any value (or even diverge).

Definition 7.36. A function f : Ω → C is said to be integrable if
�

|f |dµ <∞
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A sequence of simple functions (fn) is said to be an approximating sequence of f if

�
|f − fn|dµ

n→∞−−−→ 0

Corollary 7.37. Let f, g ≥ 0

�
(f + g)dµ =

�
fdµ+

�
gdµ

Proof. Let (fn) , (gn) ⊂ X+ be monotone sequences with fn → f , gn → g almost every-
where. Then (fn+gn) is monotonically increasing as well and converge pointwise to (f +g)
almost everywhere. [

lim
n→∞

fn ̸= f
]
null set,

[
lim
n→∞

gn ̸= g
]
null set

=⇒
[
lim
n→∞

fn ̸= f
]
∪
[
lim
n→∞

gn ̸= g
]
null set

(7.63)

This implies

�
(f + g)dµ = lim

n→∞

�
(fn + gn)dµ = lim

n→∞

�
fndµ+ lim

n→∞

�
gndµ

=

�
fdµ+

�
gdµ

(7.64)

Remark 7.38. (i) The set of integrable functions is a vector space, because for f, g inte-
grable and α ∈ C

�
|f + αg|dµ ≤

�
|f |+ |α||g|dµ

=

�
|f |dµ+ |α|

�
|g|dµ <∞

However, f · g is not integrable in general!

(ii) Let f ≥ 0 be integrable, and (fn) ⊂ X+ such that fn → f pointwise a.e.

lim
n→∞

�
fndµ =

�
fdµ <∞

∀n ∈ N: �
|f − fn|dµ =

�
(f − fn)dµ =

�
fdµ−

�
fndµ

n→∞−−−→ 0
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(iii) Let f : Ω → R be a function. Decompose the function into a positive and a negative
part:

f+ := f · 1[f≥0] f− := −f · 1[f≤0]

f+, f− ≥ 0, and

f = f+ − f− |f | = f+ + f−

(iv) |Re f | ≤ |f |, |Im f | ≤ |f |. If f is integrable, then Re(f) and Im(f) are also integrable.

(v) Let f, g be arbitrary, and (fn) , (gn) approximating sequences for f and g. Then for
α ∈ C:

�
|f + αg − (fn + αgn)|dµ ≤

�
|f − fn|dµ+ α

�
|g − gn|

=

�
|f − fn|dµ+ |α|

�
|g − gn|dµ

n→∞−−−→0

Thus fn + αgn is an approximating sequence for f + αg

(vi) Consider
f =

(
(Re f)+ − (Re f)−

)
+ i
(
(Im f)+ − (Im f)−

)
If f is integrable, then all the terms are integrable as well and have approximating
sequences. Thus, f has an approximating sequence.

(vii) Now let (fn) be an approximating sequence for f . Let ϵ > 0, then

∃N ∈ N ∀n ≥ N :

�
|f − fn|dµ <

ϵ

2

∀n,m ≥ N ∣∣∣∣� fndµ−
�
fmdµ

∣∣∣∣ = ∣∣∣∣� (fn + fm)dµ

∣∣∣∣
≤
�

|fn − fm|dµ

≤
�

(|fn − f |+ |f − fm|) dµ

< ϵ

Which means (
�
fndµ) is a Cauchy sequence, so it converges to I ∈ C
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(viii) Let (gn) be another approximating sequence for f∣∣∣∣� fndµ−
�
gndµ

∣∣∣∣ ≤ � |fn − gn|dµ

≤
�

|fn − f |dµ+

�
|f − gn|dµ

n→∞−−−→ 0

So the integral is invariant to the choice of approximating sequence.

Definition 7.39. Let f be integrable, and define
�
fdµ = lim

n→∞

�
fndµ

for some approximating sequence (fn) of f .

Remark 7.40. If f is a simple function, then (fn)n∈N is an approximating sequence. The
new integral definition is compatible with the integral for simple functions. and with the
integral for non-negative functions.

Theorem 7.41. Let f, g be integrable.

(i)

∀α ∈ C :

�
(f + αg)dµ =

�
fdµ+ α

�
gdµ

(ii) If f ≤ g a.e., then �
fdµ ≤

�
fdµ

and

f = g a.e. =⇒
�
fdµ =

�
gdµ

(iii) ∣∣∣∣� fdµ

∣∣∣∣ ≤ � |f |dµ

Proof. Let (fn), (gn) be approximating sequences for f and g. Then (fn + αgn) is an
approximating sequence for (f + αg).

�
(f + αg)dµ = lim

n→∞

�
(fn + αgn)dµ = lim

n→∞

�
fndµ︸ ︷︷ ︸�

fdµ

+ lim
n→∞

�
gndµ︸ ︷︷ ︸�

gdµ

(7.65)

To prove the second statement, let f ≤ g a.e. Then (g − f)− = 0 a.e.

=⇒
�
(g − f)− = 0 (7.66)
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And thus �
gdµ−

�
fdµ =

�
(g − f)dµ

=

�
(g − f)+dµ−

�
(g − f)−dµ ≥ 0

(7.67)

The final statement is proven by applying the reverse triangle inequality�
||f | − |fn||dµ ≤

�
|f − fn|dµ

n→∞−−−→= 0 (7.68)

This means if (|fn|) is an approximating sequence for |f |, then
�

|f |dµ = lim
n→∞

�
|fn|dµ ≥ lim

n→∞

∣∣∣∣� fndµ

∣∣∣∣ = ∣∣∣∣� fdµ

∣∣∣∣ (7.69)

Remark 7.42. For A ⊂ A we define�
A
gdµ :=

�
g1Adµ

g1A can be integrable, even if g isn’t. The above integral doesn’t depend on the behavior of
g outside of A. We use

�
A gdµ even if g isn’t defined outside of A. Integrals are independent

from the behavior on null sets, so � 1

−1

1

x
dx = 0

is perfectly fine, even though the integrand is not defined for x = 0.

Example 7.43. Let Ω = N, A = P(Ω) and µ the counting measure. Let f : N → [0,∞),
then

fN = f1{1,··· ,N} =
N∑
n=1

f(n)1{n}

is a sequence of monotonically increasing, simple functions that converge to f pointwise.

�
fdµ = lim

N→∞

�
fNdµ = lim

N→∞

N∑
n=1

f(n)µ({n}) =
∞∑
n=1

f(n)

Thus we can conclude

f : N → C integrable ⇐⇒
�

|f |dµ =
∞∑
n=1

|f(n)| <∞

and �
fdµ =

∞∑
n=1

f(n)
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7.3 Integrals over the real numbers

Definition 7.44. Let a, b ∈ R, a < b and f : [a, b] → C integrable. Then set

� b

a
f(x)dx :=

�
(a,b)

fdλ =

�
f · 1(a,b)dλ

and � a

b
f(x)dx = −

� b

a
f(x)dx

Remark 7.45. Let a, b ∈ R, a < b, then every bounded function is integrable over (a, b)

�
(a,b)

|f |dλ ≤
�
(a,b)

sup
x∈(a,b)

|f(x)|︸ ︷︷ ︸
∈R

dλ = ∥f∥∞
�
(a,b)

1(a,b)dλ︸ ︷︷ ︸
λ((a,b))

= ∥f∥∞ · (b− a)

If f is continuous on [a, b] then it is also bounded. Let a < c < b

� b

a
f(x)dx =

�
f 1̇(a,b)dλ =

�
f · (1(a,c) + 1(c,b))dλ

=

�
f · 1(a,c)dλ+

�
f · 1(c,b)dλ

=

� c

a
f(x)dx+

� b

c
f(x)dx

One can easily see that this formula holds for any c ∈ R.

Theorem 7.46 (Mean value theorem for integrals). Let a, b ∈ R, a < b and f, g : [a, b] → R
continuous with g ≥ 0. Then ∃ξ ∈ (a, b) such that

� b

a
f(x)g(x)dx = f(ξ)

� b

a
g(x)dx

Especially, ∃η ∈ (a, b) such that

� b

a
f(x)dx = f(η)(b− a)

Proof. Let f be continuous, and [a, b] compact. Then define

c = min
a≤x≤b

f(x) C = max
a≤x≤b

f(x)

Thus,
∃xm, xM ∈ [a, b] : f(xm) = c, f(xM ) = C (7.70)
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Define ã := min {xm, xM} and b̃ := max {xm, xM}. Then

c · g(x) ≤ f(x)g(x) ≤ Cg(x) (7.71)

If we define

I =

� b

a
g(x)dx (7.72)

then we have

c · I ≤
� b

a
≤ C · I (7.73)

Due to the mean value theorem, ∃ξ ∈ (ã, b̃) ⊂ (a, b) such that

f(ξ) =
1

I

� b

a
f(x)g(x)dx (7.74)

Definition 7.47. Let a, b ∈ R, a < b and f : [a, b] → C. Then

F : [a, b] → C

is said to be the antiderivative of f , if it is continuous, on [a, b] differentiable and F ′ = f .

Remark 7.48. Let F,G be antiderivatives of f . Then on (a, b) we have

(F −G)′ = F ′ −G′ = f − f = 0

Thus F −G = c for c ∈ C. Since F,G are continuous, F −G = c also holds on [a, b].

Theorem 7.49 (Fundamental Theorem of Calculus). Let a, b ∈ R, a < b and f : [a, b] → C
continuous. Then for arbitrary x0 ∈ [a, b] the function

x 7−→
� x

x0

f(y)dy

is an antiderivative of f . Let G be an antiderivative of f , then

� b

a
f(y)dy = G(b)−G(a)

Proof. First, let f be real-vauled.

F (x) :=

� x

x0

f(y)dy (7.75)
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For a fixed x ∈ [a, b] and h such that x+ h ∈ [a, b] we have

F (x+ h)− F (x) =

� x+h

x0

f(y)dy −
� x

x0

f(y)dy

=

� x+h

x
f(y)dy = f(ξh) · h

(7.76)

with ξh ∈ (x, x + h) from the mean value theorem. For h → 0, the ξh converges to x, and
thus f(ξh) → f(x)

=⇒ lim
h→0

(F (x+ h)− F (x)) = 0 (7.77)

so F is continuous. For x ∈ (a, b) we have x+ h ∈ (a, b) for a small enough h, and then

lim
h→0

F (x+ h)− F (x)

h
= lim

h→0
f(ξk) = f(x) = F ′(x) (7.78)

If G is another antiderivative then G = F + c with c ∈ R.
� b

a
f(y)dy =

� x0

a
f(y)dy +

� b

x0

f(y)dy = F (b)− F (a) = G(b)−G(a) (7.79)

For complex-valued f , simply decompose f into a real and imaginary part.

Remark 7.50. The antiderivative of f is often denoted as

�
f(x)dx indefinite integral

This notation is also used for
� ∞

−∞
f(x)dx definite integral

Corollary 7.51 (Partial Integration). Let a, b ∈ R, a < b and f, g : [a, c] → C continuously
differentiable. Then

�
f ′(x)g(x)dx = f(x)g(x)−

�
f(x)g′(x)dx

And the definite integral is

� b

a
f ′(x)g(x)dx = f(b)g(b)− f(a)g(a)−

� b

a
f(x)g′(x)dx

Proof. Let H : [a, b] → C be the antiderivative of fg′. Then fg − H is continuously
differentiable, and

(fg −H)′ = f ′g + fg′ −H ′ = f ′g (7.80)
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so fg −H is an antiderivative of f ′g. From the fundamental theorem follows

� b

a
f ′(x)g(x)dx = (fg −H)(b)− (fg −H)(a)

= f(b)g(b)− f(a)g(a)− (H(b)−H(a))︸ ︷︷ ︸
� b
a f(x)g

′(x)dx

(7.81)

Corollary 7.52 (Substitution). Let a, b ∈ R, a < b and g : [a, b] → R continuously
differentiable. Choose ξ = min g([a, b]) and η = max g([a, b]). Let

f : [ξ, η] −→ C

be continuous. Then �
f(g(x))g′(x)dx =

�
f(y)dy

for (y = g(x)), and � b

a
f(g(x))g′(x)dx =

� g(b)

g(a)
f(y)dy

Proof. Let F be an antiderivative of f , then F ◦ g is continuously differentiable, and due to
the chain rule

(F ◦ g)′(x) = F ′(g(x))g′(x) = f(g(x))g′(x) (7.82)

thus F ◦ g is an antiderivative of (f ◦ g)g′

� b

a
f(g(x))g′(x)dx = (F ◦ g)(b)− (F ◦ g)(a) = F (g(b))− F (g(a))

=

� g(b)

g(a)
f(y)dy

(7.83)

Example 7.53. Consider

tanx =
sinx

cosx
= −cos′ x

cosx

We have to determine the antiderivative of f(y) = 1
y with y = cosx

−
�

1

y
dy = − ln y

After resubstituting we get �
tanxdx = − ln |cosx|
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The derivative of this function is identical to tan wherever it is defined. If we want to
calculate definite integrals like � b

a
tanxdx

there cannot be any incontinuities between a and b.

Example 7.54. Consider

F : (0,∞) −→ R

a 7−→
� ∞

0

e−x

x+ a
dx

Is this function continuous?

Corollary 7.55. Let (X, d) be a metric space, f : Ω ×X → C and ã ∈ X. Let f(·, a) be
integrable ∀a ∈ X and let f(ω, ·) be continuous in ã ∀ω ∈ Ω. Let U be a neighbourhood of
ã and g an integrable function (independent from a) such that

|f(ω, a)| ≤ g(ω) ∀ω ∈ Ω ∀a ∈ U

Then the function

F : X −→ C

a 7−→
�
f(ω, a)dµ(ω)

is continuous in ã.

Proof. Let (an) ⊂ X be a sequence with an → ã. Set fn = f(·, an). For sufficiently bit n,
an is in the neighbourhood U , and thus

|fn| = |f(·, an)| ≤ g (7.84)

Then ∀ω ∈ Ω
lim
n→∞

fn(ω) = lim
n→∞

f(ω, an) = f(ω, ã) (7.85)

And

lim
n→∞

F (an) = lim
n→∞

�
fn(ω)dµ(ω)

=

�
lim
n→∞

f(ω, an)dµ

=

�
f(ω, ã)dµ(ω)

= F (ã)

(7.86)

The sequence criterion for continuity tells os that F is continuous in ã.
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Example 7.56. Let ã ∈ (0,∞). Then

∀a ∈
(
ã

2
,∞
)

∀x ∈ [0,∞) :
e−x

x+ a
≤ e−x

ã
2

=
2e−x

ã
integrable

Thus, F is continuous in ã. Since ã was arbitrary, F is continuous.

Corollary 7.57. Let X ⊂ Rn be open, f : Ω×X → C and ã ∈ X, f(·, a) integrable ∀a ∈ X.
Let U be a neighbourhood of ã, and f(ω, ·) differentiable ∀ω ∈ Ω in every point of U . Let g
be integrable (independent from a) such that

∥Daf(ω, a)∥ ≤ g(ω)

Then the function

F : X −→ C

a 7−→
�
f(ω, a)dµ(ω)

is differentiable in ã and

DF (ã) =

�
Daf(ω, ã)dµ(ω)

Proof. Without proof.

Example 7.58. The term
e−x

x+ a

is differentiable in terms of a∣∣∣∣ dda e−x

x+ a

∣∣∣∣ = e−x

(x+ a)2
≤ 4

ã2
e−x ∀a ∈

(
ã

2
,∞
)

∀x ∈ [0,∞)

Thus F is differentiable and

F ′(a) = −
�

e−x

(x+ ã)2
dx

Since ã was arbitrary, F is differentiable.

7.4 Product measures and Fubini’s Theorem

Example 7.59. Let
f : [0, 1]× [0, 1] −→ [0,∞)

Question: What is the volume (or the λ2 measure) under the graph of f , i.e.{
(x, y, z) ∈ R3

∣∣ 0 ≤ z ≤ f(x, y)
}
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The possibilities are

�
fdλ2

� 1

0

� 1

0
f(x, y)dxdy or

� 1

0

� 1

0
f(x, y)dydx

From now on we define (Ω,A, µ) and (Φ,B, ν) to be measure spaces.

Definition 7.60. The product σ-algebra A ⊗ B is the smallest σ-algebra on Ω × Φ that
contains all sets of type A×B for A ∈ A, B ∈ B.

Examples for A×B are

A

B

B

B

A A
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NO examples for A×B are

B

B

A A

A measure ϑ defined on A⊗ B is said to be a product measure of µ, ν if

ϑ(A×B) = µ(A)ν(B) A ∈ A, B ∈ B

Remark 7.61. Product measures always exist. For σ-finite measure spaces they are unique.
Notation:

µ⊗ ν or µ2 = µ⊗ µ

Example 7.62. R with Lebesgue measure λ. λ2 is the product measure on R2.

λ2([a, b]× [c, d]) = λ([a, b])λ([c, d])

= (b− a)(d− c)

This means the product measure characterizes the area. Analogously this can be extended
for λ3, λ4 etc.

Example 7.63. Consider

f : R2 −→ R

f =
∞∑
n=0

(
1[n,n+1)2 − 1[n+1,n+2)×[n,n+1)

)
y

x

· · ·

1 −1

1 −1

1 −1

= 0

= 1 = 0
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�
f(x, y)dxdy = 0

�
f(x, y)dydx = 1

But the integral
�
fdλ2 doesn’t exist

�
|f |dλ2 =

∞∑
n=0

2 = ∞

Theorem 7.64 (Tonelli’s Theorem). Let f : Ω × Φ → [0,∞) be measurable (in terms of
A⊗ B). Then the functions

ω 7−→ f(ω, ϕ)

are measurable for almost all ϕ ∈ Φ. Analogously

ϕ 7−→ f(ω, ϕ)

is measurable for almost all ω ∈ Ω.

ϕ 7−→
�
f(ω, ϕ)dµ(ω) measurable

ω 7−→
�
f(ω, ϕ)dµ(ϕ) measurable

and �
f(ω, ϕ) d(µ⊗ ν) (ω, ϕ) =

�
f(ω, ϕ)dµ(ω)dν(ϕ)

=

�
f(ω, ϕ)dν(ϕ)dµ(ω)

Furthermore, f is integrable in terms of µ⊗ ν is one of the above integrals is finite.

Proof. Without proof.

Corollary 7.65 (Cavalieri’s Principle). Let A ⊂ A⊗ B. Define

Aω = {ϕ ∈ Φ | (ω, ϕ) ∈ A}

Then
ω 7−→ ν(Aω)

is measurable and

(µ⊗ ν)(A) =

�
ν(Aω)dµ(Aω)
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Proof. It is easy to see
(ω, ϕ) ∈ A ⇐⇒ ϕ ∈ Aω (7.87)

Thus we can see
1A(ω, ϕ) = 1Aω(ϕ) (7.88)

And then

(µ⊗ ν)(A) =

�
1A(ω, ϕ) d(µ⊗ ν) (ω, ϕ)

=

�
1A(ω, ϕ)︸ ︷︷ ︸
1Aω (ϕ)

dν (ϕ) dµ (ω)

=

�
ν(Aω) dµ (ω)

(7.89)

Theorem 7.66 (Fubini’s Theorem). Let f : Ω×Φ → K be measurable with measures µ, ν,
which is integrable in terms of µ⊗ ν. Then the functions ω 7→ f(ω, ϕ) are measurable and
integrable for ν-almost every ϕ ∈ Φ, and the functions ϕ 7→ f(ω, ϕ) are measurable and
integrable for µ-almost every ω ∈ Ω. The functions

ω 7−→
�
f(ω, ϕ) dν (ϕ) ϕ 7−→

�
f(ω, ϕ) dµ (ω)

are measurable and integrable, and

�
f(ω, ϕ) d(µ⊗ ν) =

�
f(ω, ϕ) dν (ϕ) dµ (ω)

=

�
f(ω, ϕ) dµ (ω) dν (ϕ)

Proof. Without proof.

Corollary 7.67. Let ai, bi ∈ R, ai < bi ∀i ∈ {1, · · · , n}.

D = [a1, b1]× [a2, b2]× · · · × [an, bn]

Let f : D → R be continuous or bounded. Then

�
D
f dλn =

b1�

a1

· · ·
bn�

an

f(x1, · · · , xn) dxn · · · dx1

and the order of integration is irrelevant.
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Proof. f is bounded by k ∈ R (continuous with compact domain)

�
D
|f |dλn ≤

�
D
k dλn = k · (b1 − a1)(b2 − a2) · · · (bn − an) <∞ (7.90)

f is λn-integrable. By applying Fubini’s theorem the desired statement follows.

Example 7.68. Calculate the center of mass of

A =
{
(x, y) ∈ R2

∣∣x ≥ y2 ∧ x ≤ 1
}

The center of mass is defined by

� (
x
y

)
dλ2 (x, y)︸ ︷︷ ︸

dA

In component form this is

�
A
x dλ2 (x, y) =

�
x1A(x, y) dλ

2 (x, y)

=

�
[0,1]×[−1,1]

x1A(x, y) dλ
2 (x, y)

=

� 1

0

� 1

−1
x1[−

√
x,
√
x](y) dy dx

=

� 1

0
x · 2 ·

√
x dx =

4

5

Meaning the center of mass is at (45 , 0).



7.5. THE TRANSFORMATION THEOREM 180

7.5 The Transformation Theorem

Definition 7.69. Let U, V ⊂ Rn be open. A mapping T : U → V is said to be a diffeo-
morphism if it is bijective and if T and T−1 are continuously differentiable. Analogously
we define

Cr-diffeomorphism if it is r-times differentiable

C∞-diffeomorphism if it is infinitely differentiable

Remark 7.70. (i) In physics, f and f ◦ T are often denoted with the same symbol

(ii) We can apply the chain rule to T ◦ T−1 = idV

DT (T−1(y)) ·DT−1(y) = IV

Since T−1 is surjective, DT (x) is invertible ∀x ∈ U . According to the theorem about
inverse functions, the inverse T−1 of a bijective mapping is continuously differentiable
if DT (x) is invertible

(iii) If T is a diffeomorphism, then T−1 is one too.

Example 7.71. (i) Polar coordinates:

T : (0,∞)× (0, 2π) −→ R2 \ {[0,∞]× {0}}
(r, ϕ) 7−→ (r cosϕ, r sinϕ)

(ii) Another diffeomorphism would be

T : B1(0) −→ Rn

x 7−→ x√
1− ∥x∥

(iii) An example for a mapping that is no diffeomorphism would be

T : R −→ R
x 7−→ x3

The Jacobian ”matrix” T ′(x) = 3x2 is not invertible.

(iv) Another counter example would be

T : (0,∞)× R −→ R2 \ {0}
(r, ϕ) 7−→ (r cosϕ, r sinϕ)

This function is not injective, so it’s not a diffeomorphism.
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Theorem 7.72 (Transformation Theorem). Let U, V ⊂ Rn and T : U → V a diffeomor-
phism. Then f : V → R is integrable over V if and only if f ◦T · |detDT | is integrable over
U . In this case �

V
ddλn =

�
U
f ◦ T · |detDT |dλn

Proof. Without proof.

Example 7.73 (Area of the unit circle). The area is defined as

λ2(K1(0)) =

�
R2

1K1(0) dλ
2

We transform into polar coordinates:

U = (0,∞)× (0, 2π)

V = R2 \ ([0,∞]× {0})︸ ︷︷ ︸
λ2−nullset

We define the transformation

T : (r, ϕ) 7−→ (r cosϕ, r sinϕ)

Which results in

detDT (r, ϕ) = r

1K1(0) ◦ T (r, ϕ) = 1(0,1](r)

So we can calculate

λ2(K1(0)) =

�
B
1(0,1](x, y) dλ

2 (x, y)

=

�
U
1(0,1](r) · r · dλ2 (r, ϕ)

=

� ∞

0

� 2π

0
1(0,1]r dϕ dr

= 2π

� ∞

0
1(0,1](r) dr = 2π

� 1

0
r dr

= πr2 = π

Remark 7.74. (i) Consider

T : Rn −→ Rn

x 7−→ Ax A ∈ Rn×n

If ∃A−1, then T is a diffeomorphism with DT = A

=⇒
�
f dλ2 = |detA|

�
f ◦ T dλ2
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(ii) Let A be an orthogonal matrix (so a rotation/mirroring).

detA = ±1 =⇒ |detA| = 1

Thus, rotations and mirrorings do not change the volume.

(iii) Let A = diag(a, a, · · · , a) a ∈ (0,∞) (this is a scaling matrix). Then

detA = an

which means that continuous scaling of a factor a scales the λn-volume by an.

(iv) This is a ”generalization” of the substitution rule

�
R
f(g(x))g′(x) dx =

�
R
f(y) dy

Example 7.75. We want to compute

K =

�
R
e−x

2
dx

Consider

K2 =

�
R
e−x

2
dx

�
R
e−y

2
dy =

�
R2

e−(x2+y2) dλ2(x, y)

By transforming f = e−(x2+y2) into polar coordinates

K2 =

�
U
f ◦ T |detDT | dλ2

=

�
V
e−r

2 · r dλ2(r, ϕ)

=

� ∞

0

� 2π

0
re−r

2
dr dϕ

= 2π

� ∞

0
re−r

2
dr

= 2π lim
n→∞

(
−1

2
e−n

2
+

1

2

)
= π

Thus K =
√
π.

Example 7.76 (Integrability of radial functions). Let f : [0,∞] → R be measureable and set

F : Rn −→ R
x 7−→ f(∥x∥)
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∥·∥ is the Euclidian norm. Under which conditions is F λn-integrable? Let D := (0,∞) ×
(0, π)n−2 × (0, 2π)︸ ︷︷ ︸

Dϕ

. And define

T : D −→ Rn \A

(r, ϕ) 7−→



r cosϕ1
r sinϕ1 cosϕ2

r sinϕ1 sinϕ2 cosϕ3
...

r sinϕ1 · · · sinϕn−2 cosϕn−1

r sinϕ1 · · · sinϕn−2 sinϕn



T

Then ∥T (r, ϕ)∥ = r and

|detDT (r, ϕ)| = rn−1 sinn−2 ϕ1 sin
n−3 ϕ2 · · · sinϕn−2 = rn−1An(ϕ)

Thus �
Rn

|F (x)| dλn (x) =
�
D
|F ◦ T (r, ϕ)|︸ ︷︷ ︸

f(r)

|detDT (r, ϕ)| dλn (r, ϕ)

=

�
Dϕ

� ∞

0
rn−1|f(r)|An(ϕ) dr dλn−1 (ϕ)

=

� ∞

0
rn−1|f(x)| dr

�
Dϕ

|An(ϕ)|dλn−1 (ϕ)︸ ︷︷ ︸
<∞

So F is λn-integrable if rn−1f(x) is integrable over [0,∞).

7.6 Lebesgue-Stieltjes Integral

Definition 7.77. Let F : R → R be a monotonically increasing, continuous function. Then
we set

λF (∅) := 0 λF ((a, b]) = F (b)− F (a), (a, b] ∈ I

Theorem 7.78. λF is a measure on H.

Proof. Without proof.

Definition 7.79. The integral �
A
f dλF



7.6. LEBESGUE-STIELTJES INTEGRAL 184

is called the Lebesgue-Stieltjes integral on R and is denoted by

�
A
f(x) dF (x) :=

�
A
f dλF

If A = [a, b], then we write � b

a
f(x) dF (x)
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8.1 Solution Methods

Definition 8.1. An ordinary differential equation (ODE) is an equation of the form

F (x, y, y′, · · · , y(n)) = 0

with F : Rn+2 → R. n is the order of the ODE. Let I be an open interval. A function
y : I → R is a solution of the ODE if y ∈ Cn(R) and

F (x, y(x), y′(x), · · · , y(n)(x)) = 0 ∀x ∈ I

Example 8.2.

y′′ = − 1

y2
Gravitational field

y′′ = − sin y Pendulum

Remark 8.3. (i) Often times F is only defined on subsets of Rn+2

(ii) ODEs are not simple to solve

(iii) Even if we can’t calculate explicit solutions, we can inspect the following properties

� Existence of solutions

� Uniqueness of solutions

� Dependency of solutions from initial conditions

� Sability

Example 8.4. (i) Let I be an open interval and f : I → R continuous. Then the solution
of

y′ = f(x)

is the antiderivative of f . Let x0 ∈ I, then

y(x) =

� x

x0

f(t) dt+ c c ∈ R

(ii) Consider the ODE
y′ = y

The functions x 7→ cex are solutions ∀c ∈ R. Are those all the solutions that exist?
Let y : I → R be any solution, and consider

u(x) = y(x)e−x

Then

u′(x) = y′(x)e−x − y(x)e−x

=
(
y′(x)− y(x)

)
e−x = 0 ∀x ∈ I

So u(x) = c.



