% !TeX root = ../../script.tex \documentclass[../../script.tex]{subfiles} \begin{document} \section{The Transformation Theorem} \begin{defi} Let $U, V \subset \realn^n$ be open. A mapping $T: U \rightarrow V$ is said to be a diffeomorphism if it is bijective and if $T$ and $\inv{T}$ are continuously differentiable. Analogously we define \begin{gather*} C^r \text{-diffeomorphism if it is } r \text{-times differentiable} \\ C^{\infty} \text{-diffeomorphism if it is infinitely differentiable} \end{gather*} \end{defi} \begin{rem} \begin{enumerate}[(i)] \item In physics, $f$ and $f \circ T$ are often denoted with the same symbol \item We can apply the chain rule to $T \circ \inv{T} = \idf_V$ \[ DT(\inv{T}(y)) \cdot D\inv{T}(y) = I_V \] Since $\inv{T}$ is surjective, $DT(x)$ is invertible $\forall x \in U$. According to the theorem about inverse functions, the inverse $\inv{T}$ of a bijective mapping is continuously differentiable if $DT(x)$ is invertible \item If $T$ is a diffeomorphism, then $\inv{T}$ is one too. \end{enumerate} \end{rem} \begin{eg} \begin{enumerate}[(i)] \item Polar coordinates: \begin{align*} T: (0, \infty) \times (0, 2\pi) &\longrightarrow \realn^2 \setminus \set{[0, \infty] \times \set{0}} \\ (r, \phi) &\longmapsto (r \cos\phi, r \sin\phi) \end{align*} \item Another diffeomorphism would be \begin{align*} T: \oball[1](0) &\longrightarrow \realn^n \\ x &\longmapsto \frac{x}{\sqrt{1 - \norm{x}}} \end{align*} \item An example for a mapping that is no diffeomorphism would be \begin{align*} T: \realn &\longrightarrow \realn \\ x &\longmapsto x^3 \end{align*} The Jacobian "matrix" $T'(x) = 3x^2$ is not invertible. \item Another counter example would be \begin{align*} T: (0, \infty) \times \realn &\longrightarrow \realn^2 \setminus \set{0} \\ (r, \phi) &\longmapsto (r\cos\phi, r\sin\phi) \end{align*} This function is not injective, so it's not a diffeomorphism. \end{enumerate} \end{eg} \begin{thm}[Transformation Theorem] Let $U, V \subset \realn^n$ and $T: U \rightarrow V$ a diffeomorphism. Then $f: V \rightarrow \realn$ is integrable over $V$ if and only if $f \circ T \cdot \abs{\det DT}$ is integrable over $U$. In this case \[ \int_V d \dd{\lambda^n} = \int_U f \circ T \cdot \abs{\det DT} \dd{\lambda^n} \] \end{thm} \begin{proof} Without proof. \end{proof} \begin{eg}[Area of the unit circle] The area is defined as \[ \lambda^2(K_1(0)) = \int_{\realn^2} \charfun_{K_1(0)} \dd{\lambda^2} \] We transform into polar coordinates: \begin{align*} U &= (0, \infty) \times (0, 2\pi) \\ V &= \realn^2 \setminus \underbrace{([0, \infty] \times \set{0})}_{\lambda^2-null set} \end{align*} We define the transformation \[ T: (r, \phi) \longmapsto (r \cos\phi, r \sin\phi) \] Which results in \begin{align*} \det DT(r, \phi) &= r \\ \charfun_{K_1(0)} \circ T(r, \phi) &= \charfun_{(0, 1]}(r) \end{align*} So we can calculate \begin{align*} \lambda^2(K_1(0)) &= \int_B \charfun_{(0, 1]}(x, y) \dd{\lambda^2}(x, y) \\ &= \int_U \charfun_{(0, 1]}(r) \cdot r \cdot \dd{\lambda^2}(r, \phi) \\ &= \int_0^{\infty} \int_0^{2\pi} \charfun_{(0, 1]} r \dd{\phi} \dd{r} \\ &= 2\pi \int_0^{\infty} \charfun_{(0, 1]}(r) \dd{r} = 2\pi \int_0^1 r \dd{r} \\ &= \pi r^2 = \pi \end{align*} \end{eg} \begin{rem} \begin{enumerate}[(i)] \item Consider \begin{align*} T: \realn^n &\longrightarrow \realn^n \\ x &\longmapsto Ax ~~A \in \realn^{n \times n} \end{align*} If $\exists \inv{A}$, then $T$ is a diffeomorphism with $DT = A$ \[ \implies \int f \dd{\lambda^2} = \abs{\det A} \int f \circ T \dd{\lambda^2} \] \item Let $A$ be an orthogonal matrix (so a rotation/mirroring). \[ \det A = \pm 1 \implies \abs{\det A} = 1 \] Thus, rotations and mirrorings do not change the volume. \item Let $A = \diag(a, a, \cdots, a) ~~a \in (0, \infty)$ (this is a scaling matrix). Then \[ \det A = a^n \] which means that continuous scaling of a factor $a$ scales the $\lambda^n$-volume by $a^n$. \item This is a "generalization" of the substitution rule \[ \int_{\realn} f(g(x)) g'(x) \dd{x} = \int_{\realn} f(y) \dd{y} \] \end{enumerate} \end{rem} \begin{eg} We want to compute \[ K = \int_{\realn} e^{-x^2} \dd{x} \] Consider \[ K^2 = \int_{\realn} e^{-x^2} \dd{x} \int_{\realn} e^{-y^2} \dd{y} = \int_{\realn^2} e^{-(x^2 + y^2)} \dd{\lambda^2(x, y)} \] By transforming $f = e^{-(x^2 + y^2)}$ into polar coordinates \begin{align*} K^2 &= \int_U f \circ T \abs{\det DT} \dd{\lambda^2} \\ &= \int_V e^{-r^2} \cdot r \dd{\lambda^2(r, \phi)} \\ &= \int_0^{\infty} \int_0^{2\pi} r e^{-r^2} \dd{r}\dd{\phi} \\ &= 2\pi \int_0^{\infty} r e^{-r^2} \dd{r} \\ &= 2\pi \limn\left(-\frac{1}{2} e^{-n^2} + \frac{1}{2}\right) = \pi \end{align*} Thus $K = \sqrt{\pi}$. \end{eg} \begin{eg}[Integrability of radial functions] Let $f: [0, \infty] \rightarrow \realn$ be measureable and set \begin{align*} F: \realn^n &\longrightarrow \realn \\ x &\longmapsto f(\norm{x}) \end{align*} $\dnorm$ is the Euclidian norm. Under which conditions is $F$ $\lambda^n$-integrable? Let $D := (0, \infty) \times \underbrace{(0, \pi)^{n-2} \times (0, 2\pi)}_{D_{\phi}}$. And define \begin{align*} T: D &\longrightarrow \realn^n \setminus A \\ (r, \phi) &\longmapsto \begin{pmatrix} r \cos\phi_1 \\ r \sin\phi_1 \cos\phi_2 \\ r \sin\phi_1 \sin\phi_2 \cos\phi_3 \\ \vdots \\ r \sin\phi_1 \cdots \sin\phi_{n-2} \cos\phi_{n-1} \\ r \sin\phi_1 \cdots \sin\phi_{n-2} \sin\phi_n \end{pmatrix}^T \end{align*} Then $\norm{T(r, \phi)} = r$ and \[ \abs{\det DT(r, \phi)} = r^{n-1} \sin^{n-2}\phi_1 \sin^{n-3} \phi_2 \cdots \sin\phi_{n-2} = r^{n-1} A_n(\phi) \] Thus \begin{align*} \int_{\realn^n} \abs{F(x)} \dd{\lambda^n}(x) &= \int_D \underbrace{\abs{F \circ T(r, \phi)}}_{f(r)} \abs{\det DT(r, \phi)} \dd{\lambda^n}(r, \phi) \\ &= \int_{D_{\phi}} \int_0^{\infty} r^{n-1} \abs{f(r)} A_n(\phi) \dd{r} \dd{\lambda^{n-1}}(\phi) \\ &= \int_0^{\infty} r^{n-1} \abs{f(x)} \dd{r} \underbrace{\int_{D_{\phi}} \abs{A_n(\phi)} \dd{\lambda^{n-1}}(\phi)}_{< \infty} \end{align*} So $F$ is $\lambda^n$-integrable if $r^{n-1} f(x)$ is integrable over $[0, \infty)$. \end{eg} \end{document}