% !TeX root = ../../script.tex \documentclass[../../script.tex]{subfiles} \begin{document} \section{Lebesgue-Stieltjes Integral} \begin{defi} Let $F: \realn \rightarrow \realn$ be a monotonically increasing, continuous function. Then we set \begin{align*} \lambda_F(\varnothing) := 0 && \lambda_F((a, b]) = F(b) - F(a), ~~(a, b] \in \intervals \end{align*} \end{defi} \begin{thm} $\lambda_F$ is a measure on $H$. \end{thm} \begin{proof} Without proof. \end{proof} \begin{defi} The integral \[ \int_A f \dd{\lambda_F} \] is called the Lebesgue-Stieltjes integral on $\realn$ and is denoted by \[ \int_A f(x) \dd{F(x)} := \int_A f \dd{\lambda_F} \] If $A = [a, b]$, then we write \[ \int_a^b f(x) \dd{F(x)} \] \end{defi} \end{document}