8.1. SOLUTION METHODS 187

Definition 8.5 (Initial Value Problem). Let y0, · · · , yn−1 ∈ R and also F : Rn+2 → R. The
system of equations

F (x, y, y′, · · · , y(n)) = 0


y(0) = y0

y′(0) = y1

· · ·
y(n−1)(0) = yn−1

is said to be an initial value problem (IVP).

Example 8.6. Consider the problem

y′′ = − 1

y2

{
y(0) = y0

y′(0) = y1

This describes the movement of a point mass in the gravitational field of the earth along
a straight line through the center of the earth with the initial position y0 and the initial
velocity y1.

Example 8.7. Consider the problem

y′ = −y2 y(0) = 1

Assume y : I → R is a solution and y(x) > 0 ∀x ∈ I. Then

1 = − 1

y(t)2
y′(t) ∀t ∈ I

By integrating we get

x = −
� x

0

1

y(t)2
y′(t) dt =x

Substitution

−
� y(x)

1

1

y2
dy

=
1

y

∣∣∣∣y(x)
1

=
1

y(x)
− 1 ∀x ∈ I

So a solution is

y(x) =
1

1 + x

The biggest domain that makes sense is (−1,∞). Analogously one can approach equations
with ”separated variables”, so of the form

y′ = f(y)g(x) y(x0) = y0
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Theorem 8.8 (Separation of Variables). Let I, J be open intervals, and let

f : I −→ R g : J −→ R

be continuous with 0 ̸= f(I). Let x0 ∈ J, y0 ∈ I. Then there exists an open interval I2 ⊂ J
and x0 ∈ I2 such that the IVP

y′ = f(y)g(x) y(x0) = y0

has exactly one solution on I2. Set

F (y) =

� y

y0

1

f(t)
dt

Then y : I2 → I is uniquely defined by

F (y(x)) =

� x

x0

g(t) dt

Proof. f does not have any roots, thus w.l.o.g. f > 0.

F ′(y) =
1

f(y)
> 0 =⇒ F strictly monotonically increasing (8.1)

Therefore there exists an inverse function H : F (I) → I. According to the theorem about
inverse functions, H is C1 and

H ′(z) =
1

F ′(H(z))
∀z ∈ F (I) (8.2)

F (I) is an open interval containing the 0. Then we have

y(x) = H(G(x)) x ∈ I2 (8.3)

where

G(x) =

� x

x0

g(t) dt (8.4)

Now choose I2 such that x0 ∈ I2 and G(I2) ⊂ F (I). Then

y′(x) = H ′(G(x)) ·G′(x)

=
1

F ′(H(G(x)))
·G′(x)

=
1

F ′(y(x))
·G′(x)

= f(y(x))g(x)

(8.5)

So y solves the ODE. However, if ỹ : I → R some solution of the IVP, then ∀x ∈ I2

G(x) =

� x

x0

g(x) dx =

� x

x0

ỹ(x)

f(ỹ(x))
dx =

� ỹ(x)

ỹ(x0)

1

f(y)
dy = F (ỹ(x)) (8.6)

So ỹ(x) = H(G(x))
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Remark 8.9. I2 is obviously not unique. We can find the biggest possible domain with⋃
x∈I2
I2 open

G(I2)⊂F (I)

I2 = I2,max

Theorem 8.10. Let f : R → R be a continuous function, a, b, c ∈ R and I an open interval.
Then y : I → R is a solution of the ODE

y′ = f(ax+ by + c)

if and only if u(x) := ax+ by + c is a solution of

u′ = a+ bf(u)

Heuristic Proof. Consider
u′(x) = a+ by′(x)

Example 8.11 (Euler Homogeneous ODE). Let f : R → R be a function and I an open
interval not containing the 0. Then y : I → R is a solution of the ODE

y′ = f(
y

x
)

if and only if

u(x) =
y(x)

x

solves the ODE

u′ =
f(u)− u

x

Example 8.12. Let f : R → R be continuous and a1, a2, b1, b2, c1, c2 ∈ R such that∣∣∣∣a1 b1
a2 b2

∣∣∣∣ ̸= 0

Now let x̃, ỹ be the solutions of the equation system

a1x̃+ b1ỹ + c1 = 0

a2x̃+ b2ỹ + c2 = 0

Let I be an open interval not containing the 0. Then y : I → R is a solution to

y′ = f

(
a1x+ b1y + c1
a2x+ b2y + c2

)
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if and only if

u : I − x̃ −→ R
x 7−→ y(x+ x̃)− ỹ

is a solution to

u′ = f

(
a1 + by

u
x

a2 + b2
u
x

)
Proof. Let y : I → R be a solution to the initial equation. Then

u′(x) = y′(x+ x̃) = f

(
a1(x+ x̃) + b1y(x+ x̃) + c1
a2(x+ x̃) + b2y(x+ x̃) + c2

)
= f

(
a1x+ b1u(x) + a1x̃+ b1ỹ + c1
a2x+ b2u(x) + a2x̃+ b2ỹ + c2

)
= f

(
a1 + b1

u(x)
x

a2 + b2
u(x)
x

) (8.7)

The other direction is left to the reader.

Definition 8.13 (Exact ODE). Let D ⊂ R2 be open, and p, q : D → R continuous. The
ODE

p(x, y) + q(x, y)y′ = 0

is said to be exact if there exists a C1-function H : D → R, such that

∂1H = p ∂2H = q

Such a function is called a potential function.

Theorem 8.14. Let D ⊂ R2 be open, and p, q : D → R continuous. Let

p(x, y) + q(x, y)y′ = 0

be exact and H a potential function. Furthermore let I be an open interval and y : I → R
a C1-function such that

{(x, y(x)) |x ∈ I} ⊂ D

Then y solves the ODE if and only if ∃c ∈ R such that

H(x, y(x)) = c

Proof.

d

dx
H(x, y(x)) = ∂1H(x, y(x)) + ∂2H(x, y(x))y′(x)

= p(x, y) + q(x, y)y′(x)
(8.8)
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Theorem 8.15. Let D ⊂ R2 be open, and p, q : D → R continuously differentiable. If

p(x, y) + q(x, y)y′ = 0

is exact, then
∂2p = ∂1q

Proof. Let H be a potential C2-function. Then

∂2p = ∂2∂1H = ∂1∂2H = ∂1q (8.9)

Remark 8.16. The above condition is merely necessary! However, for ”nice” D it can be
considered sufficient.

Example 8.17. Consider

(2x+ y2)︸ ︷︷ ︸
p

+2xyy′︸ ︷︷ ︸
q

= 0 y(1) = 1

Then

∂2p = 2y ∂1q = 2y

So ∂2p = ∂1q. If H is a potential function, then

∂1H(x, y) = p(x, y) = 2x+ y2

=⇒ H(x, y) =

�
p(x, y) dx = x2 + y2x+G(y)

and

∂2H(x, y) = q(x, y) = 2xy = 2xy +G′(y)

=⇒ G(y) = c

So the potential function is
H(x, y) = x2 + y2x

We can insert the initial condition
H(1, 1) = 2

So the solution has to fulfil
x2 + y(x)2x = 2 ∀x ∈ I

and thus

y(x) = ±
√

2

x
− x
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Only the positive sign fulfils the initial conditions, so the solution is

y(x) =

√
2

x
− x

This function is defined on (−∞,−
√
2]∪(0,

√
2], however due to the initial conditions (0,

√
2]

is the only useful domain.

Remark 8.18. If
p(x, y) + q(x, y)y′ = 0

is not exact one can try and find an ”integrating factor”, i.e. h : D → R such that

h(x, y)p(x, y) + h(x, y)q(x, y)y′ = 0

is exact. A necessary condition is

(∂2h(x, y)) p(x, y) + h(x, y)∂2p(x, y) = (∂1h(x, y)) q(x, y) + h(x, y)∂1q(x, y)

This is a partial differential equation and won’t be discussed further in this chapter.

Definition 8.19 (Ordinary Differential Equation System). An ordinary differential equa-
tion system (ODES) is an equation of the form

F (x, y, y′, · · · , y(n)) = 0

with
F : R× RL × RL × · · · × RL −→ Rm

Example 8.20. (i) Let z = (z1, z2, z3), then

z′′ = − z

∥z∥3
= − 1

∥z∥2
z

∥z∥

is the Kepler problem.

(ii) The equation

b′ = α1b− γ1br

r′ = −α2r + γ2br

is called the ”Lotka-Volterra-Equation” and it models the population of prey and
predators.

Remark 8.21. The ODES
F (x, y, y′, y′′, · · · , y((n)) = 0

is equivalent to the ODES of first order

F (x, y, y1, y2, · · · , yn−1) = 0


y1 = y′

y2 = y′1
...
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8.2 The Picard-Lindelöf Theorem

Example 8.22. Consider the ODE
y′ = 2

√
|y|

Possible solutions are

y(x) = (x− c)2 c > 0

y(x) = −(x− c)2 c < 0

y(x) = 0

Another solution could be

y(x) =


−(x− a)2, x ∈ (−∞, a)

0, x ∈ [a, b]

(x− b)2, x ∈ (b,∞)

for a, b ∈ R with a ≤ b So the IVP y(0) = 0 has many solutions.

Definition 8.23. Let D ⊂ R×Rn be open, (x0, y0) ∈ D and f : D → Rn. We say f fulfils
a local Lipschitz-condition in the point (x0, y0) if there exists a neighbourhood U of (x0, y0)
such that

∥f(x, y)− f(x, z)∥ ≤ L∥y − z∥ ∀(x, y), (x, z) ∈ U

Example 8.24. Consider

f : R −→ R
(x, y) 7−→ x2y2

Then

|f(x, y)− f(x, z)| =
∣∣x2(y2 − z2)

∣∣ = ∣∣x2(y − z)(y + z)
∣∣

=
∣∣x2(y + z)

∣∣︸ ︷︷ ︸
α(x,y,z)

|y − z|

The function α(x, y, z) is unbounded, so the global Lipschitz condition isn’t satisfied. Now
choose a fixed (x0, y0) ∈ R× R, and set

R > max {|x0|, |y0|}

Then ∀(x, y), (x, z) ∈ (−R,R)× (−R,R)

α(x, y, z) ≤ R2|y + z| ≤ R2 (|y|+ |z|) ≤ 2R3

So f fulfils a local Lipschitz condition in (x0, y0).
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Definition 8.25. Let (Ω,A, µ) be a measure space, f : Ω → Rn measurable and f1, · · · , fn
are the component functions of f . So

f(ω) = (f1(ω), f2(ω), · · · , fn(ω))

f is said to be integrable if f1, · · · , fn are integrable, and we define

�
fdµ =

(�
f1dµ,

�
f2dµ, · · · ,

�
fndµ

)
Theorem 8.26. Let (Ω,A, µ) be a measure space, define ∥·∥ to be the norm on Rn and let
f : Ω → Rn be measurable. Then f is integrable if and only if ∥f∥ is integrable, and∥∥∥∥� fdµ

∥∥∥∥ ≤
�

∥f∥dµ

Proof. Without proof.

Lemma 8.27. Let D ⊂ R×Rn, (x0, y0) ∈ D and f : D → Rn continuous. Let I be an open
interval and y : I → Rn be continuously differentiable, such that (x, y(x)) ∈ D ∀x ∈ I.
Then y is a solution of the IVP

y′ = f(x, y) y(x0) = y0

if and only if y satisfies the integral equation

y(x) = y0 +

� x

x0

f(t, y(t)) dt

Proof. Let y fulfil the IVP. Then

y(x)− y0 = y(x)− y(x0) =

� x

x0

y′(t) dt =

� x

x0

f(t, y(t)) dt

If y fulfils the integral equation, then

y′(x) = f(x, y(x))

Theorem 8.28 (Picard-Lindelöf Theorem). Let D ⊂ R × Rn be open, (x0, y0) ∈ D and
f : D → Rn continuous such that f fulfils a local Lipschitz condition in y. Then ∃ϵ > 0
such that the IVP

y′ = f(x, y) y(x0) = y0

has exactly one solution on (x0 − ϵ, x0 + ϵ).
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Proof. Let U ⊂ D be a neighbourhood of (x0, y0), such that

∥f(x, y)− f(x, z)∥ ≤ L∥y − z∥ ∀(x, y), (x, z) ∈ U (8.10)

Choose a, r > 0 such that

D̃ = [x0 − a, x0 + a]×Kr(y0) ⊂ U (8.11)

x

y

D

D̃

(x0, y0)

a

r

D̃ is compact and f is continuous, i.e. f is bounded on D̃ by M ∈ (0,∞).

∥f(x, y)∥ ≤M ∀(x, y) ∈ D̃ (8.12)

Choose an ϵ such that 0 < ϵ ≤ a and such that

ϵM < r ϵL < 1 (8.13)

Set I := (x0 − ϵ, x0 + ϵ), and

X = {y : I → Kr(y0) | y continuous} ⊂ C(I) (8.14)

X is closed, and thus complete. Define T : X → X with

T (y)(x) := y0 +

� x

x0

f(t, y(t)) dt (8.15)

We want to show T (y) ⊂ X:

∥T (y)(x)− y0∥ =

∥∥∥∥� x

x0

f(t, y(t)) dt

∥∥∥∥ ≤
� x

x0

∥f(t, y(t))∥ dt

≤M

� x

x0

dt < ϵM < r

(8.16)
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Now consider

∥T (y)(x)− T (ỹ)(x)∥ =

∥∥∥∥� x

x0

(f(t, y(t))− f(t, ỹ(t))) dt

∥∥∥∥
≤
� x

x0

∥f(t, y(t))− f(t, ỹ(t))∥ dt

≤
� x

x0

L · ∥y(t)− ỹ(t)∥ dt

≤
� x

x0

L∥y − ỹ∥∞ ≤ L∥y − ỹ∥∞ · ϵ

(8.17)

By taking the supremum over all x ∈ I we get

∥T (y)− T (ỹ)∥∞ ≤ ϵL︸︷︷︸
<1

∥y − ỹ∥∞ (8.18)

So T : X → X is strictly contractive. According to the Banach fixed point theorem, there
exists a unique fixed point of T in x, that means ∃y ∈ X such that

y0 +

� x

x0

f(t, y(t)) dt = T (y)(x) = y(x) ∀x ∈ I (8.19)

Due to Lemma 8.27, there eixsts a unique solution to the ODE.

Remark 8.29. One can approximate a fixed point by repeatedly applying T . For example
consider

ϕ(x) = y0

and define

ϕ0 = ϕ ϕi = T (ϕi−1) = y0 +

� x

x0

f(t, ϕi−1(t)) dt

This process is called Picard iteration, and the ϕi converge uniformly to the solution.

Example 8.30. Consider
y′ =

√
∥y∥

Then

lim
y→0

(
|f(x, y)− f(x, 0)|

|y − 0|

)
= lim

y→0

1√
|y|

−−−→ ∞

Which means the local Lipschitz condition is not satisfied.

Theorem 8.31. Let D ⊂ R×Rn be open, f : D → Rn continuously differentiable. Then f
satisfies a local Lipschitz condition in terms of y.
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Proof. Let (x0, y0) ∈ D. Choose r > 0 such that Kr(x0, y0) ⊂ D. The total derivative Dyf
is continuous and thus bounded on Kr(x0, y0).

∃L > 0 : ∥Dyf(x, y)∥ ≤ L ∀(x, y) ∈ Kr(x0, y0) (8.20)

Applying the generalized mean value theorem yields

∥f(x, y)− f(x, z)∥ ≤ sup
t∈[0,1]

∥Dyf(x, y + t(z − y))∥∥y − z∥

≤ L∥y − z∥
(8.21)

If n = 1 we can specify

|f(x, y)− f(x, z)| = |∂yf(x, ξ)(y − z)| (8.22)

Example 8.32. Consider

y′′ = − y

∥y∥3

The function

f : R× R3 \ {0} × R3︸ ︷︷ ︸
D

−→ R3 × R3

(x, y, z) 7−→
(
z, (y21 + y22 + y23)

− 3
2 · y

)
is continuously differentiable. So the IVP for arbitrary initial points in D has a locally
unique solution.

Definition 8.33. Let D ⊂ R×Rn be open, (x0, y0) ∈ D. A solution ỹ : Ĩ → Rn of the IVP

y′ = f(x, y) y(x0) = y0

is said to be a (real) continuation of the solution y : I → Rn if I ⊂ Ĩ and y(x) = ỹ(x) ∀x ∈ I.
A solution y is said to be a maximal solution if there are no real continuations.

Theorem 8.34. Let D ⊂ R × Rn be open, (x0, y0) ∈ D and f : D → Rn continuous and
satisfying a local Lipschitz condition in terms of y. Then the IVP

y′ = f(x, y) y(x0) = y0

has a unique solution.
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Proof. First, let y : I → Rn and ỹ : Ĩ → Rn be solutions of the IVP. Then y = ỹ on
I ∩ Ĩ =: (a, b). Let

c = sup {c̃ ∈ [x0, b) | y = ỹ on [x0, c̃]} (8.23)

According to Picard-Lindelöf, such c̃ exist. Then there exists a sequence (cn) ⊂ (x0, c) such
that y = ỹ on [x0, cn) ∀n ∈ N and cn → c. If c < b, then

y(c) = ỹ(c) (8.24)

because y(cn) = ỹ(cn) ∀n ∈ N. The IVP

u′ = f(x, u) u(c) = y(c) (8.25)

has a locally unique solution on (c− ϵ, c+ ϵ) ϵ > 0 according to Picard-Lindelöf. Since the
y and ỹ are both solutions to the IVP, they are identical on (c − ϵ, c + ϵ). However, this
contradicts the construction of c, so c = b.

=⇒ y = ỹ on [x0, b) (8.26)

Analogously, one can prove y = ỹ on (a, x0]. Now let Imax be the union of all open intervals
that are domains of the solution of the IVP. For x ∈ Imax we can choose

ymax(x) = y(x) (8.27)

for arbitrary solutions y : I → R with x ∈ I. So

ymax : Imax → R (8.28)

is a maximal solution that is unique.

Example 8.35. (i) Consider

y′ = e−y y(1) = 0

The solution to this is

y : (0,∞] −→ R
x 7−→ ln(x)

and is maximal.

(ii) Consider

y′ = −i y
x2

y

(
1

2π

)
= 1

The solution to this is

(0,∞) −→ C

x 7−→ e
i
x

and is maximal.



8.3. LINEAR DIFFERENTIAL EQUATION SYSTEMS 199

We define (X, d) to be a metric space, x ∈ X and A ⊂ X. Then

d(x,A) = inf {d(x, y) | y ∈ A}

Theorem 8.36. Let D ⊂ R × Rn be open, (x0, y0) ⊂ D and f : D → Rn continuous and
satisfying the local Lipschitz condition in terms of y. Let a, b ∈ R ∪ {−∞,∞} such that

−∞ ≤ a < x0 < b∞∞

and let
y : (a, b) → R

a solution of the IVP

y′ = f(x, y) y(x0) = y0

Then y is the maximal solution of the IVP if and only if one of these conditions

(i) b = ∞
(ii) lim

x→b
∥y(x)∥ = ∞

(iii) lim
x→b

d((x, y(x)), ∂D) = 0

and one of these

(i) a = −∞
(ii) lim

x→a
∥y(x)∥ = ∞

(iii) lim
x→a

d((x, y(x)), ∂D) = 0

is fulfilled.

8.3 Linear Differential Equation Systems

Definition 8.37. Let I be an open interval, and A : I → Rn×n, b : I → Rn. Then the
ODES

y′ = A(x)y + b(x)

is said to be a linear differential equation system. If b is the zero function, then the system
is homogeneous (otherwise it’s inhomogeneous). If A(x) = const ., then the system is said
to have constant coefficients.

Remark 8.38. (i) By using substitution we can transform the equation

y(n) = an−1(x)y
(n−1) + an−2(x)y

(n−2) + · · ·+ a0y + b(x)
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into the system

y′n−1 = an−1(x)yn−2 + an−2(x)yn−3 + · · ·+ a0y + b(x)

y1 = y′

y2 = y′1
...

yn−1 = y′n−2

(ii) Let y, z be solutions of y′ = A(x)y + b(x), then y − z is the solution of the related
homogeneous equation y′ = A(x)y. This follows from

(y − z)′(x) = A(x)y(x) + b(x)− (A(x)z(x) + b(x))

= A(x)(y − z)(x)

Lemma 8.39 (Grönwall’s Lemma). Let I be an open interval, x0 ∈ I, y : I → [0,∞)
continuous, a, b ≥ 0 and

y(x) ≤ a+ b

∣∣∣∣� x

x0

y(t) dt

∣∣∣∣
Then

y(x) ≤ aeb|x−x0|

Proof. Here we only prove x > x0, but the proof for x ≤ x0 works analogously. Let ϵ > 0
be arbitrary and choose

z(x) := a+ ϵ+ b

� x

x0

y(t) dt (8.29)

Then
z′(x) = by(x) ≤ bz(x) ∀x ∈ I (8.30)

And since
z(t) ≥ a+ ϵ > 0 (8.31)

we get � x

x0

z′(t)

z(t)
dt ≤ b(x− x0) (8.32)

� x

x0

z′(t)

z(t)
dt = ln(x)− ln(z) (8.33)

Due to the monotony of the exponential function

z(x) ≤ z(x0)e
b(x−x0) = (a+ ϵ)eb(x−x0) (8.34)

So
y(x) ≤ z(x) ≤ (a+ ϵ)eb(x−x0) ≤ aeb(x−x0) ∀x ∈ I (8.35)
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From now on I will always be an open interval, and

A : I → Rn×n

b : I → Rn

are continuous, x0 ∈ I and y0 ∈ R.

Corollary 8.40. The IVP

y′ = A(x)y + b(x) y(x0) = y0

has a unique maximal solution that is defined on all of I.

Proof.

f : I × Rn −→ Rn

(x, y) 7−→ A(x)y + b(x)
(8.36)

We need to show that f fulfils a local Lipschitz condition in y. Let (x1, y1) ∈ I×Rn. Choose
a compact I1 such that x1 ∈ I1 ⊂ I. Then A(x) is bounded on I1, i.e.

∃L > 0 : ∥A(x)∥ ≤ L ∀x ∈ I1 (8.37)

And then ∀(x, y), (x, z) ∈ I1 × Rn

∥f(x, y)− f(x, z)∥ = ∥A(x)(y − z)∥ ≤ ∥A(x)∥∥y − z∥ ≤ L∥y − z∥ (8.38)

So f fulfils a local Lipschitz condition, and thus there exists a unique maximal solution.
Let a, b ∈ R ∪ {−∞,∞} such that y : (a, b) → Rn is the maximal solution. Assume b ∈ I
(so y isn’t defined on all of I). Then there exists M,K > 0 such that ∥A(x)∥ ≤ M and
∥b(x)∥ ≤ K and [x0, b] and

∥y(x)∥ =

∥∥∥∥y0 + � x

x0

y′(t) dt

∥∥∥∥ =

∥∥∥∥y0 + � x

x0

A(t)y(t) + b(t) dt

∥∥∥∥
≤ ∥y0∥+

� x

x0

∥A(t)∥∥y(t)∥ dt+
� x

x0

∥b(t)∥ dt

≤ ∥y0∥+K(b− x0) +M

� x

x0

∥y(t)∥dt

(8.39)

Applying Grönwall’s Lemma onto ∥y(t)∥ yields

∥y(x)∥ ≤ (∥y0∥+K(b− x0)) e
M |x−x0| ≤ (∥y0∥+K(b− x0)) e

M(b−x0) (8.40)

and thus y is bounded on [x0, b). So none of the conditions from Theorem 8.36 are satisfied,
and therefore b /∈ I. This mean that y is defined up to the right boundary of I.
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Remark 8.41. One can show that for linear systems, the Picard iteration leads to a solution
that converges on all of I. This would lead to an alternative proof.

Corollary 8.42. Let y, z : I → Rn be solutions of the ODES

y′ = A(x)y + b(x)

Then the following are equivalent

(i) y(x) = z(x) ∀x ∈ I

(ii) y(x0) = z(x0)

(iii) y(x) = z(x) for some x ∈ I

Proof. (i) =⇒ (ii), (ii) =⇒ (iii) is trivial. To prove (iii) =⇒ (i), let x1 ∈ I such that
y1 = y(x1) = z(x1). Then y, z are solutions to the IVP

y′ = A(x)y + b(c) y(x1) = y1 (8.41)

Since this problem has unique solutions

y = z (8.42)

must hold.

Theorem 8.43. The solution set of the homogeneous ODES

y′ = A(x)y

so
V :=

{
y : I → Rn

∣∣ y′(x) = A(x)y(x) ∀x ∈ I
}

is an n-dimensional linear subspace of C1(I,Rn).

Proof. Proving that V is a vector space is trivial. So let e1, · · · , en be a basis of Rn and let
yi be the unique solutions of the initial value problem

y′ = A(x)y y(x0) = ei i ∈ {1, · · · , n}

Then y1, · · · , yn is a basis of V . To prove their linear independence, let α1, · · · , αn ∈ R such
that

α1y1 + · · ·+ αnyn = 0 (8.43)

then
α1y1(x0) + · · ·+ αnyn(x0) = α1e1 + · · ·+ αnen = 0 (8.44)

Since the e1, · · · , en are linear independent

α1 = α2 = · · · = αn = 0 (8.45)
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To prove that the y1, · · · , yn span V , set z ∈ V and choose α1, . . . , αn ∈ R such that

α1e1 + α2e2 + · · ·+ αnen = z(x0) (8.46)

Then the z and α1y1 + · · ·+αnyn are maximal solutions of the ODES that are equal in x0.
Thus

z = α1y1 + · · ·+ αnyn (8.47)

Definition 8.44. A basis y1, · · · , yn of V is said to be a fundamental system of the ODES

y′ = A(x)y

Analogously, n linearly independent solutions of the equation

y(n) = an−1(x)y
(n−1) + an−2(x)y

(n−2) + · · ·+ a0y

are said to be a fundamental system.

Example 8.45. Consider the inhomogeneous equation

y′ = sin(x)y + sin(x) cos(x)

First, find the solutions to the homogeneous equation

y′

y
= sin(x)

This can be done via integration

�
y′(t)

y(t)
dt = − cos(x) + c

ln y + c = − cos(x) + c

Then the solution is
y = Ke− cos(x)

The fundamental system in this case is e− cosx. We can use a technique called ”variation of
the constant” to find a solution of the inhomogeneous equation. Define

y(x) = C(x)e− cos(x)

Deriving this gives
y′(x) = C ′(x)e− cos(x) − C(x) sin(x)e− cos(x)
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Resubstituting this into the initial equation yields

C ′(x)e− cos(x) +((((((((((
C(x) sin(x)e− cos(x) = ((((((((((

C(x) sin(x)e− cos(x) + sin(x) cos(x)

C ′(x)e− cos(x) = sin(x) cos(x)

C ′(x) = sin(x) cos(x)ecos(x)

C(x) = (1− cos(x))ecos(x)

So the general solution to the ODE is

y(x) = 1− cos(x) +Ke− cos(x)

Theorem 8.46. Let y1, · · · , yn be a fundamental system for y′ = A(x)y. Define an n× n-
matrix

W (x) := (y1(x), y2(x), . . . , yn(x))

Then W (x) is invertible ∀x ∈ I and

z : I −→ Rn

x 7−→W (x)

� x

x0

W (t)−1b(t) dt

is a solution to the inhomogeneous system

y′ = A(x)y + b(x)

Proof. According to the prerequisites the y1, · · · , yn are linearly independent, so the y1(x), . . . , yn(x)
are also linearly independent in Rn. Thus

detW (x) ̸= 0 =⇒ W (x) invertible (8.48)

Deriving this yields
W ′(x) = A(x)W (x) (8.49)

which means the i-th column of this equation is y′i(x) = A(x)yi(x). Deriving z gives us

z′(x) =W ′(x)

� x

x0

W (t)−1b(t) dt+W (x)W (x)−1b(x)

= A(x)z(x) + b(x)

(8.50)

To apply the fundamental theorem, W (t)b(t) should be continuous. The mapping A 7→ A−1

is continuous on Gl(n) (space of invertible matrices).

