% !TeX root = ../../script.tex \documentclass[../../script.tex]{subfiles} \begin{document} \section{Fourier Transform on $L^1(\realn^d)$} \begin{defi} For $f \in L^1(\realn^d)$ the function \begin{align*} \hat{f}: \realn^d &\longrightarrow \cmpln \\ k &\longmapsto \rec{(2\pi)^{\frac{d}{2}}} \int_{\realn^d} e^{-ik \cdot x} f(x) \dd{x} \end{align*} is said to be the Fourier transform of $f$. Sometimes it is written as $(\mathcal{F}f)(k)$. \end{defi} \begin{rem} \begin{enumerate}[(i)] \item There are several alternative conventions regarding sign and phase of the transform. \[ \hat{f}(k) = \int_{\realn^d} e^{-2\pi ik \cdot x} f(x) \dd{x} \] is also a valid definition in other scientific fields, however we will stick to the former definition throughout this script. \item $k \cdot x = \innerproduct{k}{x} = \sum_{j=1}^d k_j x_j$ \item Because $\abs{e^{ik \cdot x}} = 1$, the integral exists for any $f \in L^1(\realn^d)$. \end{enumerate} \end{rem} \begin{eg}\label{eg:1} Consider the function \[ f(x) = \rec{\sqrt{2\pi\sigma^2}} e^{-\frac{(x - \alpha)^2}{2\sigma^2}} \quad ,\alpha \in \cmpln, ~\sigma > 0 \] The Fourier transform is \begin{align*} \hat{f}(k) = &\rec{2\pi\sigma} \int_{\realn} e^{-ikx} e^{-\frac{(x - \alpha)^2}{2\sigma^2}} \dd{x} \\ = &\rec{2\pi\sigma} e^{-ik\alpha} e^{-\frac{\sigma^2}{2} k^2} \int_{\realn} e^{-\frac{(x - \alpha + ik\sigma^2)^2}{2\sigma^2}} \dd{x} \\ = &\rec{2\pi\sigma} e^{-ik\alpha} e^{-\frac{\sigma^2 k^2}{2}} \int_{-\infty}^{\infty} e^{-\frac{x^2}{2\sigma^2}} \dd{x} \\ = &\rec{\sqrt{2\pi}} e^{-ik\alpha} e^{-\frac{\sigma^2 k^2}{2}} \end{align*} \end{eg} \begin{eg} The previous example can be generalized for higher dimensions: \[ f(x) = \rec{(2\pi\sigma^2)^{\frac{d}{2}}} e^{-\frac{\abs{x}^2}{2\sigma^2}}, \quad x \in \realn^d \] With the Fourier transform \[ \hat{f}(k) = \rec{(2\pi)^{\frac{d}{2}}} e^{-\frac{\sigma^2 \abs{k}^2}{2}}, \quad k \in \realn^d \] \end{eg} \begin{eg} Consider the indicator function \[ \chi(x) = \begin{cases} 1, & \abs{x} \le a \\ 0, & \abs{x} > a \end{cases}, \quad x \in \realn \] It has the Fourier transform \[ \hat{f}(k) = \rec{\sqrt{2\pi}} \int_{\realn} e^{-ikx} \chi(x) \dd{x} = \rec{\sqrt{2\pi}} \left[ \frac{e^{-ikx}}{-ik} \right]_{-a}^a = \sqrt{\frac{2}{\pi}} \frac{\sin(ka)}{k} \] \end{eg} \begin{defi} For $f \in L^1(\realn^d)$ the function \[ \check{f}(x) := \rec{(2\pi)^{\frac{d}{2}}} \int_{\realn^d} f(k) e^{ikx} \dd{k} \] defines the inverse Fourier transform of $f$. \end{defi} \begin{eg} Let's revisit \Cref{eg:1}, where we found that \[ \hat{f}(k) = \rec{\sqrt{2\pi}} e^{-i\alpha k} e^{-\frac{\sigma^2 k^2}{2}} \] The inverse Fourier transform of that function is \[ \check{\hat{f}}(k) = \rec{\sqrt{2\pi\sigma^2}} e^{-\rec{2\sigma^2} (x - \alpha)^2} = f(x) \] \end{eg} \begin{thm}[Fourier inversion theorem] Let $f, \hat{f} \in L^1(\realn^d)$. Then $\check{\hat{f}} = f$. \end{thm} \begin{proof} To prove this theorem we will use \Cref{thm:10.42} and the following lemma: \bigbreak \begin{itshape} If $f_n \conv{n \rightarrow \infty} f$, then there exists a subsequence $((f_n)_k)_{k \in \natn}$ with \[ \lim_{k \rightarrow \infty} f_{n_k} (x) = f(x), \quad \forall x \in \realn^d \] \end{itshape} \bigbreak Heuristically this theorem can be proven by considering \begin{equation} \begin{split} \check{\hat{f}}(x) = \rec{(2\pi)^{\frac{d}{2}}} \int_{\realn^d} \hat{f}(k) e^{ikx} \dd{k} &= \rec{(2\pi)^{\frac{d}{2}}} \int_{\realn^d} \left( \int_{\realn^d} f(y) e^{-iky} \dd{y} \right) e^{ikx} \dd{k} \\ &= \rec{(2\pi)^{\frac{d}{2}}} \int_{\realn^d} \int_{\realn^d} f(y) e^{-ik(y - x)} \dd{k} \dd{y} \end{split} \end{equation} However, to show this rigorously we should first consider the inversion formula for $f * \delta_l$, with \begin{equation} \delta_l (x) = \left( \frac{l^2}{2\pi} \right)^{\frac{d}{2}} e^{-\frac{l^2 \abs{x}^2}{2}}, \quad l \in \natn \end{equation} The Fourier transform is \begin{equation} \hat{\delta_l} (k) = \left(\rec{2\pi}\right)^{\frac{d}{2}} e^{-\frac{\abs{k}^2}{2l^2}} \end{equation} We've already shown in a previous example that the inversion theorem applies to this function, so we can write \begin{equation} \begin{split} (f * \delta_l)(x) &= \int_{\realn^d} f(y) \delta_l(x - y) \dd{y} = \int_{\realn^d} f(y) \check{\hat{\delta}}_l(x - y) \dd{y} \\ &= \int_{\realn^d} f(y) \left( \rec{(2\pi)^{\frac{d}{2}}} \int_{\realn^d} e^{ik(x - y)} \hat{\delta}_l (k) \dd{k} \right) \dd{y}\\ &= \int_{\realn^d} \left(\rec{(2\pi)^{\frac{d}{2}}} \int_{\realn^d} f(y) e^{-iky} \dd{y} \right) e^{ikx} \hat{\delta_l} (k) \dd{k} \\ &= \int_{\realn^d} e^{ikx} \hat{f}(k) e^{-\frac{\abs{k}}{2l^2}} \frac{\dd{k}}{(2\pi)^{\frac{d}{2}}} =: \check{F}_l(x) \end{split} \end{equation} Next we want to use the fact that $(\delta_l)_{l \in \natn}$ is a class of good kernels. This means that \begin{equation} \lim_{l \rightarrow \infty} \norm{\delta_l * f - f}_{L^1} = 0 \end{equation} or in other words \begin{equation} \delta_l * f \conv{l \rightarrow \infty} f \end{equation} Now using the lemma above we can conclude that there exists a subsequence $(\delta_{l_j} * f)_{j \in \natn}$ that converges to $f(x)$ for almost every $x$. We can apply the dominated convergence theorem to find that \begin{equation} \lim_{l \rightarrow \infty} \check{F}_l(x) = \int_{\realn^d} e^{ikx} \hat{f}(k) \lim_{l \rightarrow \infty} e^{-\frac{\abs{k}^2}{2l^2}} \frac{\dd{k}}{(2\pi)^{\frac{d}{2}}} = \check{\hat{f}}(x) \end{equation} Finally, this lets us conclude \begin{equation} f(x) = \lim_{j \rightarrow \infty} \delta_{l_j} * f(x) = \lim_{j \rightarrow \infty} \check{F}_{l_j} (x) = \check{\hat{f}}, \quad \text{for a.e. } x \in \realn^d \end{equation} \end{proof} \begin{thm}[Algebraisation of the derivative] Let $f \in C^n(\realn^d)$ and $\partial^{\alpha} f \in L^1(\realn^d)$ for all $\alpha \in \natn_0^d$ with $\abs{\alpha} < m$. Then \[ \widehat{\partial^a f}(k) = (ik)^{\alpha}\hat{f} \] If $\alpha = (\alpha_1, \cdots, \alpha_d)$ and $\abs{\alpha} = \sum_{j=1}^d \alpha_j \le m$, then the interpretation of that is \[ \mathcal{F}\left(\frac{\partial^{\abs{\alpha}}}{\partial x_1^{\alpha_1} \cdots \partial x_d^{\alpha_d}} f\right)(k) = i^{\abs{\alpha}} \left(k_1^{\alpha_1} \cdots k_d^{\alpha_d}\right) \hat{f}(k) \] \end{thm} \begin{proof} We will only prove the one-dimensional statement. If $m = 1$ we receive via partial integration \begin{equation} \widehat{f'}(k) = \rec{\sqrt{2\pi}} \int_{\realn} f'(x) e^{-ikx} \dd{x} = \rec{\sqrt{2\pi}} \left[ \left(f(x) e^{-ikx}\right)_{-\infty}^{\infty} - \int_{-\infty}^{\infty} f(x) \dv{x} \left(e^{-ikx}\right) \dd{x} \right] \end{equation} Since we assumed $f' \in