Example 8.47. Consider the system

u′ = v + sin(x) v′ = −u+ cos(x)
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The homogeneous system in this case is(
u
v

)′
=

(
0 1
−1 0

)(
u
v

)
The fundamental system is

y1(x) =

(
sin
cos

)
(x) y2 =

(
cos
− sin

)
(x)

Then define

z(x) = C1(x)y1(x) + C2(x)y2(x)

=

(
sin(x) cos(x)
cos(x) − sin(x)

)
︸ ︷︷ ︸

W (x)

(
C1(x)
C2(x)

)

Deriving this yields

z′(x) = C ′
1(x)y1(x) +������

C1(x)y
′
1(x) + C ′

2(x)y2(x) +������
C2(x)y

′
2(x)

= (((((((
C1(x)Ay1(x) +(((((((

C2(x)Ay2(x) + b(x)

= b(x)

This can be explicitly solved

C ′
1(x) sin(x) + C ′

2(x) cos(x) = sin(x)

C ′
1(x) cos(x)− C ′

2(x) sin(x) = cos(x)

Leading to

C ′
1(x) = C ′

1(x)(sin
2(x) + cos2(x)) = sin2(x) + cos2(x) = 1

C ′
2(x) = C ′

2(x)(cos
2(x)− sin2(x)) = 0

Thus

C1(x) = x

C2(x) = 0

So the general solution of the homogeneous equation is

yh =

(
x sin(x)
x cos(x)

)
Our next goal is to find a solution of y′ = Ay with A ∈ Rn×n constant. In one dimension
the solution would be

y = CeAx

Does this also hold for n > 1?
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Remark 8.48. Let A ∈ Rn×n

eAx =
∞∑
k=0

1

k!
(Ax)k =

∞∑
k=0

1

k!
Akxk

We have
∞∑
k=0

1

k!

∥∥∥Akxk∥∥∥ ≤
∞∑
k=0

|x|k

k!
∥A∥k = e∥x∥∥A∥ <∞

Thus, eAx is defined ∀A ∈ Rn×n, ∀x ∈ R. Deriving this yields

d

dx
eAx =

∞∑
k=1

1

k!
Akxk−1 = A

∞∑
k=1

1

(k − 1)!
Ak−1xk−1 = AeAx

Theorem 8.49. Let A ∈ Rn×n. The IVP

y′ = Ay y(x0) = y0

is solved exactly by
y(x) = eA(x−x0)y0

Proof. Without proof.

Remark 8.50. (i) The problem of solving IVPs can be reduced to a problem of calculating
a matrix exponential.

(ii) The following does NOT generall hold

d

dt
eA(x) = A′(x)eA(x)

eA+B = eAeB

(iii) Let v be an eigenvector of A to the eigenvalue λ. Then

eAxv =

( ∞∑
k=0

1

k!
Akxk

)
v =

∞∑
k=0

xk

k!
Akv

=

( ∞∑
k=0

xk

k!
λk

)
v = eλxv

Example 8.51. Consider the IVP(
y
z

)′
=

(
0 1
1 0

)
︸ ︷︷ ︸

A

(
y
z

)
y0 =

(
1
0

)
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This A is diagonalizable and has the eigenvalues

λ1 = −1 λ2 = 1

and the eigenvectors

v1 =

(
1
1

)
v2 =

(
1
−1

)
So we can solve this ODES by calculating

eAxy0 = eAx · 1
2
(v1 + v2) =

1

2

(
eλ1xv1 + eλ2xv2

)
=

1

2

(
exv1 + e−xv2

)
And thus

y(x) =
1

2

(
ex + e−x

)
z(x) =

1

2

(
ex − e−x

)
Remark 8.52. Often the process above is formulated as follows: Start by defining

y(x) = c · eλxv c, λ ∈ K and v ∈ R

Insert this into the ODE
cλeλx = ceλxAv

So λ is an eigenvalue of A to the eigenvector v.

Theorem 8.53. Let A ∈ Rn×n be diagonalizable, and v1, · · · , vn is a basis of eigenvectors
to the eigenvalues λ1, · · · , λn. Then the functions

yi(x) = eλixvi i ∈ {1, · · · , n}

are a fundamental system to the ODES

y′ = Ay

Proof. We have
eAxvi = eλixvi (8.51)

In x = 0 the
y1(0) = v1, y2(0) = v2, · · · , yn(0) = vn (8.52)

are linearly independent, so the y1, · · · , yn are also linearly independent.
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Remark 8.54. (i) There is a special case, where A ∈ Rn×n is not diagonalizable in the real
number space, but in the complex number space. Let λ = λr + λi be the eigenvalue
to the eigenvector v = vr + vi. Then

eλrx(vr sin(λix) + vi cos(λix))

eλrx(vr cos(λix) + vi sin(λix))

be linearly independent, real-valued solutions. To solve the IVP

y(x) = Ceλxv y(0) = y0

we want to transform it into an eigenvalue problem and find a solution to that. Doing
that gives us

y(x) = C1e
λ1xv1 + · · ·+ Cne

λnxvn

By inserting the initial condition we can find

C1v1 + C2v2 + · · ·+ Cnvn = y0

Finding the C1, · · · , Cn shows us that the solution is automatically real.

(ii) If A is not diagonalizable one can try and bring A into Jordan normal form.

Example 8.55. Consider the IVP(
y
z

)′
=

(
0 1
−1 0

)(
y
z

)
y0 =

(
1
0

)
The eigenvalues and eigenvectors are

λ1 = i λ2 = −i

v1 =

(
1 + i
−1 + i

)
v2 =

(
1− i
−1− i

)
Thus we have the general solution

C1e
ixv1 + C2e

−ixv2

which expands to

(i+ 1)C1��e
i0 + (1− i)C2�

��e−i0 = 1

(i− 1)C1��e
i0 + (−1− i)C2�

��e−i0 = 0

and solves to

C1 =
1

4
(1− i) C2 =

1

4
(1 + i)

So the solution to the IVP is

y(x) = cos(x) z(x) = − sin(x)
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Theorem 8.56. Let a1, · · · , an−1 ∈ C. Let λ1, · · · , λk be the roots of the polynomial

a0 + a1λ+ · · ·+ an−1λ
n−1 + λn

and ν1, · · · , νk their multiples. Then the functions

x 7−→ xleλix i ∈ {1, · · · , k} , l ∈ {0, · · · , νi1}

form a fundamental system for

a0y + a1y
′ + · · ·+ an−1y

(n−1) + y(n)
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9.1 Line Integrals

Definition 9.1. Let I be an interval and n ∈ N. A parametrized curve (or path) in Rn is
a continuous mapping

γ : I −→ Rn

A parametrized curve is said to be regular if it is C1 and γ′(t) ̸= 0 ∀t ∈ I. It is said to be
piecewise regular if there is a disjoint decomposition

I = I1 ∪ I2 ∪ · · · ∪ In

into partial intervals such that γ is regular on each partial interval.
A curve is a subset of Rn that is the image of a parametrized curve. If C is a curve, then

γ : I −→ Rn

is said to be the parametrization of C, if γ(I) = C and if γ is injective on I̊. The curves in
this chapter will always be regular.

Example 9.2. (i) α, κ > 0:

γ : R −→ R3

t 7−→ (cos(αt), sin(αt), κt)

This is the parametrization of a screw curve.

(ii) The unit circle {
(x, y) ∈ R2

∣∣x2 + y2 = 1
}

is a curve with the parametrization

γ : [0, 2π] −→ R2

t 7−→ (cos t, sin t)

(iii) A square {
(x, y) ∈ R2

∣∣max {|x1|, |x2|} = 1
}

is a piecewise regular curve.

Remark 9.3. Let γ : I → Rn be regular, f : γ(I) → R be continuous and a, b ∈ I̊. A
decomposition Z is given by the grid points

a = t0 < t1 < · · · < tn = b

The fineness of Z is given by

m(Z) := max
t∈{0,1,··· ,n−1}

(ti+1 − ti)
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We can represent I in terms of Z via

I(Z) :=
n−1∑
i=0

f(γ(ti))∥γ(ti+1)− γ(ti)∥

Or in integral representation

I(Z) =

� b

a

n−1∑
i=0

f(γ(ti))
∥γ(ti+1)− γ(ti)∥

∥ti+1 − ti∥
1[ti,ti+1)(t)︸ ︷︷ ︸

gZ(t)

dt

So let (Zj) be a sequence of decompositions with

m(Zj)
j→∞−−−→ 0

Let t ∈ [a, b] not be a grid point of any Zj . Then there exists a unique grid poiont tj,ij such
that t ∈ [tj,ij , tj,ij+1 ]. Then

lim
j→∞

tj,ij = lim
j→∞

tj,ij+1 = t

And thus
lim
j→∞

gZj (t) = f(γ(t))
∥∥γ′(t)∥∥

∀t that are not grid points of Zj , this means tahat

gZj

j→∞−−−→ f
∥∥γ′∥∥

almost everywhere. The dominated convergence theorem then tells us

I(Zj) =

� b

a
gZj (t) dt

j→∞−−−→
� b

a
f(γ(t))

∥∥γ′(t)∥∥dt
Special case: For f ≡ 1 one gets the arc length.

Definition 9.4 (Line Integrals, Arc Length). Let I be an interval and γ : I → Rn a
parametrized curve. Define the functions

f : γ(I) −→ R E : γ(I) −→ Rn

Then �
γ
f ds :=

�
I
f(γ(t))

∥∥γ′(t)∥∥dt
is said to be a scalar line integral (line integral of first kind), and

�
γ
⟨E|ds⟩ :=

�
I

〈
E(γ(t))

∣∣γ′(t)〉 dt
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is said to be a vector line integral (line integral of second kind). The function f or the
vector field E are integrable along γ if the according integral exists. The integral

�
γ
ds

is the arc length of γ, and γ is said to be rectifiable if this integral is finite.
If the curve γ is closed, i.e. if I = [a, b] a, b ∈ R and

γ(a) = γ(b)

Then the above integrals are often notated as
�
γ
ds

�
γ
⟨E|ds⟩

to emphasize that the curve is closed. This changes nothing about the formulas, it is merely
visual. I will try to adhere to this style.

Example 9.5 (Circumference of the unit circle). Define

γ : [0, 2π] −→ R2

t −→ (cos(t), sin(t))

and derive this function

γ′(t) = (− sin(t), cos(t)) =⇒
∥∥γ′(t)∥∥ = 1

Then the circumference is �
γ
ds =

� 2π

0
dt = 2π

Remark 9.6. (i) If γ is only piecewise regular then the integrands might not be defined
for all t.

(ii) Line integrals don’t depend on the chosen parametrization. This means if C is a curve
and

γ : I → C ρ : J → C

are parametrizations, then �
γ
f ds =

�
ρ
f ds

We also write �
C
f ds

The same holds for vector integrals.
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(iii) Both kinds of integrals depend on the scalar product.

(iv) Both kinds of integrals are special cases of integrals over so called One-forms

Theorem 9.7. Let γ : I → Rn be a parametrized curve, and ϑ : J → I a diffeomorphism
(so ϑ ∈ C1 and ϑ′(t) ̸= 0 ∀t ∈ J). Let f : γ(I) → R, then

�
γ
f ds =

�
γ◦ϑ

f ds

Proof. We can assume I, J to be open, since the endpoints of the integrals are a null set
and thus don’t matter. W.l.o.g. let γ be regular. Then

�
γ◦ϑ

f ds =

�
J
f(γ ◦ ϑ)(t)

∥∥(γ ◦ ϑ)′(t)
∥∥dt

=

�
J
f(γ(ϑ(t)))

∥∥γ′(ϑ(t))ϑ′(t)∥∥dt
=

�
J
f(γ(ϑ(t)))

∥∥γ′(ϑ(t))∥∥∣∣ϑ′(t)∣∣ dt
=

�
I
f(γ(τ))

∥∥γ′(τ)∥∥dτ
=

�
γ
f ds

(9.1)

Remark 9.8. (i) One can show that for a curve C and parametrizations

γ : I → C ρ : J → C

there exists a diffeomorphism ϑ : J → I such that

ρ = γ ◦ ϑ

So the line integral of first degree doesn’t depend on the parametrization.

(ii) A line integral of second degree doesn’t depend on the parametrization if the parametriza-
tions run along the curve in the same direction. So if ϑ′ > 0, ϑ is said to conserve
orientation. If ϑ′ < 0 then the integral switches sign.

Example 9.9. Let γ : I → R3 be the trajectory of a point mass, and F : R3 → R3 a
time-independent forcefield. The work done is then given by

W :=

�
γ
⟨F |ds⟩

The fact that the parametrization can be chosen arbitrarily means that the work done in a
forcefield is independent from the velocity of the point mass.
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Remark 9.10. (i) Line integrals are linear in f or E, meaning for

f, g : γ(I) → R, λ ∈ R

we have �
γ
(g + λg) ds =

�
γ
f ds+ λ

�
γ
g ds

(ii) Parametrized curves over compact intervals can be reparametrized so that I = [0, 1].

(iii) Let

γ : [0, 1] → Rn ρ : [0, 1] → Rn

be curves with γ(1) = ρ(0). Define

γ−1 : [0, 1] −→ Rn γρ : [0, 1] −→ Rn

t −→ γ(1− t) t −→

{
γ(2t), t ≤ 0.5

ρ(2t+ 1), t > 0.5

Then we have �
γ−1

f ds =

�
γ
f ds

�
γρ
f ds =

�
γ
f ds+

�
ρ
f ds

�
γ−1

⟨E|ds⟩ = −
�
γ
⟨E|ds⟩

�
γρ

⟨E|ds⟩ =
�
γ
⟨E|ds⟩+

�
ρ
⟨E|ds⟩

Definition 9.11. Let U ⊂ Rn be open and f : U → R a C1-function. Define

∇⃗f = (∂1f, ∂2f, · · · , ∂mf)

The vector field E : U → Rn is said to be conservative if there is a function g : U → R such
that

E = ∇⃗g

g is the potential of E.

Remark 9.12. (i) In physics the sign is typically switched, so

E = −∇⃗g
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(ii) The IDE
p(x, y) + q(x, y)y′ = 0

is exact if and only if the vector field (p, q) is conservative.

(iii) If E is conservative and C1, then

∂iEj = ∂jEi

This condition is not sufficient in general.

(iv) If g is a potential for E, then the functions

g + c c ∈ R

are also potentials.

(v) If E is conservative, g a potential and γ : [a, b] → Rn a curve, then
�
γ
⟨E|ds⟩ =

� b

a

〈
E(γ(t))

∣∣γ′(t)〉 dt
=

� b

a

(
∂1g(γ(t))γ

′
1(t) + · · ·+ ∂ng(γ(t))γ

′
n(t)

)
dt

=

� b

a
(g ◦ γ)′(t) dt = g(γ(b))− g(γ(a))

The vector line integral over conservative fields is independent from the chosen path
(it only depends on the start and end points).

(vi) Let U be open, path-connected and E : U → Rn a conservative vector field. Choose
a fixed x0 ∈ U , and for x ∈ U choose a parametrized curve γx from x0 to x. Then

x 7−→
�
γx

⟨E|ds⟩

is a potential, because if g is an arbitrary potential we have�
γx

⟨E|ds⟩ = g(x)− g(x0) ∀x ∈ U

Example 9.13. (i) Let

E : R3 \ {0} −→ R3

x 7−→ − x

∥x∥3

This field is conservative, with the potential

ϕ : R3 \ {0} −→ R

x 7−→ 1

∥x∥
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(ii) Let

E : R2 \ {0} −→ R2

(x, y) 7−→
(
− y

x2 + y2
,

x

x2 + y2

)
Then

∂1E2 =
1

x2 + y2
− 2x2

(x2 + y2)
=

y2 − x2

(x2 + y2)2
= ∂2E1

We can calculate the line integral of E along the unit circle

γ : [0, 2π] −→ R2

t 7−→ (cos t, sin t)

Then
E(γ(t)) = (− sin t, cos t) = γ′(t)

The integral is then

�
γ
⟨E|ds⟩ =

� 2π

0
∥(− sin t, cos t)∥2 dt = 2π ̸= 0

(iii) In the chapter about differential equations we looked at an exact equation in Exam-
ple 8.17:

(2x+ y2) + (2xy)y′ = 0

We can now use curve integrals to calculate the potential function more easily. For
that let x0 = (0, 0). Then for (ξ, η) we can define a curve connecting x0 and (ξ, η) for
t ∈ [0, 1]:

t 7−→ (ξt, ηt)

Consider the vector field
E(x, y) = (2x+ y2, 2xy)

Then

(ξ, η) 7−→
�
γ
⟨E|ds⟩ =

� 1

0
⟨E(ξt, ηt)|(ξ, η)⟩ dt

=

� 1

0
(2ξ2t+ η2ξt2 + 2ξη2t2) dt

= ξ2 + η2ξ

Theorem 9.14. Let U ⊂ Rn be an open subset. A continuous vector field E : U → Rn is
conservative if and only if for every closed curve γ : [0, 1] → U the following holds

�
γ
⟨E|ds⟩ = 0
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Proof. Line integrals over E are path independent. Let γ, ρ : [0, 1] → U be paths with

γ(0) = ρ(0) γ(1) = ρ(1) (9.2)

Then γρ−1 is closed, so

0 =

�
γρ−1

⟨E|ds⟩ =
�
γ
⟨E|ds⟩ −

�
ρ
⟨E|ds⟩ (9.3)

Assume that U is path continuous. Choose a fixed x0 ∈ U and let g : U → R. Then

g(x) =

� x

x0

⟨E|ds⟩ (9.4)

Performing a directional derivation in direction h ∈ Rn yields

g(x+ ah)− g(x) =

� x+ah

x0

⟨E|ds⟩ −
� x

x0

⟨E|ds⟩

=

� x+ah

x
⟨E|ds⟩

=

� a

0
⟨E(x+ th)|h⟩dt

(9.5)

Here we have chosen a linear path of integration between x0 and x, and between x and
x+ ah. In other words, we’re integrating along

t 7−→ x+ th (9.6)

Using the intermediate value theorem, we can find that ∃ξa ∈ (0, a) such that

� a

0
⟨E(x+ th)|h⟩ dt = ⟨E(x+ ξah)|h⟩ · a (9.7)

Then we have

∂hg(x) = lim
a→0

g(x+ ah)− g(x)

a
= lim

a→0
⟨E(x+ ξah)|h⟩ = ⟨E(x)|h⟩ (9.8)

So if h is a standard basis ei, then

∂ig(x) = Ei(x) (9.9)

Thus the partial derivative of g is continuous, and therefore g is continuously differentiable,
and thus a potential.
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9.2 Surface Integrals

In this section we will exclusively look at surfaces in R3.

Definition 9.15. Let V ⊂ R2 be open. A mapping ϕ : V → R3 is said to be a parametrized
surface if it is C1 and if ∂1ϕ(t), ∂2ϕ(t) are linearly independent ∀t ∈ V . A subset S ⊂ R3
is said to be a regular surface, if there exist:

� open subsets U1, · · · , Un ⊂ R3

� open subsets V1, · · · , vn ⊂ R2

� mappings ϕi : Vi −→ Ui ∩ S
such that the ϕi are parametrized surfaces, bijective and have a continuous ϕ−1. These S
are also said to be embedded, two-dimensional manifolds, and the ϕi are then called maps.
The collection of all maps ϕi are called atlas.

S ⊂ R3 is said to be a piecewise regular surface if there exist parametrized surfaces
ϕ1, · · · , ϕn, parametrized paths γ1, · · · , γk and points P1, · · · , Pl such that

S = ϕ1(V1) ∪ · · · ∪ ϕn(Vn) ∪ γ(I1) ∪ · · · ∪ γ(Ik) ∪ {P1, · · · , Pl}

Example 9.16. (i) Consider

ϕ : (0,∞)× R −→ R3

(s, t) 7−→ (s cos t, s sin t, t)

−5
0

5
10

−5

0

50

5

(ii) The set
S2 :=

{
(x, y, z) ∈ R3

∣∣x2 + y2 + z2 = 1
}

is a regular surface. A map describing this surface would be

ϕ : (0, 2π)× (0, π) −→ R3

(s, t) 7−→ (cos(s) sin(t), sin(s), sin(t), cos(t))
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−2
0

2 −2

0

2

−1

0

1

(iii) The unit cube {
(x, y, z) ∈ R3

∣∣max {|x|, |y|, |z|}
}

is a piecewise regular surface.

Remark 9.17. Our definition of regular curves is not equal to the definition of one-dimensional
embedded manifolds, because regular curves are not allowed to intersect themselves.

Definition 9.18 (Cross Product). Define the vectors v = (v1, v2, v3) and w = (w1, w2, w3) ∈
R3. Then

v × w =

v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1

T

is the cross product of v and w.

Remark 9.19. (i) The cross product is linear in v and w, with

v × w = w × v

(ii) v × w is orthogonal to v and w.

(iii) The cross product is not associative, but it fulfils the Jacobi-identity:

u× (v × w) + v × (w × u) + w × (u× v) = 0

(iv) v and w are linearly dependent if and only if v × w = 0

(v) The definition depends on the coordinates of v and w. So the choice of a basis matters.
In reality the cross product depends on the scalar product.
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(vi) Consider the space of anti-symmetric matrices

V =
{
A ∈ Rn×n

∣∣AT = −A
}

dimV =
1

2
n(n− 1)

The cross product is an outer product on V . V can be interpreted as an anti-symmetric
bilinear form, or as the space of infinitesimal rotations (Lie-algebra to the Lie-group
of rotations). This is not relevant.

Definition 9.20. Let V ⊂ R2 be open and ϕ : V → R3 a parametrized surface. Then

σϕ(t) = ∂1ϕ(t)× ∂2ϕ(t)

is said to be a vector surface element of ϕ, and ∥σϕ(t)∥ is the scalar surface element at the
point ϕ(t).

Remark 9.21. The surface element can be defined for arbitrary C1-mappings. ϕ is a
parametrized surface if and only if σϕ(t) ̸= 0 or ∥σϕ(t)∥ ≠ 0 ∀t ∈ V .

Example 9.22. (i) Consider the unit sphere

ϕ : (0, 2π)× (0, π) −→ R3

(s, t) 7−→ (cos(s) sin(t), sin(s), sin(t), cos(t))

The derivatives of ϕ are

∂1ϕ(s, t) = (− sin(t) sin(s), sin(t) cos(s), cos(t))

∂2ϕ(s, t) = (cos(t) cos(s), cos(t) sin(s),− sin(t))

Then the surface elements are

σϕ(s, t) = (− sin2(t) cos(s),− sin2(t) sin(s),− sin(t) cos(t))

∥σϕ(s, t)∥ = sin(t)

(ii) Let U ⊂ R2 be open, and f : U → R a continuously differentiable function. Then

ϕ(s, t) = (s, t, f(s, t))

is a parametrization of the graph of f . The derivatives are

∂1ϕ(s, t) = (1, 0, ∂1f(s, t)) ∂2ϕ(s, t) = (0, 1, ∂2f(s, t))

And the surface elements are

σϕ(s, t) = (−∂1f(s, t),−∂2f(s, t), 1)

∥σϕ(s, t)∥ =
√

(∂1f(s, t))2 + (∂2f(s, t))2 + 1
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Definition 9.23. Let V ⊂ R2 be open, ϕ : V → R3 a parametrized surface and f : ϕ(V ) →
R. Then �

ϕ
f dσ :=

�
V
f(ϕ(t))∥σϕ(t)∥ dλ2(t)

is said to be the scalar surface integral of f over ϕ. The integral

�
ϕ
dσ

is said to be the surface of ϕ(V ).

Lemma 9.24. Let V, Ṽ ⊂ R2 be open, ϕ : V → R3 a parametrized surface and T : Ṽ → V
a diffeomorphismus. Set ψ = ϕ ◦ T , then the surface element is

σψ(t) = det(DT (t)) · σϕ(T (t))

Proof. Calculate
Dψ(t) = Dϕ(T (t))DT (t) (9.10)

Or if we consider each column of the derivative separately

∂1ψ = ∂1T1 · ∂2ϕ+ ∂1T2 · ∂2ϕ (9.11a)

∂2ψ = ∂2T1 · ∂1ϕ+ ∂2T2 · ∂1ϕ (9.11b)

Then

σψ = ∂1ψ × ∂2ψ = (∂1T1)(∂2T2)∂1ϕ× ∂2ϕ+ (∂1T2)(∂2T1)∂2ϕ× ∂1ϕ

= (detDT )σϕ
(9.12)

Remark 9.25. Let there be the same notation as above, and f : ϕ(V ) → R
�
ψ
f dσ =

�
Ṽ
f(ψ(t))∥σθ(t)∥ dλ2(t)

=

�
Ṽ
f(ϕ ◦ T (t))∥σψ(T (t))∥det(DT (t)) dλ2(t)

=

�
V
f(ϕ(s))∥σϕ(s)∥ dλ2(s) =

�
ϕ
f dσ

In general we have to decompose a (piecewise) regular surface into disjoint regular pieces
and parametrize them. The surface integral – so the sum of integrals over the pieces
– is independent of the chosen decomposition and parametrization. Structures of lower
dimensions (curves, points) don’t contribute to surface integrals.



9.2. SURFACE INTEGRALS 223

Example 9.26. (i) We want to calculate the surface of the unit sphere. Using the parametriza-
tion we established earlier, we can get

�
ϕ
dσ =

�
(0,2π)×(0,π)

sin(t) dλ2(s, t) =

� π

0

� 2π

0
sin(t) ds dt

=

� π

0
2π sin(t) dt

= 4π

(ii) Let U ⊂ R2 be open and

ϕ : U −→ R3

(s, t) 7−→ (s, t, 0)

Then ∥σϕ∥ = 1, and let f : R2 × 0 → R:
�
ϕ
f dσ =

�
U
f(s, t, 0) dλ2(s, t)

Definition 9.27. Let V ⊂ R2 be open, ϕ : V → R3 a parametrized surface and let
E : ϕ(V ) → R3. Then

�
ϕ
⟨E|dσ⟩ :=

�
V
⟨E(ϕ(t))|σϕ(t)⟩ dλ2(t)

is said to be the vector surface integral of E over ϕ.

Remark 9.28. This integral is independent from the parametrization if the determinant
detDT is positive. Then T is said to conserve orientation. Otherwise the integral is
switching signs.

For general (piecewise) regular surfaces one has to watch out that the parametrizations
are consistent. There are surfaces (regular surfaces even) where that isn’t possible (so
called non-orientable surfaces). For these kinds of surfaces the vector surface integral isn’t
properly defined.

If a surface splilts R3 into an ”outside” and an ”inside”, then we typically choose the
parametrization where the surface elements point outwards.

Example 9.29. We want to integrate

E(x, y, z) :=

(
0, 0,

1

1 + z2
(x sin y + y cosx)

)
over the surface of the unit cube. E points in z-direction, so the integrals over the sides
disappear. So we can parametrize the ”lid”

(s, t) 7−→ (s, t, 1) s, t ∈ [−1, 1]
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and calculate the integral

�
⟨E|dσ⟩ =

�
(−1,1)2

1

2
(s sin t+ t cos s) dλ2(s, t)

Doing this for the base yields the same result, just with a different sign. So the surface
integral over the cube is 0.

9.3 Integral Theorems

Definition 9.30. Let U ⊂ R3. We define the following mappings

Gradient ∇⃗ : C1(U) −→ C1(U,R3)

Divergence ∇⃗· : C1(U,R3) −→ C(U)

Curl ∇⃗× : C1(U,R3) −→ C1(U,R3)

Laplacian ∇2 : C2(U) −→ C(U)

And define the operations for f ∈ C1(U), g ∈ C2(U), E ∈ C1(U,R3)

∇⃗f := (∂1f, ∂2f, ∂3f)

∇⃗ · E := ∂1E1 + ∂2E2 + ∂3E3

∇⃗× E := (∂2E3 − ∂3E2, ∂3E1 − ∂1E3, ∂1E2 − ∂2E1)

∇2g := ∂21g + ∂22g + ∂23g

∇ is called the Nabla operator and it’s defined as

∇ = (∂1, ∂2, ∂3)

and subsequently the Laplacian can be defined as

∇2 = ∇⃗ · ∇⃗

Remark 9.31. (i) All of these operations are linear. Typically they operate on everything
to their right up until the next + or −.

(ii) ∇⃗, ∇⃗·, ∇2 can all be extended to Rn, however because the cross product isn’t sensibly
defined outside of R3, ∇⃗× can’t be extended to Rn.
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(iii) There are some identities:

∇⃗ ·
(
∇⃗× E

)
= 0 = ∇⃗×

(
∇⃗E

)
∇⃗ ·

(
∇⃗f
)
= ∇2f

∇⃗(fg) = (∇⃗f)g + f(∇⃗g)

∇⃗ · (fE) =
〈
∇⃗f
∣∣∣E〉+ f(∇⃗ · E)

∇⃗× (fE) = (∇⃗f)× E + f(∇⃗× E)

∇2(fE) = (∇2f)g + 2
〈
∇⃗f
∣∣∣∇⃗g〉+ f(∇2g)

Remark 9.32. A parametrized curve γ : [0, 1] → Rn is said to be simple closed if it doesn’t
intersect itself (γ is injective on [0, 1)). In R2 these kinds of curves split the space into a
bounded part U and an unbounded part. We assums γ to be positive oriented (meaning U
is ”left” of the curve).

Theorem 9.33 (Green’s Theorem). Let γ : [0, 1] → R2 be a simple closed curve, more
specifically the boundary of U . Let E : R2 → R2 be a C1-vector-field. Then

�
U
(∂1E2 − ∂2E1) dλ

2 =

�
γ
⟨E|ds⟩

Heuristic Proof. Consider the following special case

b

a
f

So f : [0, b] → R2 strictly monotonically increasing, C1, f(0) = a < 0 and f(b) = 0. Then
define the curves

C1 = [0, b]× {0} C2 = {0} × [0, a] (9.13)

And C3 the graph of f parametrized by

t 7−→ (t, f(t)) (9.14)
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Since f is monotonically increasing, there exists an inverse function g that us continuously
differentiable. Then�

U
(∂1E2 − ∂2E1) dλ

2

=

� 0

a

� g(y)

0
∂1E2(x, y) dx dy −

� b

0

� 0

f(x)
∂2E1(x, y) dy dx

=

� a

0
(E2(g(y), y))− E2(0, y)) dy −

� b

0
(E1(t, f(t))− E(x, f(x))) dx

=−
� b

0
E1(t, 0) dt︸ ︷︷ ︸�

C1
⟨E|ds⟩

+

� a

0
E2(0, t) dt︸ ︷︷ ︸�
C2

⟨E|ds⟩

+

� b

0
(E1(t, f(t)) + E2(t, f(t)))f

′(t) dt︸ ︷︷ ︸�
C3

⟨E|ds⟩

=

�
C1C2C3

⟨E|ds⟩

(9.15)

Corollary 9.34 (Divergence Theorem in 2D). Let E ∈ C1(R2,R2) and define γ : [0, 1] →
R2 simple closed to be the boundary of U . We set

σ(t) = (γ′(t),−γ′(t))

Then �
U
∇⃗ · E dλ2 =

�
γ
⟨E|ds⟩ =

� 1

0
⟨E(γ(t))|σ(t)⟩dt

Proof. Set Ẽ = (−E2, E1) and apply Green’s theorem:

�
U
∇⃗ · E dλ2 =

�
U
(∂1E2 − ∂2E1) dλ

2 =

�
γ
⟨E|ds⟩

=

� 1

0
⟨E(γ(t))|σ(t)⟩ dt

(9.16)

Corollary 9.35 (Stokes’ Theorem in the x-y-plane). Let Ẽ : R3 → R3 be a vector field,
γ : [0, 1] → R2 the simple closed boundary of U . Set ˜γ(t) = (γ(t), 0) and Ũ = U × {0}

�
Ũ

〈
∇⃗× E

∣∣∣dσ〉 =

�
γ̃

〈
Ẽ
∣∣∣ds〉

Proof. Choose
(x, y) 7−→ (x, y, 0)
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as a parametrization of Ũ with σ = (0, 0, 1). Set

E(x, y) = (Ẽ1(x, y, 0), Ẽ2(x, y, 0))

Then �
Ũ

〈
∇⃗× Ẽ

∣∣∣dσ〉 =

�
U

〈
∇⃗× Ẽ(x, y, 0)

∣∣∣(0, 0, 2)〉 dλ2(x, y)
=

�
U
∂1E2(x, y)− ∂2E1(x, y) dλ(x, y)

=

�
γ
⟨E|ds⟩ =

�
γ̃

〈
Ẽ
∣∣∣ds〉

(9.17)

Remark 9.36. A set U ⊂ Rn is said to be simply connected, if for every closed curve
γ : [0, 1] → U there exists a continuous mapping ϑ : [0, 1]2 → U , such that

ϑ(1, t) = γ(t) ϑ(0, t) = γ(0) ∀t ∈ [0, 1]

ϑ is said to be a homotopy.

Theorem 9.37 (Stokes’ Theorem). Let U ⊂ R3 be a simply connected, orientable surface
whose boundary is a closed curve γ. For U let there be an orientation (so a continuous
normal vector field), and orientate γ such that U is to the left of γ relative to the normal
direction. Let E ∈ C1(R3,R3) be a vector field, then�

U

〈
∇⃗× E

∣∣∣dσ〉 =

�
γ
⟨E|ds⟩

Proof. Without proof.

Example 9.38. The condition that U is simply connected is necessary:

(x, y, z) 7−→
(

−y
x2 + y2

,
x

x2 + y2
, 0

)
is free of curl. Curve integrals ”around the z-axis” can be non-zero.

Remark 9.39. Let U ⊂ R3 be simply connected, E ∈ C1(U,R3). Then

E conservative ⇐⇒ ∇⃗× E = 0

If ∇⃗×E = 0, U is simply connected and γ is a closed curve in U , then there exists a surface
in U that is bounded by γ. Using Stokes’ theorem one can then see that�

γ
⟨E|ds⟩ = 0 ∀γ closed

And thus E is conservative. A surface A is said to be closed, if it splits R3 into a bounded
and an unbounded part. The bounded part shall be named U and is oriented such that the
normals point outwards.
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Theorem 9.40 (Divergence Theorem). Let M be a closed surface and E ∈ C1(R3,R3).
Then �

U
∇⃗ · E dλ3 =

�
M

⟨E|dσ⟩

Proof. Without proof.

Corollary 9.41 (Green’s Identities). Let M be a closed surface, let f, g ∈ C2(U,R), and n
an orientation (continuous normal vector field). Then�

U
f∇2g +

〈
∇⃗f
∣∣∣∇⃗g〉 dλ3 = �

M

〈
f∇⃗g

∣∣∣dσ〉
�

U
f∇⃗g − g∇⃗f dλ3 =

�
M

〈
f∇⃗g − g∇⃗f

∣∣∣dσ〉
=

�
M
(f∂ng − g∂nf) dσ

Proof. Apply the divergence theorem to f∇⃗g:

∇⃗ ·
(
f∇⃗g

)
=
〈
∇⃗f
∣∣∣∇⃗g〉+ f∇2g (9.18)

Swapping and subtracting f and g yields the second equation. Let ϕ : V → M be a
parametrization. Then�

ϕ

〈
f∇⃗g

∣∣∣dσ〉 =

�
V

〈
f(ϕ(t))∇⃗g(ϕ(t))

∣∣∣σϕ(t)〉 dλ2(t)
=

�
V
f(ϕ(t))

〈
∇⃗g(ϕ(t))

∣∣∣n(ϕ(t))〉︸ ︷︷ ︸
∂ng(ϕ(t))

∥σϕ(t)∥

=

�
M
f∂ng dσ

(9.19)

Example 9.42. Let U ⊂ R3 be bounded with a given volume V , and a ”nice” boundary M
with area A. Set

R = sup {∥(x, y, z)∥ | (x, y, z) ∈M}
Let E(x, y, z) = (x, y, z) and ϕ :W →M a parametrization. Then

3V =

�
U
E dλ3 =

�
M

⟨E|dσ⟩

=

�
W

⟨E(ϕ(t))|σϕ(t)⟩dλ2(t)

≤
�
W

|⟨· · · ⟩|dλ2(t)

≤
�
W

∥E(ϕ(t))∥︸ ︷︷ ︸
≤R

∥σϕ(t)∥dλ2(t) ≤ R ·A
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For the sphere with radius R we have equality.
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10.1 Complex Differentiability

Definition 10.1. Let f : U → C, with U ⊂ C open. f is said to be complex differentiable
in z0 ∈ U if

lim
z→z0

f(z)− f(z0)

z − z0
=: f ′(z0)

exists. If f is complex differentiable on all of U , f is said to be holomorphic. A funciton
that is holomorphic on all of C is entire.

An equivalent formulation wiould be

∀ϵ > 0 ∃δ > 0 : |z − z0| < δ =⇒ |f(z)− f(z0)− a(z − z0)| < ϵ

In this case a = f ′(z0).

Theorem 10.2. (i) f complex differentiable in z0 ∈ C =⇒ f continuous in z0

(ii) f, g complex differentiable in z0, then f + g and f · g are complex differentiable in z0,
and

(f + g)′(z0) = f ′(z0) + g′(z0)

(fg)′(z0) = f ′(z0)g(z0) + f(z0)g
′(z0)

If g(z0) ̸= 0, then f
g is complex differentiable and(

f

g

)′
(z0) =

g(z0)f
′(z0)− g′(z0)f(z0)

g(z0)2

(iii) Let f : U → C, U ⊂ C open and C ⊂ C open with f(U) ⊂ V , and let g : V → C.
Then g◦f : U → C. If f is complex differentiable in z0, and g is complex differentiable
in f(z0), then g ◦ f is complex differentiable in z0 with

(g ◦ f)′(z0) = g′(f(z0))f
′(z0)

(iv) If f is complex differentiable in z0, f
′(z0) ̸= 0 and if ∃δ > 0 such that f : Bδ(z0) →

U ⊂ C is bijective, then the inverse function g is complex differentiable in f(z0), with

g′(f(z0)) =
1

f ′(z0)

Proof. Left as an exercise for the reader.

Remark 10.3 (Complex vs. Real Differentiability). Consider f : U → C, U ⊂ C open. Let

x = Re z y = Im z
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and define
Ũ=

{
(x, y) ∈ R2

∣∣x+ iy ∈ U
}

and

f̃ : Ũ −→ R2

(x, y) 7−→ (Re(f(x+ iy)), Im(f(x+ iy))) =: (u(x, y), v(x, y))

Then f is complex differentiable in z = x+ iy.

(i) We have

f ′(z) = lim
h→0

f(z + h)− f(z)

h

= lim
h→0

u(x+ h, y) + iv(x, y + h)− u(x, y)− iv(x, y)

h

= lim
h→0

u(x+ h, y)− u(x, y)

h
+ i lim

h→0

v(x+ h, y)− v(x, y)

h

=
∂

∂x
u(x, y) + i

∂

∂x
v(x, y)

(ii) And also

f ′(z) = lim
h→0

f(z + ih)− f(z)

ih

= −i lim
h→0

u(x, y + h) + iv(x, y + h)− u(x, y)− iv(x, y)

h

= −i lim
h→0

u(x, y + h)− u(x, y)

h
+ lim
h→0

v(x, y + h)− v(x, y)

h

= − ∂

∂y
u(x, y) +

∂

∂y
(x, y)

This results in the Cauchy-Riemann equations:

∂

∂x
u(x, y) =

∂

∂y
v(x, y)

∂

∂y
u(x, y) = − ∂

∂x
v(x, y)

if f is complex differentiable in z = x+ iy.
From the Cauchy-Riemann equations and the real differentiability of the function f̃ :

Ũ → R2 follows

Df̃(x, y) =

(
∂xu(x, y) ∂yu(x, y)
∂xv(x, y) ∂yv(x, y)

)
=

(
∂xu(x, y) −∂xv(x, y)
∂xv(x, y) ∂xu(x, y)

)
=:

(
a −b
b a

)



10.1. COMPLEX DIFFERENTIABILITY 233

and thus for h = (h1, h2) ∈ R2

f̃(x+ h1, y + h2)− f̃(x, y) = Df̃(x, y)h+O(|h|)

=

(
ah1 − bh2
bh1 + ah2

)
+O(|h|)

A side calculation:

(a+ ib)(h1 + ih2) = ah1 − bh2 + i(bh1 + ah2)

=⇒
(
ah1 − bh2
bh1 + ah2

)
+O(|h|) =

(
Re(a+ ib)(h1 + ih2)
Im(a+ ib)(h1 + ih2)

)
+O(|h|)

So for h = h1 + ih2 we get

f(z + h)− f(z) = (a+ ib)h+O(|h|)

So f is complex differentiable in z with f ′(z) = a+ib. In short, we have shown the following
theorem.

Theorem 10.4. Let f : U → C with U ⊂ C open. f is complex differentiable in z ∈ U
if and only if f̃ : Ũ → R2 is real differentiable in (x, y) ∈ Ũ , and if the Cauchy-Riemann
equations are satisfied.

Proof. Proof is in the previous remark.

Example 10.5. (i) Power series like

f(z) =

∞∑
n=0

anz
n, (an) ⊂ C

with convergence radius ρ ∈ [0,∞] are holomorphic on Bρ(0). The following holds

f ′(z) =
∞∑
n=0

nanz
n−1

Especially, the funciton
f(z) = eαz, α ∈ C

is holomorphic on all of C with
f ′(z) = αeαz

(ii) The function

f(z) =
1

zn

is holomorphic C \ {0} with

f ′(z) = −n 1

zn+1

(iii) Functions that are not complex differentiable include

f(z) = z f(z) = zz

(∂xu = 1 ̸= ∂yv = −1) (∂xu = 2x2 ̸= ∂yv = 0)
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10.2 Contour Integrals

Definition 10.6 (Contour integrals). Let U ⊂ C be open, γ = C([a, b], U) a curve in U
and f : U → C continuous. Then

�
γ
f(z) dz :=

� b

a
f(γ(t))γ′(t) dt

Example 10.7. Consider the path

γ(t) = reit, t ∈ [0, 2π], r > 0

we want to take the contout integral along the path γ of the function zn

�
γ
zn dz =

� 2π

0
(reit)nireit dt

= irn+1

� 2π

0
eit(n+1) dt = irn+1

{
2π, n = −1

0, n ̸= −1

Lemma 10.8 (Estimation Lemma). For every curve γ ∈ C([0, 1], U) and every continuous
function f : U → C we have∣∣∣∣�

γ
f(z) dz

∣∣∣∣ ≤ sup
z∈γ

|f(z)|
� 1

0

∣∣γ′(t)∣∣ dt
Proof. ∣∣∣∣�

γ
f(z) dz

∣∣∣∣ = ∣∣∣∣� 1

0
f(γ(t))γ′(t) dt

∣∣∣∣ ≤ � 1

0
|f(γ(t))|

∣∣γ′(t)∣∣dt
≤ sup

t∈[0,1]
|f(γ(t))|

� 1

0

∣∣γ′(t)∣∣dt (10.1)

Corollary 10.9. Let γ ∈ C([0, 1], U) be a simple closed curve, U ⊂ C, and let f : U → C
a holomorphic function with

u = Re f v = Im f

Then �
γ
f(z) dz = 0
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Proof. Let A ⊂ U be the surface bounded by γ. Then

�
γ
f(z) dz =

� 1

0
f(γ(t))γ′(t) dt (10.2)

We can split γ into a real and an imaginary part, like this

γ(t) = γ1(t) + iγ2(t), γ1, γ2 : [0, 1] → R (10.3)

Then we can calculate
�
γ
f(z) dz =

� 1

0

(
u(γ1(t), γ2(t)) + iv(γ1(t), γ2(t))(γ

′
1(t) + iγ′2(t))

)
dt

=

� 1

0
u(γ1(t), γ2(t))γ

′
1(t)− v(γ1(t), γ2(t))γ

′
2(t) dt

+ i

� 1

0
u(γ1(t), γ2(t))γ

′
2(t) + v(γ1(t), γ2(t))γ

′
1(t) dt

=

� 1

0

(
u(γ(t))
−v(γ(t))

)(
γ′1(t)
γ′2(t)

)
dt+ i

� 1

0

(
v(γ(t))
u(γ(t))

)(
γ′1(t)
γ′2(t)

)
dt

=

�
∂A

(
u
−v

)
ds+ i

�
∂A

(
v
u

)
=

�
A
(−∂xv − ∂yu) dλ

2 + i

�
A
(∂xu− ∂yv) dλ

2

(10.4)

Because f is holomorphic we can apply the Cauchy-Riemann equation
�
γ
f(z) dz = 0 (10.5)

Definition 10.10. (i) A closed curve γ : [a, b] → U with U ⊂ C is said to be null-
homotopic, if it can be continuously deformed into a point within the set U .

(ii) Two curves γ1, γ2 : [0, 1] → U with identical boundary points

γ1(0) = γ2(0) ∧ γ1(1) = γ2(1)

is said to be homotopic in U if the concatenation

γ : [0, 2] −→ U

γ(t) =

{
γ1(t), t ∈ [0, 1]

γ2(2− t) t ∈ [1, 2]

is null-homotopic.



10.2. CONTOUR INTEGRALS 236

(iii) Two closed surves γ0, γ1 are said to be free-homotopic in U if they can be continuously
transformed into each other.

Definition 10.11. A non-empty set U ⊂ C is said to be

(i) connected if any two points in U can be connected by a curve in U .

(ii) simply connected if U is connected and every closed surve in U is null-homotopic.

(iii) a domain if it is open and connected.

Theorem 10.12 (Cauchy’s Integral Theorem). Let f : U → C be holomorphic and γ a
closed, null-homotopic curve in U ⊂ C open. Then

�
γ
f(z) dz = 0

Proof. Without proof.

Corollary 10.13. (i) Let γ1, γ2 be holomorphic curves with the same endpoints on the
open set U ⊂ C. Then �

γ1

f(z) dz =

�
γ2

f(z) dz

for all holomorphic f : U → C.

(ii) For f : U → C holomorphic, with U ⊂ C open and simple connected. Then ∀z0 ∈ U

F (z) :=

� z

z0

f(ζ) dζ =

�
γ=γ0

f(ζ) dζ

is a holomorphic anti-derivative of f , i.e.

F ′(z) = f(z) ∀z ∈ U

Proof. First we prove (i). The concatenation γ := γ1γ2 is a null-homotopic curve, so
together with the holomorphy of f we can apply the Cauchy integral theorem

0 =

�
γ
f(z) dz =

� 2

0
f(γ(t))γ̇(t) dt

=

� 1

0
f(γ1(t))γ̇1(t) dt−

� 2

1
f(γ2(2− t))γ̇2(2− t) dt

(10.6)

Substitute s = 2− t with ds = −dt:

=

� 1

0
f(γ1(t))γ̇(t) dt− γ10f(γ2(s))γ̇2(s) ds

=

�
γ1

f(z) dz −
�
γ2

f(z) dz

(10.7)
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Now we prove (ii). According to (i), we have

F (z + h) = F (z) +

�
γz+h,z

f(z) dz (10.8)

We choose γz+h,z to be a straight line, i.e.

γz+h,z(t) = t(z + h) + (1− t)z, t ∈ [0, 1] (10.9)

Then �
γz+h,z

1 dζ =

� 1

0
γ̇(t) dt = h (10.10)

Thus follows

F (z + h)− F (z) =

�
γz+h,z

f(ζ) dζ ⇐⇒ F (z + h)− F (z)

h
=

1

h
∈ f(ζ) dζ (10.11)

and therefore∣∣∣∣F (z + h)− F (z)

h
− f(z)

∣∣∣∣ =
∣∣∣∣∣1h
�
γz+h,z

f(ζ) dζ − f(z)

∣∣∣∣∣
=

∣∣∣∣∣1h
�
γz+h,z

f(ζ)− f(z) dζ

∣∣∣∣∣
=

1

|h|

� 1

0
|f(γz+h,z(t))− f(z)| | ˙γz+h,z(t)|dt

≤1

h
sup
t∈[0,1]

|f(γz+h,z(t))− f(z)| ·
�

| ˙γz+h,z(t)|dt︸ ︷︷ ︸
|h|

= sup
t∈[0,1]

|f(γz+h,z(t))− f(z)|

k→0−−−→0

(10.12)

Example 10.14 (The complex logarithm). Consider t 7→ eit, t ∈ R. This is a 2π-periodic
function, that means

eit = ei(t+2πn), n ∈ Z

The function

f : C \ {0} −→ C

z 7−→ 1

z
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is holomorphic, and does not have an anti-derivative on C \ {0}. If it did, then
�
γ
f(z) dz = F (γ(2π))− F (γ(0)) = 0

would have to hold, but we know that
�
γ

dz

z
= 2πi

This is a contradiction. However f does have an anti-derivative on C− (the complex numbers
without the negative real axis) , since C− is simple connected and f is holomorphic. Thus
we can define

Log : C− −→ C

z 7−→
�
γ:[0,1]→z

dζ

ζ

It can also be defined as

Log z =

{
0, 1

log |z|+ i arg(z), else

The function arg is defined as

arg : C− −→ (−π, π)
z 7−→ ϕ for z = |z|eiϕ

Log is said to be the main branch of the complex logarithm, and

Log z = log |z|+ i(arg(z) + 2πn), n ∈ Z

the secondary branches.

Example 10.15 (Fresnel Integrals). Consider the integrals
� ∞

0
cos
(
t2
)
dt

� ∞

0
sin
(
t2
)
dt

The way these integrals are supposed to be interpreted is as

� ∞

0
f(t) dt = lim

N→∞

� N

0
f(t) dt

We realize that

cos
(
t2
)
= Re e−it

2
sin
(
t2
)
= − Im e−it

2

Now, consider these paths
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Im

Reγ1 R

γ2
γ

R

So it becomes apparent that

� R

0
cos
(
t2
)
dt = Re

� R

0
e−it

2
dt = Re

�
γ
e−z

2
dz

We can define a new (closed) path

Γ = γ1γ2(−γ)

and with Cauchy’s theorem we can realize that

0 =

�
Γ
e−z

2
dz =

�
γ1

e−z
2
dz +

�
γ2

e−z
2
dz −

�
γ
e−z

2
dz

The next step is to evaluate each of the integrals in the last term, starting with the integral
over γ.

�
γ
e−z

2
dz =

� R

0
e−((1+i)t)2(1 + i) dt

=(1 + i)

� R

0
e−2it2 dt

=
1 + i√

2

� √
2R

0
e−is

2
ds

The integrall over γ1 evaluates to

�
γ1

e−z
2
dz =

� R

0
e−t

2
dt

R→∞−−−→
� ∞

0
e−t

2
dt =

1

2

� ∞

−∞
e−t

2
dt =

√
π

2
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And the one over γ2 to

�
γ2

e−z
2
dz =

� R

0
e−(r+it)2i dt = i

� R

0
e−R

2+t2e−2irt dt

To evaluate this we need to consider the absolute value of this integral∣∣∣∣�
γ2

e−z
2
dz

∣∣∣∣ ≤e−R2

� R

0
et

2 ∣∣e−2iRt
∣∣︸ ︷︷ ︸

=1

dt

=e−R
2

� R

0
et

2
dt ≤ e−R

2

� R

0
etR dt

=e−R
2

[
1

R
etR
]R
0

=
e−R

2

R

(
eR

2 − 1
)

so ∣∣∣∣�
γ2

e−z
2
dz

∣∣∣∣ ≤ 1

R

(
1− e−R

2
)

R→∞−−−→ 0

Thus we can calculate
�
γ
e−z

2
dz =

1 + i√
2

� √
2R

0
e−it

2
dt =

�
γ1

e−z
2
dz +

�
γ2

e−z
2
dz

And finally

lim
R→∞

� ∞

0
e−it

2
dt = lim

R→∞

� √
2R

0
e−t

2
dt

=

√
2

1 + i

(
lim
R→∞

(�
γ1

e−z
2
dz +

�
γ2

e−z
2
dz

))
=

√
2

1 + i

(π
2
+ 0
)

=

√
π

2

1− i

2
=

√
π

8
(1− i)

So we can calculate the Fresnel integrals
� ∞

0
cos
(
t2
)
dt =

√
π

8� ∞

0
sin
(
t2
)
dt =

√
π

8

Theorem 10.16 (Cauchy’s Theorem for circular disks). Let f : U → C be holomorphic,
U ⊂ C open and Kr(a) ⊂ U . Then

f(a) =
1

2πi

�
|z−a|=r

f(z)

z − a
dz
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Proof. Consider the following path

a

α1
δ α2

δ

γϵ

|z − a| = r

ϵ
r

γδ

According to the first corollary of Cauchy’s theorem we have�
|z−a|=r

f(z)

z − a
dz = lim

δ→0

�
γϵ,δ

f(z)

z − a
dz +

�
α1
δ

f(z)

z − a
dz +

�
α2
δ

f(z)

z − a
dz︸ ︷︷ ︸

δ→0−−−→0

=

�
γϵ

f(z)

z − a
dz

(10.13)

Thus we conclude�
|z−a|=r

f(z)

z − a
dz =

�
γϵ

f(z)

z − a
dz =

�
γϵ

f(z)− f(a)

z − a
dz +

�
γϵ

f(a)

z − a
dz

=

�
γϵ

f(z)− f(a)

z − a
dz + f(a)

�
γϵ

dz

z − a

(10.14)

We also know that �
γϵ

dz

z − a
= 2πi (10.15)

Since f is holomorphic we can realize

sup
Kr(a)

∣∣∣∣f(z)− f(a)

z − a

∣∣∣∣ =Mr <∞ (10.16)

Which results in ∣∣∣∣�
γϵ

f(z)− f(a)

z − a
dz

∣∣∣∣ ≤Mr

� 2π

0
|γ̇ϵ(t)| dt︸ ︷︷ ︸
2πϵ

ϵ→0−−−→ 0 (10.17)

Thus follows�
|z−a|=r

f(z)

z − a
dz =

�
γϵ

f(z)− f(a)

z − a
dz + 2πif(a)

ϵ→0−−−→ 2πif(a) (10.18)
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Or short �
|z−a|=r

f(z)

z − a
dz = 2πif(a) (10.19)

Corollary 10.17. Let f : U → C be a holomorphic function and U ⊂ C an open set such
that Kr(a) ⊂ U . Then

f(a) =
1

2π

� 2π

0
f(a+ reit) dt

Proof. Left as an exercise for the reader.

Definition 10.18 (Analytic functions). Let f : U → C be a function and U ⊂ C a domain.
f is said to be analytic in z0 ∈ U if and only if there exists a power series

∞∑
n=0

anζ
n

with convergence radius

ρ =
(
lim sup |an|

1
n

)−1
> 0

and δ ∈ (0, ρ) such that Bδ(z0) ⊂ U and

f(z) =

� ∞

k=0
an(z − z0)

n, ∀z ∈ Bδ(z0)

f is said to be analytic on U if f is analytic ∀z0 ∈ U .

Theorem 10.19 (Power series expansion). If f is holomorphic on a circular disk Br(z0)
for some r > 0, then f is analytic in z0. f can be represented with the on Bρ(z0) convergent
power series

f(z) =
∞∑
n=0

cn(z − z0)
n, z ∈ Bρ(z0)

with

cn =
1

2πi

�
|z−z0|=r

f(z)

(z − z0)n+1
dz , ∀ρ ∈ (0, r)

Proof. Without proof.

Remark 10.20. If f is holomorphic then f can be infinitely often differentiated on C with

f (n)(z) = n!cn =
n!

2πi

�
|z−z0|=ρ

f(z)

(z − z0)n+1
dz
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By employing the estimation lemma we can then find that

|cn| ≤
1

2π

∣∣∣∣∣
�
|z−z0|=ρ

f(z)

(z − z0)n+1
dz

∣∣∣∣∣ ≤ 1

2π
sup

|z−z0|=ρ

∣∣∣∣ f(z)

|z − z0|n+1

∣∣∣∣ · 2πρ
=

1

ρn
sup

z∈Br(z0)
|f(z)|

=
Mr

ρn
, Mr <∞

This is Cauchy’s estimate.