L^1$, the limit $\lim_{x \rightarrow \pm\infty} f(x)$ exists. We can write \begin{align} f(x) &= f(0) + \int_0^x f'(t) \dd{t} \\ \implies \lim_{x \rightarrow \pm\infty} f(x) &= f(0) + \lim_{x \rightarrow \pm\infty} \int_0^x f'(t) \dd{t} \end{align} Furthermore this limit has to be equal to $0$, so \begin{align} \lim_{\abs{x} \rightarrow \infty} f(x) &= 0 \\ \implies \left[f(x) e^{-ikx}\right]_{-\infty}^{\infty} &= \lim_{x \rightarrow \infty} e^{-ikx} f(x) - \lim_{x \rightarrow \infty} f(x)e^{ikx} = 0 \end{align} This leads us to \begin{equation} \widehat{f'}(k) = ik \rec{\sqrt{2\pi}} \int_{\realn} f(x) e^{-ikx} \dd{x} = ik\hat{f}(k) \end{equation} The proof for $m > 1$ can be found via induction. \end{proof} \begin{thm} Let $f \in L^1(\realn^d)$ and $m \in \natn_0$. If \[ x \longmapsto x^{\alpha} f(x) \in L^1(\realn^d), \quad \forall \alpha \in \natn_0^d, ~\abs{\alpha} \le m \] then $\hat{f} \in C^m(\realn^d)$ and \[ \partial^{\alpha} \hat{f}(k) = \mathcal{F}\left[(-ix)^{\alpha} f(x)\right](k) \] \end{thm} \begin{proof} Again we will only consider the one-dimensional case. Assume $m = 1$ (the proof for $m > 1$ follows from induction). We can write out the difference quotient for $\hat{f}$ at $k \in \realn$ \begin{equation} \frac{\hat{f}(k + h) - \hat{f}(k)}{h} = \rec{h} \int_{\realn} f(x) \left(e^{-i(k + h)x} - e^{-ikx}\right) \frac{\dd{x}}{\sqrt{2\pi}}, \quad h \in \realn \setminus \set{0} \end{equation} However, because \begin{equation} \abs{\frac{e^{-ixh} - 1}{h}} \le \abs{x}, \quad \forall x \in \realn, ~h \ne 0 \end{equation} and because we assumed that $xf \in L^1$, we can use the dominated convergence theorem to conclude \begin{equation} \begin{split} \lim_{h \rightarrow 0} \frac{\hat{f}(k + h) - \hat{f}(k)}{h} &= \rec{\sqrt{2\pi}} \int_{\realn} f(x) e^{-ikx} \underbrace{\lim_{h \rightarrow 0} \left(\frac{e^{-ixk} - 1}{h}\right)}_{\dv{x} \left(e^{-ikx} \right) \big|_{x = 0}} \dd{x} \\ &= \rec{\sqrt{2\pi}} \int_{\realn} (-ixf(x)) e^{-ikx} \dd{x} = \widehat{-ixf}(k) \end{split} \end{equation} \end{proof} \begin{thm} Let $f, g \in L^1(\realn^d)$. Then \[ \widehat{f*g}(k) = (2\pi)^{\frac{d}{2}} \hat{f}(k) \hat{g}(k) \] \end{thm} \begin{proof} \noproof \end{proof} \begin{eg}[Solving inhomogeneous, linear ODEs] We want to find the general solution of \[ \ddot{x} - x = f, \quad f, \hat{f} \in L^1(\realn) \] The solution space of this equation is \[ \mathcal{L} = \mathcal{L}_{\text{hom}} + x_s \] The space of homogeneous solutions $\mathcal{L}_{\text{hom}}$ is equal to $\spn\set{e^x, e^{-x}}$, and $x_s$ is \textit{one} solution of the inhomogeneous equation. Let $\phi$ denote the Fourier transform of $x_s$, so \[ \phi(k) = \rec{\sqrt{2\pi}} \int_{\realn} x_s(t) e^{-ikt} \dd{t} \] Then $\phi$ satisfies the equation \[ -k^2 \phi(k) - \phi(k) = \hat{f}(k) \] Or rearraranged to solve for $\phi$ \[ \phi(k) = -\rec{1+k^2} \hat{f}(k), \quad k \in \realn \] We can then rewrite $\phi(k)$ as \begin{align*} \phi(k) = -\hat{g}(k) \hat{f}(k) && \text{with } \hat{g} = \rec{1 + k^2} \in L^1(\realn) \end{align*} and then use the previous theorems to conclude \[ x_s(t) = \check{\phi}(t) = (2\pi)^{\frac{1}{2}} \inv{\mathcal{F}} \underbrace{\left[ \hat{f}\hat{g} (2\pi)^{\frac{1}{2}}\right]}_{\widehat{f*g}}(t) = -\rec{\sqrt{2\pi}}(f*g)(t) \] \end{eg} \end{document}