Theorem 10.21 (Liouville’s Theorem). Every bounded entire function is constant.

Proof. According to the power series expansion theorem, f can be represented by a power
series on all of C:

f(z) =
∞∑
n=0

cnz
n (10.20)

and the coefficients satisfy the Cauchy estimate

|cn| ≤
1

ρn
sup
|z|=ρ

|f(z)| ≤ 1

ρn
sup
z∈C

|f(z)|︸ ︷︷ ︸
<∞

(10.21)

This inequality tends to 0 if ρ tends to ∞ for all n ≥ 1, thus we can find

cn = 0, ∀n ≥ 1 (10.22)

Thus
f(z) = c0 = const . (10.23)

Theorem 10.22 (Fundamental Theorem of Algebra). Every polynomial of degree n ≥ 1

f(z) =
n∑
k=0

ckz
k, cn ̸= 0

has a root, i.e.
∃z0 ∈ C : f(z0) = 0

Proof. Assume there exists no root. Then the function

z 7−→ 1

f(z)
(10.24)
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would be holomorphic on all of C, since z 7→ 1
z is holomorphic on C \ {0}. Furthermore we

find that
∃R ≥ 0 : |z| ≥ R =⇒ |f(z)| ≥ |f(0)| > 0 (10.25)

which implies

sup
z∈C

1

|f(z)|
= sup

|z|<R

1

|f(z)|
= max

|z|≤R

1

|f(z)|
<∞ (10.26)

since f doesn’t have a root. According to Liouville’s theorem 1
f has to be constant, and

thus f must be constant. This implies that cn = 0, which contradicts the assumption. So
f has to have a root.

Corollary 10.23 (Polynomial Decomposition). Let

f(z) =
n∑
k=0

ckz
k, n ∈ N, ck ∈ C, cn = 1

Then ∃zj ∈ C, j = 1, · · · , n such that

f(z) =
n∏
j=1

(z − zj)

10.3 Identity Theorem & Analytic Continuation

Definition 10.24. Let f : U → C be a function on U ⊂ C and n ∈ N. f has a root with
multiplicity n at z0, if

f (k)(z0) = 0, ∀k = 0, · · · , n− 1

f (n)(z0) = 0

If f is holomorphic it can be written as

f(z) =
∞∑
k=n

cn(z − z0)
k

Theorem 10.25 (Identity Theorem). Let U ⊂ C be a domain and f : U → C analytic. If

{z ∈ C | f(z) = 0}

has an accumulation point, i.e.

f(zn) = 0, (zn)n∈N ⊂ U, (zn)
n→∞−−−→ z∞ ∈ U

then f = 0 on U .
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Proof. Since f is analytic in z0 ∈ U , ∃δ > 0 such that

f(z) =

∞∑
k=0

ak(z − z0)
k, ∀z ∈ Bδ(z0) (10.27)

Because z0 ∈ U is a root of f we can find that a0 = 0. If ak ̸= 0 for some k ≥ 1 then we
can consider

m = min {k ≥ 1 | ak ̸= 0} (10.28)

Define

g(z) =

∞∑
n=0

an+m(z − z0)
n (10.29)

Then g(z0) ̸= 0 and
f(z) = (z − z0)

mg(z) (10.30)

This function g is analytic in Bδ(z0), and thus continuous. This means ∃δ′ < δ such that g
doesn’t vanish on Bδ′(z0). We can conclude that f doesn’t vanish on Bδ′(z0) \ {z0} either.
If ak = 0 ∀k ∈ N, then f = 0 on Bδ(z0).

Now define the set

A =
{
z ∈ U

∣∣∣ f (k)(z) = 0, ∀k ∈ N0

}
(10.31)

Since f (n) is continuous for all n ∈ N0, we find

A =
⋂
n∈N0

{
z ∈ U

∣∣∣ f (n)(z) = 0
}

=
⋂
n∈N0

(
f (n)

)−1

︸ ︷︷ ︸
continuous

( {0}︸︷︷︸
closed

)

︸ ︷︷ ︸
closed︸ ︷︷ ︸

closed

(10.32)

But A is also open. To prove this we consider a point z1 ∈ A. Then the Taylor series of f in
z1 is identical to the zero-function. But then f = 0 on a neighbourhood V of z1. However,
since f (n)(z) = 0 ∀n ∈ N0 and z ∈ V , we can use our previous results to conclude that
V ⊂ A, making A a closed set.

U can now be represented in terms of A:

U = A ∪ (U \A) (10.33)

This is the disjoint union of two open sets. Since U is a domain (and thus connected) this
can only be the case if

A = {U,∅} (10.34)

Since z0 = 0 we can conclude A = U .
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Definition 10.26. If V ⊂ U ⊂ C, and there exist two holomorphic functions

f : V −→ C
f̃ : U −→ C

with the property

f(z) = f̃(z), ∀z ∈ V

then f̃ is said to be the analytic continuation of f on U .

Remark 10.27. If the set V has an accumulation point and if U is a domain, then the
analytic continuation f̃ of f on U is unique (This follows from the identity theorem).

Example 10.28. (i) f(z) =
∑∞

n=0 z
n is holomorphic on {z ∈ C | |z| < 1}. The function

f̃(z) =
1

1− z

is an analytic continuation of f on C \ {1}.

(ii) We can also find the analytic continuation along a chain of circular disks: for j ∈ N
define the power series

fj(z) :=

∞∑
n=0

an(j)(z − zj)
n

around zj ∈ C with convergence radius ρj ∈ (0,∞]. If the disks overlap and the
functions are compatible, i.e.

fj(z) = fk(z), ∀z ∈ Bρj (zj) ∩Bρk(zk)

then there is a unique holomorphic continuation on⋃
j∈N

Bρj (zj)

Definition 10.29 (Analytic continuation along curves). Let γ : [t0, t1] → C be a continuous
curve and

f(z) =
∞∑
n=0

an(z − z0)
n

a converging power series around z0 = γ(t0). Then the family of functions

ft(z) :=

∞∑
n=0

an(t)(z − γ(t))n, t ∈ [t0, t1]

is an analytic continuation of f along γ if
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� ft0 = f

� ∀t ∈ [t0, t1] exists a ϵ > 0 such that for all |τ | < ϵ the functions ft and fmin{t,τ,t1} are
compatible.

Example 10.30 (Complex Logarithm). The family

Lt(z) := it+

∞∑
n=1

(−1)n

n

(
eitz − 1

)n
, t ∈ [0,∞)

is an analytic continuation of the main branch of the complex logarithm L0(z) = Log(z)
along the unit circle. This yields the secondary branches of the complex logarithm:

L2πn(z) = 2πin+ Log(z)

10.4 Laurent Series

Definition 10.31 (Classification of isolated singularities). Let f : U → C and U ⊂ C open.
Then z0 ∈ C \ {U} is said to be an isolated singularity if there exists an ϵ > 0 such that
Bϵ(z0) \ {z0} ⊂ U .

An isolated singularity z0 is said to be

(i) removable if f can be analytically continued on U ∪ {z0}

(ii) a pole if ∃m ≥ 1 such that
(z − z0)

mf(z)

has a removable singularity in z0. The smallest such m is the order of the pole.

(iii) essential if it is neither removable nor a pole of finite degree.

Example 10.32. (i) The function f(z) = sin z
z is holomorphic on C \ {0}, and has a re-

movable singularity in z0 = 0. An analytic continuation of f on all of C is given
by

z 7−→
∞∑
n=0

(−1)n
z2n

(2n+ 1)!

(ii) Let g : U → C be holomorphic with g(z0) ̸= 0 for z0 ∈ U . The function

f(z) =
g(z)

(z − z0)m

has a pole of m-th degree in z0.
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(iii) Consider the function

f : C \ {0} −→ C

z 7−→ e
1
z

f has an essential singularity in z0 = 0. The power series representation of f is

f(z) =

∞∑
n=0

1

n!

1

zn

This doesn’t remove the sungularity in z0, and the pole is of infinite order

zk|f(z)| z→0−−−→ ∞, ∀k ∈ N

Theorem 10.33 (Riemann’s Theorem). An isolated singularity z0 ∈ U of a holomorphic
function f : U \ {z0} → C is removable if and only if f is bounded in a punctured neigh-
bourhood of z0, i.e.

∃ϵ > 0, c ≥ 0 : |f(z)| ≤ c ∀z ∈ {ζ ∈ C | 0 < |ζ − z0| < ϵ}

Proof. If f can be analytically continued on U ∪ {z0}, then this continuation is continuous
in z0 and thus bounded in a neighbourhood of z0. Inversely, if there exists some c ≥ 0 and
ϵ > 0 such that

|f(z)| ≤ c ∀z ∈ {ζ ∈ C | 0 < |ζ − z0| < ϵ} (10.35)

Define the function

g : U −→ C

z 7−→

{
(z − z0)

2f(z), z ̸= z0

0, z = z0

(10.36)

Then

lim
z→z0

|g(z)− g(z0)|
|z − z0|

= lim
z→z0

|z − z0|2|f(z)|
|z − z0|

= lim
z→z0

(|z − z0||f(z)|) = 0 (10.37)

Thus g is holomorphic on U with g(z0) = g′(z0) = 0, meaning that

g(z) =
∞∑
n=2

cn(z − z0)
n (10.38)

with cn ∈ C. So the function

f̃ : U −→ C (10.39)

z 7−→
∞∑
n=2

cn(z − z0)
n−2 =

∞∑
n=0

cn+2(z − zn)
n (10.40)

is a holomorphic continuation of f on U ∪ {z0}.
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Definition 10.34 (Laurent Series). If we define the coefficients cn ∈ C for n ∈ Z, and
z, z0 ∈ C, then the series

∑
n∈Z

cn(z − z0)
n :=

∞∑
n=1

c−n(z − z0)
−n

︸ ︷︷ ︸
Analytic part

+

∞∑
n=0

cn(z − z0)
n

︸ ︷︷ ︸
Principal part

is said to be a Laurent series. It converges absolutely if the parts do so.
If 1

r ∈ [0,∞] is the convergence radius of the principal part and R ∈ [0,∞] the conver-
gence radius of the analytic branch, then the Laurent series converges on the annulus

Kr,R(z0) := {z ∈ C | r < |z − z0| < R}

and is holomorphic.

Lemma 10.35. If the series f(z) :=
∑

n∈Z cn(z − z0)
n converges on Kr,R(z0), then for

ρ ∈ (r,R)

cn =
1

2πi

�
|z−z0|=ρ

f(z)

(z − z0)n+1
dz , n ∈ Z

Proof. Due to the uniform convergence of the series on Kr,R(z0), we have

�
|z−z0|=ρ

f(z)

(z − z0)n+1
dz =

∑
k∈Z

ck

�
|z−z0|=ρ

(z − z0)
k−n−1 dz

=
∑
k∈Z

ck · 2πiδk−n−1,−1 = 2πi · cn
(10.41)

with δi,j the Kronecker delta, defined as

δi,j :=

{
1, i = j

0, i ̸= j
(10.42)

Theorem 10.36. Let f : Kr,R(z0) → C be holomorphic, then

f(z) =
∑
n∈Z

cn(z − z0)
n

with

cn =
1

2πi

�
|z−z0|=ρ

f(z)

(z − z0)n+1
dz , n ∈ Z, ρ ∈ (r,R)

Proof. W.l.o.g. we set z0 = 0. Similar to the proof of Cauchy’s theorem, we can prove
Cauchy’s theorem for annuli. To do that we define the following integration path
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z0

r

R

z ϵ

z0

r

R

z

δ

δ

The two parallel path segments in the right figure are actually overlapping. They have been
drawn next to each other for visual clarity. Now we can write

f(z) =
1

2πi

�
|ζ−z|=ϵ

f(ζ)

ζ − z
dζ

=
1

2πi

�
|ζ|=R−δ

f(ζ)

ζ − z
dζ − 1

2πi

�
|ζ|=r+δ

f(ζ)

ζ − z
dζ

=
1

2πi

�
|ζ|=R−δ

f(ζ)

ζ

1

1− z
ζ

dζ +
1

2πi

1

z

�
|ζ|=r+δ

f(ζ)
1

1− ζ
z

dζ

(10.43)

We can now make use of the geometric series:

1

1− z
ζ

=
∞∑
n=0

(
z

ζ

)n
, |z| < |ζ| (10.44a)

1

1− ζ
z

=
∞∑
n=0

(
ζ

z

)n
, |ζ| < |z| (10.44b)

Thus we get

f(z) =
1

2πi

�
|ζ|=R−δ

f(ζ)

ζ

∞∑
n=0

zn

ζn
dζ +

1

2πi

1

z

�
|ζ|=r+δ

f(ζ)
∞∑
n=0

ζn

zn
dζ

=
∞∑
n=0

zn

(
1

2πi

�
|ζ|=R−δ

f(ζ)

ζn+1
dζ

)
+

∞∑
n=0

1

zn+1

(
1

2πi

�
|ζ|=r+δ

f(ζ)ζn dζ

)

=
∞∑
n=0

cnz
n +

∞∑
n=1

z−n

(
1

2πi

�
|ζ|=r+δ

f(ζ)

ζ−n+1
dζ

)
︸ ︷︷ ︸

=c−n

(10.45)
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Example 10.37. Consider

f(z) =
1

z(z − 1)
=

1

z − 1
− 1

z

Using the geometric series we can then find for K0,1(0)

f(z) = −1

z
−

∞∑
n=0

zn

the Laurent series of f around z0 = 0. For K0,1(1) we get

f(z) =
1

z − 1
− 1

z − 1 + 1
=

1

z − 1
− 1

1− (1− z)

=
1

z − 1︸ ︷︷ ︸
Principal part

−
∞∑
n=0

(1− z)n︸ ︷︷ ︸
Analytic part

Example 10.38.

f(z) = e
1
z =

∞∑
n=0

1

n!

(
1

z

)n
= 1 +

∞∑
n=1

1

n!

1

zn︸ ︷︷ ︸
Principal part

converges on K0,∞(0).

Theorem 10.39. If f : U \{z0} → C has an essential singularity in z0 ∈ U , then for every
ϵ > 0 the image f(Bϵ(z0) \ {z0}) is dense in C, i.e.

∀α ∈ C ∃ (zn) ⊂ U \ {z0} : zn −→ z0 =⇒ f(zn) −→ α

Proof. Left as an exercise for the reader.

Remark 10.40. We have essentially noticed three things:

(i)

f has a removable singularity in z0

⇐⇒ f is bounded in a neighbourhood of z0

⇐⇒ lim
|z−z0|→0

f(z) exists and is bounded

(ii)

f has a pole of order m ≥ 1 in z0

⇐⇒ lim
|z−z0|→0

|f(z)| = ∞ and lim
|z−z0|→0

(z − z0)
mf(z) <∞
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(iii)

f has an essential singularity in z0

⇐⇒ the set of accumulation points of f(z) for z −→ z0 is all of C

Definition 10.41. Let U ⊂ C be a domain. For holomorphic g, h : U → C with h ̸= 0 the
function

f : U \ {z ∈ U |h(z) = 0} −→ C

z 7−→ g(z)

h(z)

is said to be a meromorphic function. Meromorphic functions are holomorphic on
U \ {h(z) = 0}. If z0 ∈ U a root of order m ∈ N of h and a root of order k ∈ N0 of
g, then the isolated singularity in z0 of f is

� removable for k ≥ m

� a pole of order m− k for k < m

10.5 Residual Calculus

Definition 10.42 (Residue). Let r > 0, z0 ∈ U and f : K0,r(z0) → C holomorphic. Then
for ρ ∈ (0, r) the number

Resz0 f =
1

2πi

�
∂Bρ(z0)

f(z) dz

is said to be the residue of f at z0.

Lemma 10.43. If f is a function as defined in Definition 10.42 with the Laurent series
expansion f(z) =

∑
n∈Z cn(z − z0)

n, then

Resz0 f = c−1

Proof.

Resz0 f =
1

2πi

�
∂Br(z0)

f(z)dz =
∑
n∈Z

cn
1

2πi

�
∂Br(z0)

(z − z0)
ndz︸ ︷︷ ︸

=δn,−1

(10.46)

Example 10.44. If f has a pole of order h at z0, then the Laurent series of f around z0 is

f(z) = a−k
1

(z − z0)h
+ a−(h−1)

1

(z − z0)h−1
+ · · ·+ a−1

1

(z − z0)
+

∞∑
n=0

an(z − z0)
n
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and thus

(z − z0)
kf(z) = a−k + a−(k−1)(z − z0) + · · · a−1(z − z0)

h−1 +
∞∑
n=0

an(z − z0)
n+h

From this follows

Resz0 f = lim
z→z0

1

(h− 1)!

dh−1

dzh−1
(z − z0)

hf(z)

Example 10.45. If f(z) is meromorphic with a root of order 1 of h at z0 and g(z0) ̸= 0, then

Resz0 f = lim
z→z0

(z − z0)f(z) = lim
z→z0

(z − z0)

h(z0)
g(z0)

= lim
z→z0

z − z0
h(z)− h(z0)

g(z0) =
g(z0)

h′(z0)

Example 10.46. Consider f(z) = 1
sin z . f is meromorphic with poles of order 1 in

zn = nπ, n ∈ Z. With the previous example we can thus get

Reszn f =
1

cos(zn)
= (−1)n

Theorem 10.47 (Residue Theorem). Let U ⊂ C be open and S := {z1, · · · , zn} ⊂ U a set
of pairwise disjoint points. Let γ : [0, 1] → U \ S be a closed, piecewise differentiable curve
without intersections that is null-homotopic in U and surrounds S in a positive orientation.
Then for any holomorphic function f : U \ S −→ C the following holds

�
γ
f(z)dz = 2πi

n∑
j=1

Reszj f

Heuristic Proof. γ is null-homotopic, so we can choose arbitrary curves around the residues.
Consider a path γ̃ that surrounds every residue with a disk of radius ρi, and connects them
to each other using straight segments that cancel each other in the limit. Then

�
γ
f(z)dz =

�
γ̃
f(z)dz =

n∑
j=1

�
∂Bρj (z0)

f(z)dz = 2πi

n∑
j=1

Reszj f

Example 10.48. The residue theorem can be used to calculate integrals such as
� ∞

−∞

1

1 + x4
dx

This integral is to be interpreted as

� ∞

−∞

1

1 + x4
dx = lim

R→∞

� R

−R

dx

1 + x4
= lim

R→∞
IR
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The poles of the integrand in C are the roots of the numerator:

1 + z4 = 0 ⇐⇒ z4 = −1 = e−iπ

Which gives us the position of the isolated singularities

z1 = ei
π
4 z2 = ei

3π
4 z3 = ei

5π
4 z4 = ei

7π
4

We want to integrate along the following path

Re

Im

z1z2

z3 z4

−R R

γR

Using the residue theorem we get

IR +

�
γR

dz

1 + z4
= 2πi

2∑
j=1

Reszj f

So our next task is to calculate the residues of the poles z1 and z2.

Resz1

(
1

1 + z4

)
= lim

z→z1
(z − z1)

1

1 + z4
= lim

z→z1

(
1

z − z2

1

z − z3

1

z − z4

)
=

1

z1 − z2

1

z1 − z3

1

z1 − z4
=

1

z31

(
1

1− z2
z1

1

1− z3
z1

1

1− z4
z1

)
= e−i

3π
4

1

1− ei
π
2︸ ︷︷ ︸

1
1−i

1

1− eiπ︸ ︷︷ ︸
1
2

1

1− ei
3π
2︸ ︷︷ ︸

1
1+i

= e−i
3π
4
1

2

(
1

1 + i

1

1− i

)
=

1

4
ei

3π
4
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Analogously for z2:

Resz2 f =
1

4
e−i

π
4

Thus we can evaluate the sum

2πi
2∑
j=1

Reszj f = 2πi

(
e−i

3π
4

4
+
e−i

π
4

4

)

=
πi

2
e−i

π
4︸︷︷︸

1−i√
2

(
1 + e−i

π
2

)
︸ ︷︷ ︸

1−i

=
πi

2

(1− i)√
2

(1− i) =
π√
2

We also need to calculate the integral along the curve γR. We use the parametrization

γR(t) = Reit, t ∈ [0, π]

∣∣∣∣�
γR

1

1 + z4
dz

∣∣∣∣ = ∣∣∣∣� π

0

1

1 +R4e4it
Rieitdt

∣∣∣∣ ≤� π

0

R

|1 +R4e4it|dt

=

� π

0

1

R3

1∣∣e4it + 1
R

∣∣︸ ︷︷ ︸
≤1

≤ 1

R3
π

R→∞−−−→ 0

So in total, we get �
R

dx

1 + x4
= lim

R→∞
IR = 2πi

2∑
j=1

Reszj f =
π√
2

Example 10.49 (Fourier integrals of rational functions). We want to inspect Fourier integrals
of the form � ∞

−∞

P (x)

Q(x)
eixdx

where P and Q are polynomials such that the degree of Q is greater than the degree of P .
The roots z1, · · · , zn ∈ C of Q can not lie on the real axis. For the integration we’ll use the
same path as in the previous example. Using the residue theorem we get

� ∞

−∞

P (z)

Q(z)
eizdz +

�
γR

P (z)

Q(z)
eizdz = 2πi

∑
Im(zj)>0

Reszj

(
P (z)

Q(z)
eiz
)



10.6. APPLICATION: POTENTIAL THEORY 256

The integral along γR doesn’t contribute anything to the total calculation:∣∣∣∣�
γR

P (z)

Q(z)
eizdz

∣∣∣∣ =∣∣∣∣� π

0

P (Reit)

Q(Reit)
eiRe

it
dt

∣∣∣∣
≤
� π

0

∣∣P (Reit)∣∣
|Q(Reit)|

∣∣∣eiReit∣∣∣dt
I want to insert a quick calculation:∣∣∣eiReit∣∣∣ = ∣∣eiR cos te−R sin t

∣∣ = e−R sin t, t ∈ (0, π)

Using this we can continue our calculations

≤
� π

0

∣∣P (Reit)∣∣
|Q(Reit)|︸ ︷︷ ︸
≤M, M>0

e−R sin tdt

≤M
� π

0
e−R sin t︸ ︷︷ ︸

≤1

dt
R→∞−−−→ 0

Thus we showed that� ∞

−∞

P (x)

Q(x)︸ ︷︷ ︸
f(x)

eixdx = 2πi
∑

Im(zj)>0

Reszj

(
P (z)

Q(z)
eiz
)

10.6 Application: Potential Theory

Definition 10.50 (Harmonic Function). A function ϕ : U → R with U ⊂ Rd open, d ∈ N
is said to be harmonic if

∇2ϕ(x) =
d∑
j=1

∂2jϕ(x) = 0, x ∈ Rd

Theorem 10.51. If f : U → C, U ⊂ C is holomorphic, then Re(f) and Im(f) are harmonic
on U .

Proof. If f is holomorphic on U , then f is also analytic, which means it is infinitely differen-
tiable on U . Using the Cauchy-Riemann equations the desired statement can be shown.

Example 10.52 (Potential problems in R2). Let U ⊂ R2 be a domain with smooth boundary.
A typical problem from electrostatics is

∇2ϕ(x, y) = 0 (x, y) ∈ U

ϕ(x, y) = ϕ0(x, y) (x, y) ∈ ∂U
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where ϕ : U → R is the desired function with given boundary values ϕ0 ∈ C(∂U,R). Such
a boundary value problem is known as the Dirichlet problem.

An important example is the Dirichlet problem for the upper half plane{
(x, y) ∈ R2

∣∣ y > 0
}

with ϕ0 ∈ C(R). We want to assume that ϕ0 decreases like

|ϕ0(x)| ≤
c

1 + |x|
, x ∈ R, c > 0

near infinity.

Theorem 10.53 (Poisson integral formula for the upper half plane). The function

ϕ(x, y) =
1

π

� ∞

−∞
ϕ0(t)

y

(x− t)2 + y2
dt

solves the Dirichlet problem for the upper half plane

∇2ϕ(x, y) = 0 (x, y) ∈
{
(x, y) ∈ R2

∣∣ y > 0
}

ϕ(x, 0) = ϕ0(x) x ∈ R

Proof. The function

f(z) :=
1

πi

� ∞

−∞
ϕ0(t)

1

t− z
dt (10.47)

is holomorphic on C+ with

Re(f(x+ iy)) =
1

π

� ∞

−∞
ϕ0(t) Im

(
1

t− z

)
dt (10.48)

We find that

Im

(
1

t− x− iy

)
= Im

(
1

(t− x)− iy

)
= Im

(
(t− x) + iy

(t− x)2 + y2

)
=

y

(t− x)2 + y2
(10.49)

and thus
Re(f(x+ iy)) = ϕ(x, y) (10.50)

for y > 0. However according to Theorem 10.51 this means that ϕ is harmonic for y > 0:

∇2ϕ(x, y) = 0, ∀(x, y) ∈
{
(x, y) ∈ R2

∣∣ y > 0
}

(10.51)

It remains to be shown that the boundary values are being accounted for. For that we
rewrite the Poisson integral formula as

ϕ(x, y) = (ϕ0 ∗ Py)(x) :=
�
R
ϕ(t)Py(x− t) dt (10.52)

with the Poisson kernel Py(x) =
1
π

y
x2+y2

. We will finish this proof later.
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Definition 10.54 (Convolution). We define

L1(Rd) :=
{
f : Rd → R measurable

∣∣∣∣ �
Rd

|f(x)|dx <∞
}

the Lebesgue space of absolutely integrable functions. It is a complete, normed space with

∥f∥L1 =

�
Rd

|f | dx

It induces a metric space with the metric

d(f, g) := ∥f − g∥L1

Let (fn) ⊂ L1(Rd). This sequence converges to f ∈ L1(Rd) if

∥fn − f∥L1
n→∞−−−→ 0

Since L1 is complete, every Cauchy sequence converges. For f, g ∈ L1(Rd)

(f ∗ g)(x) :=
�
Rd

f(y)g(x− y) dy

is said to be the convolution of f and g.

Theorem 10.55. The convolution is well defined as a mapping

∗ : L1(Rd)× L1(Rd) −→ L1(Rd)

with ∥f ∗ g∥L1 ≤ ∥f∥L1∥g∥L1. The space (L1(Rd), ∗) is a commutative and associative
algebra, i.e. ∀f, g, h ∈ L1(Rd):

(i) f ∗ g = g ∗ f

(ii) (f ∗ g) ∗ h = f ∗ (g ∗ h)

(iii) f ∗ (g + h) = f ∗ g + f ∗ h

(iv) ∀λ ∈ C : λ(f ∗ g) = (λf) ∗ g = f ∗ (λg)

Proof. We will only be proving that the mapping is well defined and that the inequality
holds. First, let

f, g ∈ L1 ∩ L∞ :=

{
f : Rd → R measurable

∣∣∣∣∣ ess supx∈Rd

|f(x)| <∞

}
(10.53)

Then the convolution f ∗ g is well defined (pointwise almost everwhere), because

|f(y)g(x− y)| ≤x
g ∈ L∞

C|f(y)| =⇒ f ∈ L1 =⇒ integrable (10.54)
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We then find that

∥f ∗ g∥L1 =

�
Rd

|(f ∗ g)(x)|dx =

�
Rd

∣∣∣∣�
Rd

f(y)g(x− y) dy

∣∣∣∣dx
≤
�
Rd

�
Rd

|f(y)||g(x− y)| dy dx

=

�
Rd

|f(y)|
�
Rd

|g(x− y)| dx dy

(10.55)

By substituting z = x− y we get

=

�
Rd

|f(y)|
�
Rd

|g(z)|dz dy = ∥f∥L1∥g∥L1 (10.56)

For more general f, g ∈ L1 we can approximate f via a function sequence

fn := min {f, n} ∈ L1 ∩ L∞ (10.57)

Then fn
n→∞−−−→ f in L1, since

|fn(x)| ≤ |f(x)| ∀x ∈ Rd (10.58)

By using the previous results we can conclude

∥fn ∗ g − fm ∗ g∥L1 = ∥(fn − fm) ∗ g∥L1 ≤ ∥fn − fm∥L1︸ ︷︷ ︸
n,m→∞−−−→0

∥g∥L1 (10.59)

So (fn ∗ g)n∈N is a Cauchy sequence in L1 and thus

f ∗ g := lim
n→∞

fn ∗ g (10.60)

Remark 10.56. One can show that (L1(Rd), ∗) does not have a neutral element, i.e.

∄δ ∈ L1(Rd) : f ∗ δ = f ∀f ∈ L1(Rd)

Definition 10.57 (Good kernels, Approximative identity). A sequence of convolution ker-
nels (Kn) ⊂ L1(Rd) is said to be a class of good kernels if

∀n ∈ N :

�
Rd

Kn(x) dx = 1

∃M > 0 ∀n ∈ N :

�
Rd

|Kn(x)| dx ≤M

∀δ > 0 : lim
n→∞

�
|x|>δ

|Kn(x)|dx = 0

A sequence of good kernels with Kn ≥ 0 for all n ∈ N is called Dirac sequence.
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Theorem 10.58 (Smoothing by convolution with good kernels). Let (Kn) ⊂ L1(Rd) be a
class of good kernels. Then:

(i) If f ∈ L1(Rd) then
∥f ∗Kn − f∥L1(Rd) = 0

(ii) If Kn ⊂ Cm(Rd) ∀n ∈ N and if the partial derivatives ∂αKn, |α| ≤ m are bounded,
then

f ∗Kn ∈ Cm(Rd) and ∂α(f ∗Kn) = f ∗ ∂αKn

(iii) If f ∈ C(Rd) is bounded, then

lim
n→∞

(f ∗Kn)(x) = f(x), ∀x ∈ Rd

Example 10.59. Let (ϵn) ⊂ (0,∞) be a null sequence. Then

Poisson kernels Pk(x) :=
1

π

ϵk
x2 + ϵ2k

Gauß kernels δk(x) := (2πϵ2k)
− d

2 e
− |x|2

2ϵ2
k , x ∈ Rd

are classes of good kernels. Now let 0 ≤ ϕ ∈ L1(Rd) with ∥ϕ∥L1 = 1. Then

ϕk(x) =
1

ϵdk
ϕ
(x
ϵ

)
is a class of good kernels. We can show that

Pϵk(x) =
1

π

1

ϵ2k

ϵk(
x
ϵk

)2
+ 1

=
1

ϵk

1

π

1(
x
ϵk

)2
+ 1

=
1

ϵk
P

(
x

ϵk

)

One has to show that

P (x) =
1

π

1

1 + x2
∈ L1

with �
R
P (x) dx = 1

To do that we can calculate�
R
P (x)︸ ︷︷ ︸
≥0

dx =
1

π

�
R

1

1 + x2
dx =

1

π
(arctan(∞)− arctan(−∞)) =

1

π

(π
2
−
(
−π
2

))
= 1
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Proof of Theorem 10.58 (iii). Consider f ∗Kn(x)− f(x). We can calculate

f ∗Kn(x)− f(x) =

�
R
f(x− y)Kn(y) dy − f(x)

�
Rd

Kn(y) dy︸ ︷︷ ︸
=1

=

�
Rd

(f(x− y)− f(x))Kn(y) dy

(10.61)

Since f is continuous in x,

∀ϵ > 0 ∃δ > 0 : |f(x− y)− f(x)| < ϵ ∀|y| < δ (10.62)

From the definition of good kernels follows that

∃M > 0 :

�
Rd

|Kn(y)|dy ≤M (10.63)

which lets us conclude�
|y|<δ

|f(x− y)− f(x)|︸ ︷︷ ︸
<ϵ

|Kn(y)| dy < ϵ

�
|y|<δ

|Kn(x)|dy ≤ ϵM (10.64)

By utilising the boundedness of f and (iii) from the definition of good kernels we can show

�
|y|≥δ

|f(x− y)− f(x)|︸ ︷︷ ︸
≤2c

|Kn(y)| dy ≤ 2c

�
|y|≥δ

|Kn(y)|dy︸ ︷︷ ︸
ϵ

≤ 2cϵ (10.65)

We can now use the previous results to show that

|f ∗Kn(x)− f(x)| ≤
�
Rd

|f(x− y)− f(x)||Kn(y)|dy

=

�
|y|<δ

|f(x− y)− f(x)||Kn(y)|dy︸ ︷︷ ︸
≤Mϵ

+

�
|y|≥δ

|f(x− y)− f(x)||Kn(y)| dy︸ ︷︷ ︸
≤2cϵ

≤ ϵ(M + 2c)

(10.66)

Since ϵ can be chosen arbitrarily it follows that

f ∗Kn(x)
n→∞−−−→ f(x) ∀x ∈ Rd (10.67)

With this it is now easy to finish the proof for Theorem 10.53. We had seen that

ϕ(x, y) =

�
R
ϕ0(t)Py(x− t) dt = (ϕ0 ∗ Py)(x) (10.68)
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Now let (ϵn) ⊂ (0,∞) be a null sequence. Since ϕ0 is continuous and bounded, and since
(Pϵn) ⊂ L1(Rd) is a class of good kernels, it follows from what we have just proven that

lim
n→∞

(ϕ0 ∗ Pϵn)(x) = ϕ0(x) (10.69)

All in all it follows that

∇2ϕ(x, y) = 0 x ∈ R, y > 0 (10.70)

ϕ(x, 0)
y→0−−−→ ϕ0(x) ∀x ∈ R

Remark 10.60. If ψ : U → C is holomorphic, U ⊂ C open and V ⊂ U a domain, then ψ(V )
is also a domain with ψ(∂V ) = ∂ψ(V ). (Open mapping principle). Then the solution to
the Dirichlet problem on V

∇2ϕ = 0 on V

ϕ = ϕ0 on ∂V

can be obtained through a holonomic transformation ψ : V → C+ with ϕ(V ) = C+ of the
Dirichlet problem on the upper half plane.
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11.1 Fourier Transform on L1(Rd)

Definition 11.1. For f ∈ L1(Rd) the function

f̂ : Rd −→ C

k 7−→ 1

(2π)
d
2

�
Rd

e−ik·xf(x) dx

is said to be the Fourier transform of f . Sometimes it is written as (Ff)(k).

Remark 11.2. (i) There are several alternative conventions regarding sign and phase of
the transform.

f̂(k) =

�
Rd

e−2πik·xf(x) dx

is also a valid definition in other scientific fields, however we will stick to the former
definition throughout this script.

(ii) k · x = ⟨k|x⟩ =
∑d

j=1 kjxj

(iii) Because
∣∣eik·x∣∣ = 1, the integral exists for any f ∈ L1(Rd).

Example 11.3. Consider the function

f(x) =
1√
2πσ2

e−
(x−α)2

2σ2 , α ∈ C, σ > 0

The Fourier transform is

f̂(k) =
1

2πσ

�
R
e−ikxe−

(x−α)2

2σ2 dx

=
1

2πσ
e−ikαe−

σ2

2
k2
�
R
e−

(x−α+ikσ2)2

2σ2 dx

=
1

2πσ
e−ikαe−

σ2k2

2

� ∞

−∞
e−

x2

2σ2 dx

=
1√
2π
e−ikαe−

σ2k2

2

Example 11.4. The previous example can be generalized for higher dimensions:

f(x) =
1

(2πσ2)
d
2

e−
|x|2

2σ2 , x ∈ Rd

With the Fourier transform

f̂(k) =
1

(2π)
d
2

e−
σ2|k|2

2 , k ∈ Rd
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Example 11.5. Consider the indicator function

χ(x) =

{
1, |x| ≤ a

0, |x| > a
, x ∈ R

It has the Fourier transform

f̂(k) =
1√
2π

�
R
e−ikxχ(x) dx =

1√
2π

[
e−ikx

−ik

]a
−a

=

√
2

π

sin(ka)

k

Definition 11.6. For f ∈ L1(Rd) the function

f̌(x) :=
1

(2π)
d
2

�
Rd

f(k)eikx dk

defines the inverse Fourier transform of f .

Example 11.7. Let’s revisit Example 11.3, where we found that

f̂(k) =
1√
2π
e−iαke−

σ2k2

2

The inverse Fourier transform of that function is

ˇ̂
f(k) =

1√
2πσ2

e−
1

2σ2 (x−α)2 = f(x)

Theorem 11.8 (Fourier inversion theorem). Let f, f̂ ∈ L1(Rd). Then
ˇ̂
f = f .

Proof. To prove this theorem we will use Theorem 10.58 and the following lemma:

If fn
n→∞−−−→ f , then there exists a subsequence ((fn)k)k∈N with

lim
k→∞

fnk
(x) = f(x), ∀x ∈ Rd

Heuristically this theorem can be proven by considering

ˇ̂
f(x) =

1

(2π)
d
2

�
Rd

f̂(k)eikx dk =
1

(2π)
d
2

�
Rd

(�
Rd

f(y)e−iky dy

)
eikx dk

=
1

(2π)
d
2

�
Rd

�
Rd

f(y)e−ik(y−x) dk dy

(11.1)

However, to show this rigorously we should first consider the inversion formula for f ∗ δl,
with

δl(x) =

(
l2

2π

) d
2

e−
l2|x|2

2 , l ∈ N (11.2)
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The Fourier transform is

δ̂l(k) =

(
1

2π

) d
2

e−
|k|2

2l2 (11.3)

We’ve already shown in a previous example that the inversion theorem applies to this
function, so we can write

(f ∗ δl)(x) =
�
Rd

f(y)δl(x− y) dy =

�
Rd

f(y)
ˇ̂
δl(x− y) dy

=

�
Rd

f(y)

(
1

(2π)
d
2

�
Rd

eik(x−y)δ̂l(k) dk

)
dy

=

�
Rd

(
1

(2π)
d
2

�
Rd

f(y)e−iky dy

)
eikxδ̂l(k) dk

=

�
Rd

eikxf̂(k)e−
|k|
2l2

dk

(2π)
d
2

=: F̌l(x)

(11.4)

Next we want to use the fact that (δl)l∈N is a class of good kernels. This means that

lim
l→∞

∥δl ∗ f − f∥L1 = 0 (11.5)

or in other words
δl ∗ f

l→∞−−−→ f (11.6)

Now using the lemma above we can conclude that there exists a subsequence (δlj ∗f)j∈N that
converges to f(x) for almost every x. We can apply the dominated convergence theorem to
find that

lim
l→∞

F̌l(x) =

�
Rd

eikxf̂(k) lim
l→∞

e−
|k|2

2l2
dk

(2π)
d
2

=
ˇ̂
f(x) (11.7)

Finally, this lets us conclude

f(x) = lim
j→∞

δlj ∗ f(x) = lim
j→∞

F̌lj (x) =
ˇ̂
f, for a.e. x ∈ Rd (11.8)

Theorem 11.9 (Algebraisation of the derivative). Let f ∈ Cn(Rd) and ∂αf ∈ L1(Rd) for
all α ∈ Nd0 with |α| < m. Then

∂̂af(k) = (ik)αf̂

If α = (α1, · · · , αd) and |α| =
∑d

j=1 αj ≤ m, then the interpretation of that is

F

(
∂|α|

∂xα1
1 · · · ∂xαd

d

f

)
(k) = i|α|

(
kα1
1 · · · kαd

d

)
f̂(k)
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Proof. We will only prove the one-dimensional statement. If m = 1 we receive via partial
integration

f̂ ′(k) =
1√
2π

�
R
f ′(x)e−ikx dx =

1√
2π

[(
f(x)e−ikx

)∞
−∞

−
� ∞

−∞
f(x)

d

dx

(
e−ikx

)
dx

]
(11.9)

Since we assumed f ′ ∈ L1, the limit limx→±∞ f(x) exists. We can write

f(x) = f(0) +

� x

0
f ′(t) dt (11.10)

=⇒ lim
x→±∞

f(x) = f(0) + lim
x→±∞

� x

0
f ′(t) dt (11.11)

Furthermore this limit has to be equal to 0, so

lim
|x|→∞

f(x) = 0 (11.12)

=⇒
[
f(x)e−ikx

]∞
−∞

= lim
x→∞

e−ikxf(x)− lim
x→∞

f(x)eikx = 0 (11.13)

This leads us to

f̂ ′(k) = ik
1√
2π

�
R
f(x)e−ikx dx = ikf̂(k) (11.14)

The proof for m > 1 can be found via induction.

Theorem 11.10. Let f ∈ L1(Rd) and m ∈ N0. If

x 7−→ xαf(x) ∈ L1(Rd), ∀α ∈ Nd0, |α| ≤ m

then f̂ ∈ Cm(Rd) and
∂αf̂(k) = F [(−ix)αf(x)] (k)

Proof. Again we will only consider the one-dimensional case. Assume m = 1 (the proof for
m > 1 follows from induction). We can write out the difference quotient for f̂ at k ∈ R

f̂(k + h)− f̂(k)

h
=

1

h

�
R
f(x)

(
e−i(k+h)x − e−ikx

) dx√
2π
, h ∈ R \ {0} (11.15)

However, because ∣∣∣∣e−ixh − 1

h

∣∣∣∣ ≤ |x|, ∀x ∈ R, h ̸= 0 (11.16)

and because we assumed that xf ∈ L1, we can use the dominated convergence theorem to
conclude

lim
h→0

f̂(k + h)− f̂(k)

h
=

1√
2π

�
R
f(x)e−ikx lim

h→0

(
e−ixk − 1

h

)
︸ ︷︷ ︸

d
dx(e−ikx)

∣∣
x=0

dx

=
1√
2π

�
R
(−ixf(x))e−ikx dx = −̂ixf(k)

(11.17)
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Theorem 11.11. Let f, g ∈ L1(Rd). Then

f̂ ∗ g(k) = (2π)
d
2 f̂(k)ĝ(k)

Proof. Without proof.

Example 11.12 (Solving inhomogeneous, linear ODEs). We want to find the general solution
of

ẍ− x = f, f, f̂ ∈ L1(R)

The solution space of this equation is

L = Lhom + xs

The space of homogeneous solutions Lhom is equal to span {ex, e−x}, and xs is one solution
of the inhomogeneous equation. Let ϕ denote the Fourier transform of xs, so

ϕ(k) =
1√
2π

�
R
xs(t)e

−ikt dt

Then ϕ satisfies the equation
−k2ϕ(k)− ϕ(k) = f̂(k)

Or rearraranged to solve for ϕ

ϕ(k) = − 1

1 + k2
f̂(k), k ∈ R

We can then rewrite ϕ(k) as

ϕ(k) = −ĝ(k)f̂(k) with ĝ =
1

1 + k2
∈ L1(R)

and then use the previous theorems to conclude

xs(t) = ϕ̌(t) = (2π)
1
2F−1

[
f̂ ĝ(2π)

1
2

]
︸ ︷︷ ︸

f̂∗g

(t) = − 1√
2π

(f ∗ g)(t)

11.2 Fourier Transform on L2(Rd)

Definition 11.13 (Hilbert space). For this section we introduce the Hilbert space of
Lebesgue square-integrable functions

L2(Rd) :=
{
f : Rd → C measurable

∣∣∣∣ ∥f∥2L2 =

�
Rd

|f(x)|2 dx <∞
}

This space is also important in quantum mechanics, as wave functions are elements of L2.
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Definition 11.14. The space L2(Rd) is a Hilbert space, i.e. a complete, normed vector
space with an inner product

⟨f |g⟩ :=
�
Rd

f(x)g(x) dx

that has the following properties:

(i) ⟨f |f⟩ ≥ 0 and ⟨f |f⟩ = 0 ⇐⇒ f = 0

(ii) ⟨f |g⟩ = ⟨g|f⟩

(iii) ⟨f |g + λh⟩ = ⟨f |g⟩+ λ ⟨f |h⟩

(ii) and (iii) imply
⟨λf |g⟩ = λ ⟨f |g⟩

The inner product induces a norm

∥f∥2L2 = ⟨f |f⟩

=

�
R
f(x)f(x)︸ ︷︷ ︸

|f(x)|2

dx


Since the Fourier transform cannot directly be defined for L2(Rd), we will first consider the
space of rapidly decreasing functions, the so called Schwartz space S(Rd).

Definition 11.15 (Schwartz space). The Schwartz space S(Rd) is defined as the function
space

S(Rd) :=
{
f ∈ C∞(Rd)

∣∣∣x 7→ xβ∂αf bounded, ∀α, β ∈ Nd0
}

Example 11.16. (i) Smooth functions with compact support f ∈ C∞(Rd) are also ele-
ments of S(Rd), for example

f(x) =

exp
(
−
∑d

j=1
1

1−|xj |2

)
, |xj | < 1

0, else

(ii) For every polynomial p(x), the function

f(x) = p(x)e−|x|2

defines a function in S(Rd).
Remark 11.17. Because of the continuity and the rapid decrease towards infinity we can
find that

S(Rd) ⊂ L1(Rd) ∩ L2(Rd)

and one can show that S(Rd) is dense in L2(Rd), i.e.

∀f ∈ L2(Rd) ∃ (fn) ⊂ S(Rd) : ∥fn − f∥L2
n→∞−−−→ 0
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Theorem 11.18. Let f ∈ S(Rd). Then f̂ ∈ S(Rd) and the restriction of the Fourier
transform to S(Rd)

FS : S(Rd) −→ S(Rd)

is an isomorphism. Furthermore〈
f̂
∣∣∣ĝ〉 = ⟨f |g⟩ , ∀f, g ∈ S(Rd)

with the inner product

⟨f |g⟩ =
�
Rd

f(x)g(x) dx

Proof. To prove that f̂ ∈ S we use the fact that

kβ∂αf̂(k) = (−i)|α|+|β|FS

[
∂βxαf(k)

]
, k ∈ Rd, ∀α, β ∈ Nd0 (11.18)

Next we want to prove that FS is an isomorphism. This is trivial however since

∀f ∈ S(Rd) : FS
−1FS(f) = f (11.19)

To prove the final statement we can explicitly calculate〈
f̂
∣∣∣ĝ〉 =

�
Rd

f̂(k)ĝ(k) dk

=

�
Rd

(�
Rd

f(x)e−ikx dx
dx

(2π)
d
2

)
ĝ(x) dk

=

�
Rd

(�
Rd

f(x)eikx
dx

(2π)
d
2

)
ĝ(k) dk

=

�
Rd

f(x)

(�
Rd

ĝ(k)eikx
dk

(2π)
d
2

)
︸ ︷︷ ︸

ˇ̂g(x)=g(x)

dx

=

�
Rd

f(x)g(x) dx = ⟨f |g⟩

(11.20)

Remark 11.19. Since not all functions f ∈ L2(Rd) are integrable, the limit

lim
R→∞

�
|x|<R

f(x)e−ikx
dx

(2π)
d
2

= f̂(k)

doesn’t converge for every k ∈ Rd, only for almost every.
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Theorem 11.20. The Fourier transform FS can be uniquely and continuously continued
on L2(Rd). The resulting mapping

F : L2(Rd) −→ L2(Rd)

is linear and unitary, i.e. ∀f, g ∈ L2(Rd) we have

⟨F(f)|F(g)⟩ = ⟨f |g⟩

which is also known as the Plancherel identity.

Proof. Without proof.

Remark 11.21. The continuiuty of F doesn’t imply that f̂ is continuous. Secondly, the
Plancherel identity also yields

∥f∥L2 =
√
⟨f |f⟩ =

√〈
f̂
∣∣∣f̂〉 =

∥∥∥f̂∥∥∥
L2

11.3 Outlook: Tempered Distributions

Definition 11.22. A tempered distribution f is a continuous, linear mapping

f : S(Rd) −→ C

ϕ 7−→ f(ϕ) = (f, ϕ)

(
=

�
f(x)ϕ(x) dx

)
Theorem 11.23. Tempered distributions are linear, continuous mappings.

Proof. To prove linearity, let ϕ, ψ ∈ S(Rd) and λ ∈ C. Then

(f, ϕ+ λψ) = (f, ϕ) + λ(f, ψ) (11.21)

For the continuity, we want to consider any sequence (ϕn) ⊂ S(Rd) that converges to
ϕ ∈ S(Rd). I.e.

lim
n→∞

sup
x∈Rd

∣∣∣xβ∂α(ϕn(x)− ϕ(x))
∣∣∣ = 0, ∀α, β ∈ Nd0 (11.22)

Then we can conclude that
lim
n→∞

|(f, ϕn)− (f, ϕ)| = 0 (11.23)

Remark 11.24. The space of all tempered distributions is denoted as S ′(Rd).
Example 11.25. One important example is the Dirac deltra distribution:

δ : S(Rd) −→ C

It maps a function to its value at 0.

(δ, ϕ) =

�
δ(x)ϕ(x) dx = ϕ(0) ∈ C
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12.1 Linear Operators

Throughout this chapter X and Y will denote vector spaces over the same scalar field K.
Also, I want to quickly recap some normed vector spaces that we will use from here on out.

(i) The real numbers

X = R
∥x∥ = |x|, x ∈ R

(ii) The euclidian space

X = Rn

∥x∥ =

(
n∑
k=1

ξ2k

) 1
2

, x = (ξ1, · · · , ξn) ∈ Rn

(iii) The space of bounded sequences l∞

X = l∞ := {(ξk) ⊂ R | (ξk) bounded}
∥x∥l∞ = sup

k∈N
|ξk|, x = (ξn) ∈ l∞

(iv) The space of converging sequences c

X = c = {(ξk) ⊂ R | (ξk) is convergent}
∥x∥c = sup

k∈N
|ξk|, x = (ξn) ∈ c

c can be considered a subspace of l∞ because it is a subset of l∞ and its norm is just
a restriction of ∥·∥l∞ .

(v) The space of bounded functions B(A)

X = B(A) = {f : A ⊂ R → R | f bounded}
∥x∥∞ = sup

t∈A
|f(t)|, f ∈ B(A)

(vi) The space of continuous functions C(A)

X = C(A) = {f : A→ R | f continuous}
∥x∥C = max

t∈A
|f(t)|, f ∈ C(A)
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(vii) Sequence spaces lp, p ≥ 1

X = lp =

{
(ξn) ⊂ R

∣∣∣∣∣
∞∑
k=1

|ξk|p <∞

}

∥x∥lp =

( ∞∑
k=1

|ξk|p
) 1

p

, x = (ξn) ∈ lp

(viii) The space of Lebesgue measurable functions Lp(A), p ≥ 1

X = Lp(A) =

{
f : A→ R

∣∣∣∣�
A
|f(t)|p dt <∞

}
∥x∥Lp =

(�
A
|f(t)|p dt

) 1
p

, f ∈ Lp(A)

Definition 12.1. A linear operator T is a mapping

T : D(T ) ⊂ X −→ Y

such that

(i) The domain D(T ) is a subspace of X

(ii) ∀x, y ∈ D(T ), ∀α ∈ K : T (x+ αy) = Tx+ αTy

If Y = K, then T is said to be a linear functional.

Example 12.2. (i) Let X = Rn and Y = Rm. If A ∈ Rm×n then we can define

Tx = Ax, x ∈ Rn

such that for x = (ξ1, · · · , ξn) we have

Tx =

a11 · · · a1n
...

. . .
...

am1 · · · amn


ξ1...
ξn

 =

 η1
...
ηm


Then D(T ) = Rn and T is a linear operator.

(ii) Let X = C([a, b]) and Y = C([a, b]). Then

(Tx)(t) =

� t

α
x(s) ds , t ∈ [a, b]

defines a linear operator with D(T ) = C([a, b]).
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(iii) Consider X = C([a, b]) and Y = C([a, b]). We can define

(Tx)(t) = x′(t), t ∈ [a, b]

T is a linear operator with C([a, b]) ⊃ D(T ) = C1([a, b]).

(iv) Let X = Lp([a, b]) and Y = Lq([a, b]). Choose a fixed measurable function ϕ : [a, b] →
R. Then

(Tx)(t) = ϕ(t)x(t), t ∈ [a, b]

defines a linear operator. The domain in this case is

D(T ) =

{
x ∈ Lp([a, b])

∣∣∣∣ � b

a
|ϕ(t)x(t)|q dt <∞

}
(v) Consider X = l∞ and Y = R. Then

Tx = lim
k→∞

ξk, x = (ξk) ∈ l∞

is a linear functional with D(T ) = c.

Definition 12.3. Let T : D(T ) → Y, D(T ) ⊂ X be a linear operator. If ∃C > 0 such that

∥Tx∥ ≤ C∥x∥

then T is said to be bounded. The number

∥T∥ = sup
x∈D(T )

x̸=0

∥Tx∥
∥x∥

is the operator norm of T .

Example 12.4. Consider X = Y = C([0, 1]). We can define the operator T as

(Tf)(t) =

� t

0
f(s) ds , f ∈ C([0, 1]) = D(T )

T is a bounded operator. This can be shown by explicitely calculating the norm

∥Tf∥ = max
t∈[0,1]

∣∣∣∣� t

0
f(s) ds

∣∣∣∣
≤ max

t∈[0,1]

� t

0
|f(s)|ds

≤ max
t∈[0,1]

� t

0
max
s∈[0,1]

|f(s)|ds

= ∥f∥ max
t∈[0,1]

� t

0
ds = ∥f∥ max

t∈[0,1]
t = ∥f∥
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Thus we have shown that ∥T∥ ≤ 1. We can further show that ∥T∥ = 1. To do that, assume
f = 1. Trivially, this results in ∥f∥ = 1 and further

(Tf)(t) =

� t

0
1 ds = t

This gives us

∥Tf∥ = 1 =⇒ ∥T∥ ≥ ∥Tf∥
∥f∥

= 1

This implies ∥T∥ = 1.

Example 12.5. Again, consider X = Y = C([0, 1]). This time we look at

(Tf)(t) = f ′(t), D(T ) = C1([0, 1])

T is an unbounded operator. To prove this take fn(t) = tn ∈ C([0, 1]), n ≥ 1. We compute

∥fn∥ = max
t∈[0,1]

|tn| = 1, ∥Tfn∥ = max
t∈[0,1]

∣∣ntn−1
∣∣ = n

Then

∥T∥ ≥ ∥Tfn∥
∥fn∥

= n, ∀n ≥ 1

So there doesn’t exist a C > 0 such that n ≤ C, thus T cannot be bounded.

Theorem 12.6. Let X be a finite-dimensional normed space. If T is a linear operator on
X, then T is bounded.

Proof. Without proof.

Definition 12.7. Let T : D(T ) → Y be a linear operator. T is said to be continuous in
x0 ∈ D(T ) if

∀ϵ > 0, ∃δ > 0 : ∥x− x0∥ < δ =⇒ ∥Tx− Tx0∥ < ϵ, ∀x ∈ D(T )

Theorem 12.8. Let T : D(T ) → Y be a linear operator. Then

(i) T is continuous ⇐⇒ T is bounded

(ii) If T is continuous in a single point, then it is continuous everwhere

Proof. To prove the first statement, we want to consider T ̸= 0 (since T = 0 is trivial).
This implies that ∥T∥ ≠ 0. Assume T is bounded, and take x0 ∈ D(T ). Now let ϵ > 0 and
δ = ϵ

∥T∥ such that ∥x− x0∥ < δ, x ∈ D(T ). Then

∥Tx− Tx0∥ = ∥T (x− x0)∥ ≤ ∥T∥∥x− x0∥ < ∥T∥δ = ∥T∥ ϵ

∥T∥
= ϵ (12.1)
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Thus proving that T is continuous. Now inversely, let T be continuous in x0 ∈ D(T ). If we
choose ϵ = 1, then we can find a δ such that

∥x− x0∥ < δ =⇒ ∥Tx− Tx0∥ < ϵ = 1 (12.2)

If we now take any y ̸= 0 from D(T ) and set x = x0 +
δ

2∥y∥y, then we can show

∥x− x0∥ =
δ

2
< δ =⇒ ∥Tx− Tx0∥ < ϵ = 1 (12.3)

Therefore we have

1 > ∥Tx− Tx0∥ = ∥T (x− x0)∥ =

∥∥∥∥T δ

2∥y∥
y

∥∥∥∥ =
δ

2∥y∥
∥Ty∥ (12.4)

Thus
δ

2∥y∥
∥Ty∥ < 1 =⇒ ∥Ty∥ < 2

δ
∥y∥ (12.5)

Since y ∈ D(T ) was chosen arbitrarily, this implies that T is bounded. The second statement
follows trivially from the first one, as we have shown that if T is continuous in one point
x0, it is bounded and if it is bounded then it is continuous everywhere.

Corollary 12.9. Let T be a bounded linear operator. Then

(i) For xn, x ∈ D(T ) we have xn → x =⇒ Txn → Tx

(ii) The set ker(T ) = {x ∈ D(T ) |Tx = 0} is a null set and closed in X

Proof. Left as an exercise for the reader.

Theorem 12.10. Let T : D(T ) → Y be a bounded linear operator, with Y a Banach
space. Then T has an extension T̃ : D(T ) → Y where T̃ is a bounded linear operator and
∥T̃∥ = ∥T∥.

Proof. In this proof we only want to show how such a T̃ can be constructed. Let x ∈ D(T ).
Then there is a sequence xn ∈ D(T ) such that xn → x. Since T is linear and bounded, we
can find

∥Txn − Txm∥ ≤ ∥T (xn − xm)∥ ≤ ∥T∥∥xn − xm∥
n,m→∞−−−→ 0 (12.6)

So (Txn)n∈N is a Cauchy sequence in Y . Because Y is a Banach space there exists some
y ∈ Y such that Txn converges to y. Now we define T̃ x := y, and show that T̃ x is well-
defined. If (zn)n∈N ⊂ D(T ) is another sequence converging to x, then Tzn → y′. Now
consider the sequence

(vn)n∈N = (x1, z1, x2, z2, x3, z3, · · · ) (12.7)

This sequence also converges to x, and Tvn → y′′. However we can also find

Tv2k+1 −→ y = y′′ Tv2k −→ y′ = y′′ (12.8)

Thus y = y′.
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12.2 Dual Spaces

Definition 12.11 (Normed spaces of Operators). Let X,Y be normed spaces and T : X →
Y a bounded linear operator. Then B(X,Y ) is the set of all such bounded linear operators.
If we define for x ∈ X, α ∈ K

(T1 + T2)(x) = T1x+ T2x, T1, T2 ∈ B(X,Y )

(αT )(x) = αTx, T ∈ B(X,Y )

then B(X,Y ) is a vector space.

Theorem 12.12. The vector space B(X,Y ) is a normed space with the operator norm

∥T∥ = sup
x ̸=0

∥Tx∥
∥x∥

= sup
∥x∥=1

∥Tx∥

Proof. Left as an exercise for the reader.

Theorem 12.13. If Y is a Banach space, then B(X,Y ) is also a Banach space.

Proof. Let (Tn) ⊂ B(X,Y ) be a Cauchy sequence. We need to show that there exists some
T ∈ B(X,Y ) such that Tn → T . Let x ∈ X and define

Tx = lim
n→∞

Tnx (12.9)

Consider the sequence Tnx. It is possible to show that this is a Cauchy sequence

∥Tnx− Tmx∥ = ∥(Tn − Tm)x∥ = ∥Tn − Tm∥∥x∥
n,m→∞−−−→ 0 (12.10)

Since Y is complete, there exists some y ∈ Y such that Tnx → y := Tx. Thus we have
shown that T is indeed mapping X to Y . We now need to prove that T is linear and
bounded (and thus element of B(X,Y )).

T (αx+ βz) = lim
n→∞

Tn(αx+ βz)

= lim
n→∞

(αTnx+ βTnz)

= α lim
n→∞

Tnx+ β lim
n→∞

Tnz = αTx+ βTz

(12.11)

This shows that T is linear. Now let ϵ > 0. Then

∃N ∈ N : ∥Tn − Tm∥ <
ϵ

2
, ∀n,m ≥ N (12.12)

If we let n ≥ N we can use this to show

∥Tnx− Tx∥ =
∥∥∥Tnx− lim

m→∞
Tmx

∥∥∥
= lim

m→∞
∥Tnx− Tmx∥

≤ lim
m→∞

∥Tn − Tm∥∥x∥ ≤ ϵ

2
∥x∥ < ϵ∥x∥

(12.13)



12.2. DUAL SPACES 279

Thus showing that T is bounded. This also implies that Tn → T , proving that B(X,Y ) is
a Banach space.

Definition 12.14 (Dual Spaces). The set of all bounded linear functionals f : X → K with
the norm

∥f∥ = sup
x ̸=0

|f(x)|
∥x∥

= sup
∥x∥=1

|f(x)|

is said to be the dual space of X, and is written as X ′ = B(X,K).

Theorem 12.15. The dual space X ′ of a normed space X is a Banach space.

Proof. Without proof.

Definition 12.16. Let X, X̃ be normed spaces. A bijective linear operator T : X → X̃
that perserves the norm (i.e. ∥Tx∥ = ∥x∥, ∀x ∈ X) is said to be an isomorphism. If such
an isomorphism exists, then X and X̃ are called isomorphic normed spaces.

Example 12.17. (i) The dual space of lpn is

(lpn)
′ = lqn,

1

p
+

1

q
= 1, 1 < p <∞

So let f ∈ (lpn)′ be a bounded linear functional. We can define a basis

e1 = (1, 0, · · · , 0)
...

en = (0, · · · , 0, 1)

 ∈ lpn

This lets us express elements of lpn in the following way

x =
n∑
k=1

ξkek ∈ lpn

We can then write out f as

f(x) = f

(
n∑
k=1

ξkek

)
=

n∑
k=1

ξkf(ek) =
n∑
k=1

γkξk = ⟨u|x⟩

where u = (γ1, · · · , γn), γk = f(ek), k = 1, · · · , n. To compute the norm of f we
want to use Hölder’s inequality

n∑
k=1

|xkyk| ≤

(
n∑
k=1

|xk|q
) 1

q
(

n∑
k=1

|yk|p
) 1

p

,
1

p
+

1

q
= 1
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With this we can write

|f(x)| =

∣∣∣∣∣
n∑
k=1

γkξk

∣∣∣∣∣ ≤
n∑
k=1

|γkξk| ≤

(
n∑
k=1

|γk|q
) 1

q
(

n∑
k=1

|ξk|p
) 1

p

= ∥u∥lq∥x∥lp , ∀x ∈ lpn

This implies ∥f∥ ≤ ∥u∥lq . Now let x = (±|γ1|q−1, · · · ,±|γn|q−1) where we use + is
γk ≥ 0, and − otherwise. Then

|f(x)| =
n∑
k=1

γk(±|γk|q−1) =

n∑
k=1

|γk|q

and

∥x∥lp =

(
n∑
k=1

|γk|(q−1)p

) 1
p

=

(
n∑
k=1

|γk|q
)1− 1

q

Using these two steps we can write

|f(x)| =
n∑
k=1

|γk|q =

(
n∑
k=1

|γk|q
) 1

q
(

n∑
k=1

|γk|q
)1− 1

q

= ∥u∥lq∥x∥lp

thus proving ∥f∥ = ∥u∥. As a result, this shows that f is an isomorphism of (lpn)′ to
lqn. In other words, any bounded linear function f canm be written as

f(x) =
n∑
k=1

γkξk =: ⟨u|x⟩ , u = (γn) ⊂ lpn

(ii) (l1n)
′ = l∞n and (l∞n )′ = l1n

(iii) (lp)′ = lq, 1
p +

1
q = 1

(iv) (l1)′ = l∞

(v) c′ = (c0)
′ = l1

(vi) (Lp(A))′ = Lq(A) and (L1(A))′ = L∞(A)

(vii) (C(A))′ = ”functions of bounded variation”

Definition 12.18. Let w : [a, b] → R be a function. w is said to be of bounded variation
on [a, b] if its total variation

Var(w) = sup

n∑
j=1

|w(tj)− w(tj−1)|

is finite. The supremum is taken over all partitions a = t0 < t1 < · · · < tn = b.
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Example 12.19. If w is non-decreasing, then w has bounded variation. This can be explicitly
shown

Var(w) = sup

n∑
j=1

|w(tj)− w(tj−1)| = sup

n∑
j=1

(w(tj)− w(tj−1)) = w(b)− w(a)

Remark 12.20. A functio w has bounded variation if it can be written as a difference of two
non-decreasing functions. I.e. ∃w1, w2 : [a, b] → R non-decreasing, such that w = w1 − w2.

Lemma 12.21. Let BV ([a, b]) be the set of all functions on [a, b] that have bounded varia-
tion. It is obvious that BV ([a, b]) is a vector space over R, if we define the norm

∥w∥ = |w(a)|+Var(w), w ∈ BV ([a, b])

BV ([a, b]) is a Banach space

Remark 12.22. Let x ∈ C([a, b]) and w ∈ BV ([a, b]). Then one can see that the Riemann-
Stieltjes integral � b

a
dw(t) = lim

λ→∞

n∑
k=1

x(ξk)(w(tk)− w(tk−1))

exists, with λ = max |tk − tk−1|, ξk ∈ [tk−1, tk]. If w ∈ C1([a, b]) then

� b

a
x(t) dw(t) =

� b

a
x(t)w′(t) dt

Theorem 12.23. Every f ∈ (C([a, b]))′ can be expressed as a Riemann-Stieltjes integral

f(x) =

� b

a
x(t) dw(t)

with ∥f∥ = Var(w)

12.3 Hilbert Spaces

Definition 12.24. A mapping ⟨·|·⟩ : X ×X −→ K with the properties

(i) ⟨x+ y|z⟩ = ⟨x|z⟩+ ⟨y|z⟩

(ii) ⟨αx|y⟩ = α ⟨x|y⟩

(iii) ⟨x|y⟩ = ⟨y|x⟩

(iv) ⟨x|x⟩ ≥ 0, ⟨x|x⟩ = 0 ⇐⇒ x = 0

is called an inner product on X. A vector space X with an inner product is said to be an
inner product space.
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Example 12.25. Examples of inner product spaces are

(i) Euclidean space Rn
⟨x|y⟩ = ξ1η1 + · · ·+ ξnηn

(ii) Unitary space Cn
⟨x|y⟩ = ξ1η1 + · · ·+ ξnηn

(iii) Sequence space l2 =
{
x = (ξn) ⊂ K

∣∣∣∑∞
k=1 |ξk|

2 <∞
}

⟨x|y⟩ =
∞∑
k=1

ξkηk

(iv) Space of square-integrable functions L2(A) =
{
f : A→ K

∣∣∣ �A |f(t)|2 dt <∞
}

⟨x|y⟩ =
�
A
f(t)g(t) dt

Definition 12.26. Define ∥x∥ =
√

⟨x|x⟩, x ∈ X. This ∥·∥ is a norm on X. A space X
with a norm induced by the inner product is called a normed space.

Lemma 12.27. The Cauchy-Schwarz inequality holds

∀x, y ∈ X : |⟨x|y⟩| ≤ ∥x∥∥y∥

as well as the triangle inequality

∀x, y ∈ X : ∥x+ y∥ ≤ ∥x∥+ ∥y∥

Proof. Without proof.

Remark 12.28. Consider the parallelogram equality

∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2)

The norm ∥x∥ =
√

⟨x|x⟩ satisfies this equality (without proof). This implies that lp, Lp(A)
and C(A) are not inner product spaces (for p ̸= 2). This can be shown explicitly for lp.
Consider the sequences

x = (1, 1, 0, 0, · · · ) y = (1,−1, 0, 0, · · · )

Then ∥x∥ = ∥y∥ = 2
1
p and ∥x+ y∥ = ∥x− y∥ = 2. Thus the parallelogram equality doesn’t

hold
∥x+ y∥2 + ∥x− y∥2 = 22 + 22 ̸= 2(2

2
p + 2

2
p ) = 2(∥x∥2 + ∥y∥2)

unless p = 2.
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Lemma 12.29. Let xn → x and yn → y in X. Then ⟨xn|yn⟩ → ⟨x|y⟩.

Proof.

|⟨xn|yn⟩ − ⟨x|y⟩| = |(⟨xn|yn⟩ − ⟨xn|y⟩) + (⟨xn|y⟩ − ⟨x|y⟩)|
≤ |⟨xn|yn⟩ − ⟨xn|y⟩|+ |⟨xn|y⟩ − ⟨x|y⟩|
= |⟨xn|yn − y⟩|+ |⟨xn − x|y⟩|
≤ ∥xn∥∥yn − y∥+ ∥xn − x∥∥y∥ −−−→ 0

(12.14)

Definition 12.30. An inner product space X that is complete in the norm generated by
the inner product is said to be a Hilbert space.

A Hilbert space is a Banach space. A subspace Y or an inner product space X is defined
to be a vector subspace of X, with the inner product restricted to Y × Y .

Theorem 12.31. Let Y be a subspace of a Hilbert space H. Then

(i) Y is complete ⇐⇒ Y is closed in H

(ii) Y is finite-dimensional =⇒ Y is complete

(iii) H is separable ⇐⇒ Y is separable

(A set X is separable if ∃M ⊂ X such that M is dense in X)

Proof. Without proof.

Definition 12.32. An element x ∈ X is said to be orthogonal to an element y ∈ X if
⟨x|y⟩ = 0. One also says that x and y are orthogonal in that case, and it is denoted as
x ⊥ y. Similarly, let A,B ⊂ X. Then

x ⊥ A ⇐⇒ ∀a ∈ A : x ⊥ a

A ⊥ B ⇐⇒ ∀a ∈ A ∀b ∈ B : a ⊥ b

Let M be a non-empty subset of X, then the distance between x and M is defined as

δ = inf
y∈M

∥x− y∥

A subset M ⊂ X is said to be convex if

∀x, y ∈M ∀α ∈ [0, 1] : (αx+ (1− α)y) ∈M

Theorem 12.33. Let X be an inner product space and M a non-empty, complete, convex
subset of X. Then for every x ∈ X there exists a unique y ∈M such that

δ = inf
ỹ∈M

∥x− ỹ∥ = ∥x− y∥
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Heuristic Proof. Consider a sequence (yn) ⊂M such that δn = ∥x− yn∥
n→∞−−−→ δ. If we can

show that this is a Cauchy sequence in M , then we can be sure that such a y ∈ M exists
and yn

n→∞−−−→ y.

Corollary 12.34. If M = Y , where Y is a complete subspace of X and x ∈ X is fixed,
then z = x− y is orthogonal to Y .

Definition 12.35. Let H be a Hilbert space and Y a closed subspace of H. Then the set

Y ⊥ = {z ∈ H | z ⊥ Y }

is the orthogonal complement of Y , which is a vector subspace of H.

Theorem 12.36. Let Y be a complete subspace of X. Then

∀x ∈ X ∃!y ∈ Y, z ∈ Y ⊥ : x = y + z

Proof. The existence of y and z are ensured by Theorem 12.33 and Corollary 12.34, if we
choose a y ∈ Y such that

inf
ỹ∈Y

∥x− ỹ∥ = ∥x− y∥ (12.15)

and z = x− y. Then z ∈ Y ⊥, so

x = y + x− y = y + z (12.16)

To show that y and z are unique, assume that x = y + z = y1 + z1 with y, y1 ∈ Y and
z, z1 ∈ Y ⊥. Then Y ∋ y − y1 = z1 − z ∈ Y ⊥ and

⟨y − y1|z1 − z⟩ = ⟨y − y1|y − y1⟩ = 0 (12.17)

since Y ⊥ Y ⊥. This implies y1 = y, and also z1 = z.

Definition 12.37. A vector space X is said to be adirect sum of two subspaces Y and Z
of X, if

∀x ∈ X ∃!y ∈ Y, z ∈ Z : x = y + z

It is notated as X = Y ⊕ Z.

Remark 12.38. Let Y be a closed subspace. Then X = Y ⊕ Y ⊥.

Definition 12.39. An orthogonal setM in X is a subset of X whose elements are pairwise
orthogonal

∀x, y ∈M, x ̸= y : ⟨x|y⟩ = 0

An orthogonal set M is said to be orthonormal if

⟨x|y⟩ =

{
1, x = y

0, x ̸= y
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Example 12.40. (i) The sets

M = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

M =

{(
1√
2
,
1√
2
, 0

)
,

(
1√
2
,− 1√

2
, 0

)
, (0, 0, 1)

}
are orthonormal in X = R3

(ii) Let X = l2. Then the set M = {en |n > 0} (with e1 = (1, 0, 0, · · · ), e2 = (0, 1, 0, · · · )
and so on) is an orthonormal set

(iii) Let X = L2([0, 2π]). Then the sets M = {en |n ≥ 0} with

e0(t) =
1√
2π
, en(t) =

cosnt√
π

and M = {en |n > 0} with

en(t) =
sinnt√
π

are orthonormal sets

Remark 12.41. Let M = {e1, · · · , en} be a basis in X. Then

∀x ∈ X ∃!α1, · · · , αn : x = α1e1 + · · ·+ αnen

If M is orthonormal, i.e. ⟨ek|el⟩ = δkl, then

⟨x|ek⟩ = ⟨α1e1 + · · ·+ αkek + · · ·+ αnen|ek⟩
= α1 ⟨e1|ek⟩+ · · ·+ αk ⟨ek|ek⟩+ · · ·+ αn ⟨en|ek⟩ = αk

Remark 12.42. The idea of the previous remark can be extended to infinite-dimensional
inner product spaces. Let {e1, · · · , en} be an orthonormal set in an infinite-dimensional
space X. With some x ∈ X, consider

y :=
n∑
k=1

⟨x|ek⟩ ek, z := x− y

By applying the Pythagorean theorem we get

⟨z|y⟩ = ⟨x− y|y⟩ ⟨x|y⟩ − ⟨y|y⟩ =

〈
x

∣∣∣∣∣
n∑
k=1

⟨x|ek⟩ ek

〉
−

∥∥∥∥∥
n∑
k=1

⟨x|ek⟩ ek

∥∥∥∥∥
2

=

n∑
k=1

⟨x|ek⟩ ⟨x|ek⟩ −
n∑
k=1

∥⟨x|ek⟩ ek∥2 =
n∑
k=1

|⟨x|ek⟩|2 −
n∑
k=1

|⟨x|ek⟩|2∥ek∥2 = 0

Again, by using the Pythagorean theorem it appears that

∥x∥2 = ∥y∥2 + ∥z∥2 ≥ ∥y∥2 =
n∑
k=1

|⟨x|ek⟩|2
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Theorem 12.43 (Bessel Inequality). Let {ek | k > 0} be an orthonormal sequence in an
inner product space X. Then

∀x ∈ X :
∞∑
k=1

|⟨x|ek⟩|2 ≤ ∥x∥2

Remark 12.44. Let {xn |n > 0} be linearly independent. We want to construct a set
{en |n > 0} with the property

∀n > 0 : span {x1, · · · , xn} = span {e1, · · · , xn}

This can be achieved using the Gram-Schmidt procedure:

e1 :=
x1

∥x1∥

v2 := x2 − ⟨x2|e1⟩ e1, e2 :=
v2
∥v2∥

and in general

vn := xn −
n−1∑
k=1

⟨xn|ek⟩ ek, en :=
vn
∥vn∥

Theorem 12.45. Let {ek | k > 0} be an orthonormal set in a Hilbert space H. Then the
series

∞∑
k=1

αkek, αk ∈ K

converges in H if and only if
∞∑
k=1

|αk|2 <∞

If the initial sequence converges and

x :=

∞∑
k=1

αkek

then αk = ⟨x|ek⟩. For every x ∈ H the series

∞∑
k=1

⟨x|ek⟩ ek

converges, but not necessarily to x.
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Proof. Proving that the sequence in question converges if and only if
∑∞

k=1 |αk|
2 converges

is equivalent to proving that Sn = α1e1 + · · · + αnen is Cauchy sequence if and only if
Rn = |α1|2 + · · ·+ |αn|2 is a Cauchy sequence. We can compute for n < m

∥Sm − Sn∥2 = ∥αn+1en+1 + · · ·+ αmem∥2 = |αn+1|2 + · · ·+ |αm|2 = Rm −Rn (12.18)

This does prove that (Sn) is a Cauchy sequence inH if and only if (Rn) is a Cauchy sequence
in R.

Now we want to prove the second statement. For this, let x ∈
∑∞

k=1 αkek. We can

compute for k ≤ n that ⟨Sn|ek⟩ = αk. Since Sn
n→∞−−−→ x by the continuity of the inner

product, it follows that
αk = ⟨Sn|ek⟩

n→∞−−−→ ⟨x|ek⟩ (12.19)

The final statement follows from the Bessel inequality:

∞∑
k=1

|⟨x|ek⟩|2 ≤ ∥x∥2 =⇒
∞∑
k=1

|⟨x|ek⟩|2 <∞ =⇒
∞∑
k=1

⟨x|ek⟩ ek <∞ (12.20)

Definition 12.46 (Total Orthonormal Sets). A setM ⊂ X is said to be a total orthonormal
set, if spanM = X. Or in other words if spanM is dense in X. A total orthonormal family
in X is called an orthonormal basis.

Theorem 12.47. In every Hilbert space H there exists a total orthonormal set.

Proof. Without proof.

Theorem 12.48 (Parseval Equality). Let M be an orthonormal set in a Hilbert space H.
Then M is total in H if and only if

∀x ∈ H :
∑
k

|⟨x|ek⟩|2 = ∥x∥2

Proof. Without proof.

Theorem 12.49. Let H be a Hilbert space. Then

(i) If H is separable, then every orthonormal set in H is countable

(ii) If H contains a total orthonormal sequence, then H is separable

Example 12.50 (Examples of Orthonormal bases). (i) Legendre Polynomials

Consider the space L2([−1, 1]), which is separable and is the space of all real-valued
functions x with the domain [−1, 1], such that

� 1

−1
|x(t)|2 dt <∞
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We want to find an orthonormal basis of functions for this space. For that we will
consider the linearly independent set of polynomials M = {xn |n ≥ 0}, where xn(t) =
tn, t ∈ [−1, 1]. Then spanM = L2([−1, 1]), so M is a total set. However it is not
orthonormal because

⟨xk|xk⟩ =
� 1

−1
tktl dt =

� 1

−1
tk+l ̸= 0

if k+ l is even. However we can use the Gram-Schmidt procedure to find an orthonor-
mal set with the same span:

en(t) =

√
2n+ 1

2
Pn(t), Pn(t) =

1

2nn!

dn

dtn
(
t2 − 1

)n
These Pn(t) are called the (unassociated) Legendre polynomials. The set {en |n ≥ 0}
constructed in this way is an orthonormal basis in L2([−1, 1]):

x =
∞∑
n=0

⟨x|en⟩ en, ∀x ∈ L2([−1, 1])

(ii) Hermite Polynomials

Consider L2(R). We can see that tn ̸∈ L2(R) because�
R
|tn|2 dt = ∞

Instead, consider M = {xn |n ≥ 0} with

xn(t) = tne−
t2

2 , t ∈ R

After normalizing these functions we find

en(t) =
1√

2nn!
√
n
e−

t2

2 Hn(t), Hn(t) = (−1)net
2 dn

dtn
e−t

2

where Hn(t) are the Hermite polynomials. The set {en |n ≥ 0} is an orthonormal
basis in L2(R).

(iii) Laguerre Polynomials

Consider L2([0,∞)) and M = {xn |n ≥ 0} with

xn(t) = tne−
t2

2 , t ≥ 0

Then we can find

en(t) = e−
t
2Ln(t), Ln(t) =

et

n!

dn

dtn
(
tne−t

)
where Ln(t) are called the Laguerre polynomials. The set {en |n ≥ 0} is an orthonor-
mal basis in L2([0,∞))
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12.4 Adjoint Operators

Theorem 12.51 (Riesz Representation Theorem). Let H be a Hilbert space. Then every
bounded linear functional f on H can be written as an inner product

f(x) = ⟨x|z⟩

where z is a uniquely determined element of H, and ∥f∥ = ∥z∥.

Proof. Without proof.

Definition 12.52. Let H1 and H2 be Hilbert spaces, and T : H1 → H2 a bounded linear
operator. Then the adjoint operator T ∗ of T is the operator T ∗ : H2 → H1 such that

∀x ∈ H1, y ∈ H2 : ⟨Tx|y⟩ = ⟨x|T ∗y⟩

Theorem 12.53. The adjoint operator T ∗ of T exists, is unique, and is bounded with
∥T ∗∥ = ∥T∥

Proof. The existence of T ∗ follows from Theorem 12.51. Specifically, consider for a fixed
y ∈ H2 the map

f(x) = ⟨Tx|y⟩ , x ∈ H1 (12.21)

Then f : H1 → K is a bounded linear functional with

|f(x)| = |⟨Tx|y⟩| ≤ ∥Tx∥∥y∥ ≤ ∥T∥∥x∥∥y∥ = C∥x∥ (12.22)

By Theorem 12.51, there exists a z ∈ H1 such that f(x) = ⟨x|z⟩. Then we can just set

T ∗y := z (12.23)

Theorem 12.54. Let H1 and H2 be Hilbert spaces, and T, S : H1 → H2 bounded linear
operators. Then

(i) ⟨T ∗y|x⟩ = ⟨y|Tx⟩ , x ∈ H1, y ∈ H2

(ii) (S + T )∗ = S∗ + T ∗

(iii) (αT )∗ = αT ∗, α ∈ K

(iv) (T ∗)∗ = T

(v) ∥T ∗T∥ = ∥TT ∗∥ = ∥T∥2

(vi) T ∗T = 0 ⇐⇒ T = 0

(vii) (ST )∗ = T ∗S∗ (if H1 = H2)
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Definition 12.55. A bounded linear operator T : H → H on a Hilbert space H is said to
be

� self-adjoint if T ∗ = T

� unitary if T is bijective and T ∗ = T−1

� normal if TT ∗ = T ∗T

If T is self-adjoint or unitary, then it is also normal. The inverse is not generally true.

Example 12.56. Consider T = 2iI, where I is the identity operator. Then T ∗ = −2iI. We
can see that TT ∗ = T ∗T , but T ∗ ̸= T−1 = −1

2 iI and T ̸= T ∗.

Example 12.57. Consider Cn with the inner product

⟨x|y⟩ =
n∑
k=1

ξkηk, x = (ξk), y = (ηk)

Any bounded linear operator T : Cn → Cn can be represented by a square matrix MT . Or
in other words, y = Tx can be expressed asη1...

ηn

 =

a11 · · · a1n
...

. . .
...

an1 · · · ann


ξ1...
ξn


If MT is the matrix of T , then MT ∗ (the matrix of T ∗) is the conjugate transpose of MT .

Theorem 12.58. Let H be a Hilbert space and T : H → H a bounded linear operator.
Then

(i) If T is self-adjoint, then ⟨Tx|x⟩ is real for all x ∈ H

(ii) If H is complex (K = C) and ⟨Tx|x⟩ is real, then T is self-adjoint

Proof. To prove the first statement, assume T is self-adjoint. Then

⟨Tx|x⟩ = ⟨x|Tx⟩ = ⟨T ∗x|x⟩ = ⟨Tx|x⟩ =⇒ ⟨Tx|x⟩ ∈ R (12.24)

For the second statement, assume ⟨Tx|x⟩ to be real. This means

⟨Tx|x⟩ = ⟨Tx|x⟩ = ⟨x|T ∗x⟩ = ⟨T ∗x|x⟩ (12.25)

Thus

0 = ⟨Tx|x⟩ − ⟨T ∗x|x⟩ = ⟨Tx− T ∗x|x⟩ = ⟨(T − T ∗)x|x⟩ =⇒ T = T ∗ (12.26)
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Theorem 12.59. (i) The product of two bounded, self-adjoint operators S and T is self-
adjoint, if and only if ST = TS.

(ii) Let (Tn) be a sequence of self-adjoint operators on a Hilbert space H, such that
Tn

n→∞−−−→ T in B(H,H). Then T is self-adjoint.

Proof. We will only prove the second statement. We need to show that T = T ∗. Consider

∥T ∗
n − T ∗∥ = ∥(Tn − T )∗∥ = ∥Tn − T∥ n→∞−−−→ 0 (12.27)

So T ∗
n

n→∞−−−→ T ∗, and since Tn = T ∗
n this also means that Tn

n→∞−−−→ T ∗. This implies
T = T ∗.
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13.1 Spectral Theory of Bounded Linear Operators

In this chapter all spaces are assumed to be complex.

Definition 13.1. Assume X ̸= ∅ is a complex normed space and consider the operators

T : D(T ) −→ X

T − λI : D(T ) −→ X

where Ix = x and λ ∈ C. If it exists, denote

Rλ := Rλ(T ) = (T − λI)−1

Note that Rλ is a linear operator.

Definition 13.2. A regular value of T is a complex number λ such that

(i) Rλ(T ) exists

(ii) Rλ(T ) is bounded

(iii) Rλ(T ) is defined on a dense subset of X

The resolvent set ρ(T ) is the set of all regular values of T . Furthermore we define σ(T ) =
C \ ρ(T ) as the spectrum of T . A value λ ∈ σ(T ) is called a spectral value of T .

Definition 13.3. The spectrum σ(T ) is partitioned into three disjoint sets:

� The point spectrum or discrete spectrum σp(T ) is the set of values for which Rλ(T )
does not exist

� The continuous spectrum σc(T ) is the set of values for which Rλ(T ) exists and is
defined on a dense subset of X, but is unbounded

� The residual spectrum σr(T ) is the set of values for which Rλ(T ) exists but the domain
of Rλ(T ) is not dense in X

Remark 13.4. These sets are disjoint and σ(T ) = σp(T ) ∪ σc(T ) ∪ σr(T ). Also note that
Rλ(T ) does not exist if and only if T − λI is not injective, i.e.

∃x ̸= 0 : (T − λI)x = Tx− λx = 0

Then λ ∈ σp(T ) ⇐⇒ ∃x ̸= 0 : Tx− λx = 0, and the vector x is called an eigenvector of
T . If X is finite dimensional, then

σc(T ) = σr(T ) = ∅
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Example 13.5. Consider X = l2 and define T : l2 → l2 such that

Tx = (0, ξ1, ξ2, ξ3, · · · ), x = (ξk)

T is called a right-shift operator and D(T ) = l2. We have

∥Tx∥2 =
∞∑
k=1

|ξk|2 = ∥x∥2 =⇒ ∥T∥ = 1

Now consider the case where λ = 0. Then we have R0 = T−1 defined on the domain
D(T−1) = {y = (ηk) | η1 = 0}, and

T−1y = (η2, η3, · · · ), y ∈ D(T−1)

R0 does exist, but D(T−1) is not dense in X. Thus λ = 0 is part of the residual spectrum
of T .

Remark 13.6. Let X be a complete Banach space and take T ∈ B(X,X) and λ ∈ ρ(T ).
Then Rλ(T ) is defined on the entire set X and is bounded.

Theorem 13.7. Take T ∈ B(X,X), where X is a Banach space. If ∥T∥ < 1, then
(I − T )−1 exists, belongs to B(X,X) and

(I − T )−1 =

∞∑
k=0

T k = I + T + T 2 + · · ·

where the series converges on B(X,X).

Proof. Firstly, note that
∥∥T k∥∥ ≤ ∥T∥k. Since ∥T∥ < 1 we can find that

∞∑
k=0

∥∥∥T k∥∥∥ ≤
∞∑
k=0

∥T∥k <∞ (13.1)

This implies that the series

S :=
∞∑
k=0

T k (13.2)

converges. Then we can compute

(I − T )(T + T + T 2 + · · ·+ Tn) = (I + T + T 2 + · · ·+ Tn)(I − T ) = I − Tn+1 (13.3)

Since
∥∥Tn+1

∥∥ ≤ ∥T∥n+1 n→∞−−−→ 0, we get (I − T )S = S(I − T ) = I and thus finally
S = (I − T )−1.

Theorem 13.8. The resolvent set ρ(T ) of T ∈ B(X,X) on a complex Banach space X is
open. Hence the spectrum σ(T ) is closed.
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Proof. Without proof.

Theorem 13.9. The spectrum σ(T ) of T ∈ B(X,X) on a complex Banach space X is
compact and lies in the disk |λ| ≤ ∥T∥.

Proof. Take λ ̸= 0 and denote θ = 1
λ . Using Theorem 13.7 we obtain

Rλ = (T − λI)−1 = −θ(I − θT )−1 = −θ
∞∑
k=0

(θT )k = − 1

λ

∞∑
k=0

(
1

λ
T

)k
(13.4)

where the series converges on ∥∥∥∥ 1λT
∥∥∥∥ =

∥T∥
|λ|

< 1 (13.5)

So by Theorem 13.7 Rλ ∈ B(X,X). Since σ(T ) is closed by Theorem 13.8 and bounded,
we have that σ(T ) is compact.

Theorem 13.10. Let X be a Banach space and T ∈ B(X,X). Then for every λ0 ∈ ρ(T )
the resolvent Rλ(T ) has the representation

Rλ(T ) =
∞∑
k=0

(λ− λ0)
kRk+1

λ0

where the series converges absolutely for λ in the open disk

|λ− λ0| <
1

∥Rλ0∥

in the complex plane.

Proof. Without proof.

Definition 13.11. The spectral radius rσ(T ) of T ∈ B(X,X) is the radius

rσ(T ) = sup
λ∈σ(T )

|T |

One can show that
rσ(T ) = lim

n→∞
n
√
∥Tn∥

Theorem 13.12 (Resolvent Equation, Commutativity). Let X be a complete Banach space
and take T ∈ B(X,X) and λ, µ ∈ ρ(T ). Then

(i) Rµ −Rλ = (µ− λ)RµRλ

(ii) Rλ commutes with any S ∈ B(X,X) which commutes with T

(iii) RλRµ = RµRλ
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Proof. To prove the first statement, we can simply compute

Rµ −Rλ = RµI − IRλ

= Rµ ((T − λI)Rλ)− (Rµ(T − µI))Rλ

= Rµ(T − λI − T + µI)Rλ

= Rµ(µ− λ)Rλ = (µ− λ)RµRλ

(13.6)

The second statement assumes that TS = ST . This implies (T − λI)S = S(T − λI). Thus

RλS = RλS(T − λI)Rλ = Rλ(T − λI)SRλ = SRλ (13.7)

The third statement follows directly from the second.

Theorem 13.13. Let X be a complex Banach space. Consider T ∈ B(X,X) and the
polynomial

p(λ) = αnλ
n + αn−1λ

n−1 + · · ·+ α0, αn ̸= 0

Then
σ(p(T )) = p(σ(T ))

where p(T ) = αnT
n + αn−1T

n−1 + · · ·+ α0T and p(σ(T )) = {p(λ) ∈ C |λ ∈ σ(T )}

Proof. Without proof.

Theorem 13.14. The eigenvectors {x1, · · · , xn} corresponding to different eigenvalues
λ1, · · · , λn of a linear operator T on a vector space X are linearly independent.

Proof. Without proof.

13.2 Spectral Theorem for Bounded Self-Adjoint Operators

In this section we assume that H is a complex Hilbert space, and T : H → H is a bounded,
linear operator.

Example 13.15. Consider the Hilbert space H = L2[0, 1] and the operator

(Tx)(t) = tx(t), t ∈ [0, 1], x ∈ L2[0, 1]

T is self-adjoint. This can be seen explicitly

⟨Tx|y⟩ =
� 1

0
tx(t)y(t) dt =

� 1

0
x(t)ty(t) dt = ⟨x|Ty⟩

We want to find the spectrum and resolvent sets. Consider the operator Tλ := T − λI. We
can compute

(Tλx)(t) = (Tx− λx)(t) = tx(t)− λx(t) = (t− λ)x(t) = y(t)
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Then we can find the operator Rλ

(Rλy)(t) =
1

t− λ
y(t), t ∈ [0, 1]

There are now two cases to consider. Firstly, if λ ∈ C \ [0, 1], then 1
t−λ is bounded, so

∥Rλy∥2 =
� 1

0

1

|t− λ|2
|y(t)|2 dt ≤ sup

t∈[0,1]

1

|t− λ|2

� 1

0
|y(t)|2 dt ≤ sup

t∈[0,1]

1

|t− λ|2
∥y∥2

Thus, Rλ is a bounded linear operator on all of L2[0, 1], implying λ ∈ ρ(T ).
Now let λ ∈ [0, 1], then 1

t−λ is not bounded and Rλ is not defined on all of L2[0, 1].

Consider the function y(t) =
√
t− λ1[λ,1](t), t ∈ [0, 1]. Then

Rλy(t) =

√
t− λ

t− λ
1[λ,1](t) dt =

1√
t− λ

1[λ,1](t)

and the norm is

∥Rλy∥2 =
� 1

0

1
√
t− λ

21[λ,1](t) dt =

� 1

λ

1

t− λ
dt = ∞

if λ < 1. So Rλ is only defined on

D(Rλ) =

{
y ∈ L2[0, 1]

∣∣∣∣∣
� 1

0

|y(t)|2

|t− λ|
dt <∞

}

One can prove that D(Rλ) is dense in L2[0, 1], so λ ∈ σc(T ). Additionally σc(T ) = [0, 1],
σp(T ) = σr(T ) = ∅ and ρ(T ) = C \ [0, 1].

Theorem 13.16. Let H be a complex Hilbert space and T : H → H a bounded self-adjoint
operator. Then

(i) All eigenvalues of T (if they exist) are real.

(ii) Eigenvectors corresponding to different eigenvalues of T are orthogonal.

Proof. Without proof.

Theorem 13.17 (Resolvent Set). Let H be a complex Hilbert space and T : H → H a
bounded self-adjoint operator. Then λ ∈ ρ(T ) if and only if ∃C > 0:

∥Tx− λx∥ ≥ C∥x∥, ∀x ∈ H

Proof. Without proof.
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Theorem 13.18 (Spectrum). Let H be a complex Hilbert space and T : H → H a bounded
self-adjoint operator. Then the spectrum σ(T ) of T is real and belongs to the interval [m,M ]

m = inf
∥x∥=1

⟨Tx|x⟩ M = sup
∥x∥=1

⟨Tx|x⟩

m and M are spectral values of T .

Proof. Without proof.

Theorem 13.19 (Residual Spectrum). The residual spectrum σr(T ) of a bounded self-
adjoint operator T : H → H on a complex Hilbert space H is empty.

Proof. Without proof.

Definition 13.20. We introduce a partial order ”≤” on the set of self-adjoint operators on
H. If T is a self-adjoint operator, then we know that ⟨Tx|x⟩ is real.

� Let T1, T2 : H → H be bounded self-adjoint operators. We write T1 ≤ T2 if

⟨T1x|x⟩ ≤ ⟨T2x|x⟩ , ∀x ∈ H

� A bounded self-adjoint operator T is said to be positive if T ≥ 0, that is

⟨Tx|x⟩ ≥ 0, ∀x ∈ H

We remark that the sum of positive operators is positive.

Theorem 13.21. Every positive bounded self-adjoint operator T : H → H on a complex
Hilbert space H has a positive square root T

1
2 , that is (T

1
2 )2 = T , which is unique. This

operator commutes with every bounded linear operator on H that commutes with T .

Proof. Without proof.

Definition 13.22. Let H be a Hilbert space and Y a closed subspace of H. Previously we
have shown that H = Y ⊕ Y ⊥. This meant

∀x ∈ H ∃!y ∈ Y, z ∈ Y ⊥ : x = y + z

We defined y as the minimizer of the function Y ∋ ỹ → ∥x− ỹ∥, i.e.

∥x− y∥ = inf
ỹ∈Y

∥x− ỹ∥

We define the operator P : H → H such that Px := y. This is called an orthogonal
projection on H. More specificailly, P is said to be the projection of H onto Y .



13.2. SPECTRAL THEOREM 299

Remark 13.23. If P is the projection of H onto Y , then

P (H) = {Px |x ∈ H} = Y

and kerP = Y ⊥.

Theorem 13.24. A bounded linear operator P : H → H on a Hilbert space H is a projection
on H if and only if P ∗ = P and P 2 = P , or in other words if it is self-adjoint and
idempotent.

Proof. Assume that P is a projection. Take x ∈ H, then

Px = y + z = Px+ 0 (13.8)

where y ∈ Y and z ∈ Y ⊥. Thus P (Px) = Px. Now take x1 = y1 + z1 and x2 = y2 + z2,
where y1, y2 ∈ Y and z1, z2 ∈ Y ⊥. Then

⟨Px1|x2⟩ = ⟨y1|y2 + z2⟩ = ⟨y1|y2⟩+ ⟨y1|z2⟩ = ⟨y1|y2⟩ (13.9)

and
⟨x1|Px2⟩ = ⟨y1 + z1|y2⟩ = ⟨y1|y2⟩+ ⟨z1|y2⟩ = ⟨y1|y2⟩ (13.10)

This implies P ∗ = P . Conversely assume P ∗ = P 2 = P is given. Set Y := P (H). We need
to prove that if x = y + z, with y ∈ Y and z ∈ Y ⊥, then y = Px. We write

x = Px+ x− Px (13.11)

and check that x− Px ∈ Y ⊥. Take u ∈ P (H) ⇐⇒ u = Px, v ∈ H. Compute

⟨u|x− Px⟩ = ⟨Pv|x− Px⟩ = ⟨Pv|x⟩ − ⟨Pv|Px⟩ = ⟨Pv|x⟩ −
〈
P 2v

∣∣x〉 = 0 (13.12)

Example 13.25. Consider H = L2([0, 1]). Define for λ ∈ [0, 1]

(Px)(t) = 1[0,λ](t)x(t) =

{
x(t), t ≤ λ

0, t > λ

We want to check that P is a projection. According to Theorem 13.24 we need to prove
that P 2 = P ∗ = P . It is clear that P 2 = P . So we compute

⟨Px1|x2⟩ =
� 1

0
(Px1)(t)x2(t) dt

=

� 1

0
1[0,λ](t)x1(t)x2(t) dt

=

� 1

0
x1(t)1[0,λ](t)x2(t) dt = ⟨x1|Px2⟩

This implies that P is a projection on H. We define

Y = P (H) =
{
x ∈ L2([0, 1])

∣∣x(t) = 0, t ∈ (λ, 1]
}
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Definition 13.26. Assume H is a Hilbert space and P1, P2, P are projections on H. Denote
Yi = Pi(H) = ImPi and Y = P (H) = ImP . Then

(i) P is positive and ⟨Px|x⟩ = ∥Px∥2.

(ii) P1P2 is a projection if and only if P1P2 = P2P1. Then P1P2 projects H onto Y1 ∩ Y2.

(iii) P1 + P2 is a projection on H if and only if Y1 ⊥ Y2. In this case P1 + P2 projects H
onto Y1 ⊕ Y2.

(iv) P2 − P1 is a projection on H if ans only if Y1 ⊂ Y2.

Theorem 13.27 (Partial Order). The following statements are equivalent

(i) P1P2 = P2P1 = P1

(ii) Y1 ⊂ Y2

(iii) kerP1 ⊃ kerP2

(iv) ∥P1x∥ ≤ ∥P2x∥

(v) P1 ≤ P2 (P2 − P1 is positive)

Proof. Without proof.

Definition 13.28. Let H be a complex Hilbert space. A real spectral family is a family
{Eλ |λ ∈ R} of projections Eλ on H such that

(i) Eλ ≤ Eµ, ∀λ < µ

(ii) Eλx
λ→−∞−−−→ 0, Eλx

λ→∞−−−→ x, ∀x ∈ H

(iii) Eλ+0x := limµ→λ+0Eµx = Eλx, ∀x ∈ H

{Eλ |λ ∈ R} is called a spectral family on an interval [a, b] if

Eλ =

{
0, λ < a

I, λ ≥ b

We define a spectral family for a bounded self-adjoint operator T : H → H. For this, fix
λ ∈ R and consider Tλ = T − λI. Define the positive operator Bλ = (T 2

λ )
1
2 . Remark that

Bλ is the unique positive self-adjoint operator such that B2
λ = T 2

λ . Define T+
λ = 1

2(Bλ+Tλ).

Example 13.29. Let H = L2([0, 1]) and take (Tx)(t) = tx(t). We want to construct the
projections Eλ. For this compute

(Tλx)(t) = (Tx)(t)− λx(t) = (t− λ)x(t), t ∈ [0, 1]
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Then we can calculate
(T 2
λx)(t) = (t− λ)2x(t)

and
(Bλx)(t) =

√
(t− λ)2x(t) = |t− λ|x(t), t ∈ [0, 1]

So the positive part of T is

(T+
λ x)(t) =

1

2
((Bλx)(t) + (Tλx)(t))

=
1

2
(|t− λ|x(t) + (t− λ)x(t)) = (t− λ)+x(t), t ∈ [0, 1]

where

s+ =

{
s, s ≥ 0

0, s < 0

So this results in

(T+
λ x)(t) =

{
x(t), t > λ

0, t ≤ λ

This lets us calculate the kernel

kerT+
λ =

{
x ∈ H

∣∣T+
λ x = 0

}
= {x ∈ H |x(t) = 0, t > λ}

From Example 13.25 we know that the projection Eλ of H onto kerT+
λ is defined as

(Eλx)(t) = 1[0,λ](t)x(t)

Theorem 13.30. The family {Eλ |λ ∈ R}, where Eλ is the projection of H onto T+
λ , is the

spectral family of the interval [m,M ] which is the smallest interval containing the spectrum
of T .

Proof. Without proof.

Theorem 13.31 (Spectral Theorem for Bounded Self-Adjoint Linear Operators). Let T :
H → H be a bounded self-adjoint linear operator on a complex Hilbert space H. Then

T =

� ∞

−∞
λ dEλ =

� M

m
λdEλ

where Eλ is the spectral family associated with T . In particular

⟨Tx|y⟩ =
� ∞

−∞
λ d ⟨Eλx|y⟩ =

� M

m
λ d ⟨Eλx|y⟩ , ∀x, y ∈ H

Example 13.32. Coming back to (Tx)(t) = tx(t), we can compute

(Tx)(t) =

� ∞

−∞
λ dEλx(t) =

� 1

0
λ d1[0,λ](t)x(t)

= x(t)

� 1

0
λ d1[0,λ](t) = x(t) · t · 1 = tx(t)
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13.3 Compact & Unbounded Linear Operators

Definition 13.33. Let X be a normed space. F ⊂ X is compact in X if every open cover
of F contains a finite subcover, that is, for every family {Gα} of open sets in X such that
F ⊂

⋃
αGα there exists {Gα1 , · · · , Gαn} ⊂ {Gα} such that F ⊂

⋃n
k=1Gαk

.

Theorem 13.34. F is compact in X if and only if every sequence (xn) ⊂ F has a subse-
quence that is convergent in F .

Proof. Without proof.

Definition 13.35. A set F ⊂ X is said to be relatively compact if F is compact. Every
bounded set in a finite-dimensional normed space is relatively compact.

Definition 13.36. Let X and Y be normed spaces. An operator T : X → Y is called a
compact linear operator if T is linear and if for every bounded subset M ⊂ X the image
T (M) is relatively compact.

Theorem 13.37 (Compactness Criterion). Let X and Y be normed spaces and T : X → Y
a linear operator. Then T is compact if and only if it maps every bounded sequence (xn) ⊂ X
onto a sequence (Txn) ⊂ Y that has a convergent subsequence, that is

∀ (xn) ⊂ X ∃ (Txnk
) ⊂ Y : Txnk

k→∞−−−→ y ∈ Y

Proof. Without proof.

Theorem 13.38. If T : X → Y is bounded and ImT = T (X) is finite-dimensional, then
T is compact.

Example 13.39. Consider X = Y = l2 over the field K. The operator T defined by

Tx = (2ξ1, ξ2, ξ3 + ξ4, 0, 0, 0, · · · )

for x = (ξk) is compact. Indeed the set

T (X) = {(η1, η2, η3, 0, 0, 0, · · · ) | η1, η2, η3 ∈ K}

is a three-dimensional subspace of l2. By Theorem 13.38 T is compact.

Theorem 13.40. Let (Tn) be a sequence of compact linear operators from a normed space
X to a Banach space Y . If Tn → T in B(X,Y ) then T is compact.

Proof. Without proof.

Example 13.41. Consider X = Y = l2 and the operator

Tx =

(
ξ1,

ξ2
2
,
ξ3
3
, · · ·

)
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We can prove that T is compact if we take the sequence

Tnx =

(
ξ1,

ξ2
2
,
ξ3
3
, · · · ξn

n
, 0, 0, · · ·

)
Then Tn is bounded and dim (Tn(X)) = n. So by Theorem 13.38 every element of the
sequence is compact. Now we compute

∥(T − Tn)x∥2 =
∥∥∥∥(0, 0, · · · , 0, ξn+1

n+ 1
,
ξn+2

n+ 2
, · · ·

)∥∥∥∥2
=

∞∑
k=n+1

ξ2k
k2

≤ 1

(n+ 1)2

∞∑
k=n+1

ξ2k ≤ 1

(n+ 1)2
∥x∥2

Thus ∥T − Tn∥ ≤ 1
n+1

n→∞−−−→ 0. By Theorem 13.40 T is compact.

Theorem 13.42. Let T : H → H be a bounded linear operator on a separable Hilbert space
H. The following statements are equivalent.

(i) T is compact.

(ii) T ∗ is compact.

(iii) If ⟨xn|y⟩
n→∞−−−→ ⟨x|y⟩ , ∀y ∈ H then Txn

n→∞−−−→ Tx in H.

(iv) There exists a sequence of Tn of operators of finite rank such that ∥T − Tn∥
n→∞−−−→ 0.

Proof. Without proof.

Theorem 13.43 (Hilbert-Schmidt Theorem). Let T be a self-adjoint compact operator.
Then

(i) There exists an orthonormal basis consisting of eigenvectors of T .

(ii) All eigenvalues of T are real and for every eigenvalue λ ̸= 0 the corresponding
eigenspace is finite dimensional.

(iii) Two eigenvectors of T that correspond fo different eigenvalues are orthogonal.

(iv) If T has a countable set of eigenvalues {λn |n ≥ 1} then λn
n→∞−−−→ 0.

Proof. Without proof.

Corollary 13.44. Let T be a compact self-adjoint operator on a complex Hilbert space H.
Then there exists an orthonormal basis {ek | k ≥ 1} such that

Tx =
∞∑
n=1

λn ⟨x|en⟩ en, x ∈ H
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Proof. Without proof.

Example 13.45 (Unbounded Linear Operators). Take H = L2(−∞,∞). Conisder the first
multiplication operator

(Tx)(t) = tx(t), t ∈ R, D(T ) =

{
x ∈ L2(−∞,∞)

∣∣∣∣ � ∞

−∞
t2|x(t)|2 dt <∞

}
It should be noted that D(T ) ̸= L2(−∞,∞). Indeed

x(t) =

{
1
t , t ≥ 1

0, t < 1
∈ L2(−∞,∞)

because

∥x∥2 =
� ∞

−∞
|x(t)|2 dt =

� ∞

1

1

t2
dt = 1

but

∥Tx∥2 =
� ∞

−∞
t2|x(t)|2 dt =

� ∞

1
1 dt = ∞

Let us recall the definition for boundedness of linear operators. An operator T : D(T ) → H
is bounded if

∃C ≥ 0 ∀x ∈ D(T ) : ∥Tx∥ ≤ C∥x∥

Consider the sequence

xn =

{
1, n ≤ t < n+ 1

0, else

This sequence has the norm

∥xn∥2 =
� ∞

−∞
|xn(t)|2 dt =

� n+1

n
dt = 1

but

∥Txn∥2 =
� ∞

−∞
t2|xn(t)|2 dt =

� n+1

n
t2 dt ≥ n2

So ∥Txn∥2 ≥ n2∥xn∥, ∀n ≥ 1, hence T is unbounded. The differentiation operator

(Tx)(t) = ix′(t), D(T ) ⊂ L2(−∞,∞)

is also unbounded. We will not discuss what D(T ) is at this point, however we will do so
later. Here we will only remark that all continuously differentiable functions with compact
support and Hermite polynomials belong to D(T ).
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Example 13.46. Let H be a complex Hilbert space. Let T : D(T ) → H be a densely defined
linear operator. The adjoint operator T ∗ : D(T ∗) → H of T is defined as follows. The
domain D(T ∗) of T ∗ consists of all y ∈ H such that ∃y∗ ∈ H satisfying

⟨Tx|y⟩ = ⟨x|y∗⟩ , ∀x ∈ D(T )

For each such y ∈ D(T ∗) define T ∗y := y∗. Remark that D(T ∗) is not necessarily equal to
H. Since D(T ) is dense in H, for every y ∈ D(T ∗) there exists a unique y∗ satisfying the
above equation. Before we discuss the properties of adjoint operators, we will first take a
look at the extension of a linear operator. Consider again the differentiation operator

(T1x)(t) = ix′(t)

We can define T1 only for functions from

D(T1) = C1
0 (R) =

{
f ∈ C1(R)

∣∣ f = 0 outside some interval
}

Now let

(T2x)(t) = ix′(t), D(T2) =

{
f ∈ C(R)

∣∣∣∣ � ∞

−∞
|f |2 dt <∞,

� ∞

−∞

∣∣f ′∣∣2 dt <∞
}

T1 and T2 are different operators, but D(T1) ⊂ D(T2) and T1 = T2|D(T1).

Definition 13.47. An operator T2 is said to be an extension of another operator T1 if
D(T1) ⊂ D(T2) and T1 = T2|D(T1). In this case we write T1 ⊂ T2.

Theorem 13.48. Let T : D(T ) → H be a linear operator, where D(T ) ⊂ H. Then

(i) T is closed if and only if xn −→ x, xn ∈ D(T ) and Txn −→ y imply x ∈ D(T ) and
Tx = y.

(ii) If T is closed and D(T ) is closed, then T is bounded.

(iii) Let T be bounded. Then T is closed if and only if D(T ) is closed.

Proof. Without proof.

Theorem 13.49. Let T be a densely defined operator on H. Then the adjoint operator T ∗

is closed.

Proof. Without proof.

Definition 13.50. If a linear operator T has an extension T1 which is a closed linear
operator, then T is said to be closable. If T is closable, then there exists a minimal closed
operator T satisfying T ⊂ T . The operator T is said to be the closure of T .

Theorem 13.51. Let T : D(T ) → H be a densely defined linear operator. If T is symmetric,
its closure T exists and is unique.
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Proof. Without proof.

Theorem 13.52. Let U : H → H be a unitary operator. Then there exists a spectral family
{Eθ}π on [−π, π] such that

U =

� π

−π
eiθ dEθ

where the integral is understood in the sense of uniform operator convergence.

Heuristic Proof. One can show that there exists a bounded self-adjoint linear operator S
with σ(S) ⊂ [−π, π] such that

U = eiS = cosS + i sinS (13.13)

Let {Eθ} be a spectral family for S on [−π, π]. Then

S =

� π

−π
θ dEθ

Hence

U = eiS =

� π

−π
cos θ dEθ + i

� π

−π
sin θ dEθ =

� π

−π
eiθ dEθ

Definition 13.53. Let T : D(T ) → H be a self-adjoint linear operator, where D(T ) is
dense in H and T may be unbounded. Define a new operator

U = (T − iI)(T + iI)−1

called the Cayley transform of T . It is defined on the entire Hilbert space since we know
that −i ̸∈ σ(T ) ⊂ R. One can also check that it is unitary and

T = i(I + U)(I − U)−1

Theorem 13.54 (Spectral Representation for Unbounded Self-Adjoint Operators). Let
T : D(T ) → H be a self-adjoint linear operator and let D(T ) be dense in H. Let U be the

Cayley transform of T and
{
Ẽθ

}
a spectral family in the spectral representation for −U .

Then

T =

� π

−π
tan

θ

2
dẼθ =

� ∞

−∞
λ dEλ

where Eλ = Ẽ2 arctanλ, λ ∈ R.

Proof. Proof.
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Remark 13.55. We remark that T = i(I + U)(I − U)−1 = f(−U), where f(θ) = i1−θ1+θ . Let

−U =

� π

−π
eiθ dẼθ

Then

T =

� π

−π
f(eiθ) dẼθ =

� π

−π
i
1− eiθ

1 + eiθ
dẼθ

=

� π

−π
i
(1− cos θ)− i sin θ

(1 + cos θ) + i sin θ
dẼθ

=

� π

−π
i
−2i sin θ

2 + 2 cos θ
dẼθ

=

� π

−π
tan

θ

2
dẼθ

Example 13.56 (Spectral Representation of the Multiplication Operator). Consider the
space H = L2(−∞,∞) which is to be taken over C and take

(Tx)(t) = tx(t), t ∈ R, D(T ) =

{
x ∈ L2(−∞,∞)

∣∣∣∣ � ∞

−∞
t2|x(t)|2 dt <∞

}
Then T is self-adjoint and the spectral family associated with T is

(Fλx)(t) =

{
x(t), t < λ

0, t ≥ λ
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