\documentclass[../../script.tex]{subfiles} %! TEX root = ../../script.tex \begin{document} \section{Compact \& Unbounded Linear Operators} \begin{defi} Let $X$ be a normed space. $F \subset X$ is compact in $X$ if every open cover of $F$ contains a finite subcover, that is, for every family $\set{G_{\alpha}}$ of open sets in $X$ such that $F \subset \bigcup_{\alpha} G_{\alpha}$ there exists $\set{G_{\alpha_1}, \cdots, G_{\alpha_n}} \subset \set{G_{\alpha}}$ such that $F \subset \bigcup_{k = 1}^n G_{\alpha_k}$. \end{defi} \begin{thm} $F$ is compact in $X$ if and only if every sequence $\anyseqdef{F}$ has a subsequence that is convergent in $F$. \end{thm} \begin{proof} \noproof \end{proof} \begin{defi} A set $F \subset X$ is said to be relatively compact if $\closure{F}$ is compact. Every bounded set in a finite-dimensional normed space is relatively compact. \end{defi} \begin{defi} Let $X$ and $Y$ be normed spaces. An operator $T: X \rightarrow Y$ is called a compact linear operator if $T$ is linear and if for every bounded subset $M \subset X$ the image $T(M)$ is relatively compact. \end{defi} \begin{thm}[Compactness Criterion] Let $X$ and $Y$ be normed spaces and $T: X \rightarrow Y$ a linear operator. Then $T$ is compact if and only if it maps every bounded sequence $\anyseqdef{X}$ onto a sequence $\anyseqdef[Tx]{Y}$ that has a convergent subsequence, that is \[ \forall \anyseqdef{X} ~\exists \left(Tx_{n_k}\right) \subset Y: \quad Tx_{n_k} \conv{k \rightarrow \infty} y \in Y \] \end{thm} \begin{proof} \noproof \end{proof} \begin{thm}\label{thm:23.6} If $T: X \rightarrow Y$ is bounded and $\Im T = T(X)$ is finite-dimensional, then $T$ is compact. \end{thm} \begin{eg} Consider $X = Y = l^2$ over the field $\field$. The operator $T$ defined by \[ Tx = (2\xi_1, \xi_2, \xi_3 + \xi_4, 0, 0, 0, \cdots) \] for $x = (\xi_k)$ is compact. Indeed the set \[ T(X) = \set[\eta_1, \eta_2, \eta_3 \in \field]{(\eta_1, \eta_2, \eta_3, 0, 0, 0, \cdots)} \] is a three-dimensional subspace of $l^2$. By \Cref{thm:23.6} $T$ is compact. \end{eg} \begin{thm}\label{thm:23.8} Let $\seq{T}$ be a sequence of compact linear operators from a normed space $X$ to a Banach space $Y$. If $T_n \rightarrow T$ in $B(X, Y)$ then $T$ is compact. \end{thm} \begin{proof} \noproof \end{proof} \begin{eg} Consider $X = Y = l^2$ and the operator \[ Tx = \left(\xi_1, \frac{\xi_2}{2}, \frac{\xi_3}{3}, \cdots \right) \] We can prove that $T$ is compact if we take the sequence \[ T_n x = \left( \xi_1, \frac{\xi_2}{2}, \frac{\xi_3}{3}, \cdots \frac{\xi_n}{n}, 0, 0, \cdots \right) \] Then $T_n$ is bounded and $\dim\left(T_n(X)\right) = n$. So by \Cref{thm:23.6} every element of the sequence is compact. Now we compute \begin{align*} \norm{(T - T_n)x}^2 &= \norm{\left(0, 0, \cdots, 0, \frac{\xi_{n+1}}{n + 1}, \frac{\xi_{n+2}}{n + 2}, \cdots\right)}^2 \\ &= \sum_{k=n+1}^{\infty} \frac{\xi_k^2}{k^2} \le \rec{(n+1)^2} \sum_{k=n+1}^{\infty} \xi_k^2 \le \rec{(n+1)^2} \norm{x}^2 \end{align*} Thus $\norm{T - T_n} \le \rec{n+1} \conv{n \rightarrow \infty} 0$. By \Cref{thm:23.8} $T$ is compact. \end{eg} \begin{thm} Let $T: H \rightarrow H$ be a bounded linear operator on a separable Hilbert space $H$. The following statements are equivalent. \begin{enumerate}[(i)] \item $T$ is compact. \item $T^*$ is compact. \item If $\innerproduct{x_n}{y} \conv{n \rightarrow \infty} \innerproduct{x}{y}, ~\forall y \in H$ then $Tx_n \conv{n \rightarrow \infty} Tx$ in $H$. \item There exists a sequence of $T_n$ of operators of finite rank such that $\norm{T - T_n} \conv{n \rightarrow \infty} 0$. \end{enumerate} \end{thm} \begin{proof} \noproof \end{proof} \begin{thm}[Hilbert-Schmidt Theorem] Let $T$ be a self-adjoint compact operator. Then \begin{enumerate}[(i)] \item There exists an orthonormal basis consisting of eigenvectors of $T$. \item All eigenvalues of $T$ are real and for every eigenvalue $\lambda \ne 0$ the corresponding eigenspace is finite dimensional. \item Two eigenvectors of $T$ that correspond fo different eigenvalues are orthogonal. \item If $T$ has a countable set of eigenvalues $\set[n \ge 1]{\lambda_n}$ then $\lambda_n \conv{n \rightarrow \infty} 0$. \end{enumerate} \end{thm} \begin{proof} \noproof \end{proof} \begin{cor} Let $T$ be a compact self-adjoint operator on a complex Hilbert space $H$. Then there exists an orthonormal basis $\set[k \ge 1]{e_k}$ such that \[ Tx = \sum_{n=1}^{\infty} \lambda_n \innerproduct{x}{e_n} e_n, \quad x \in H \] \end{cor} \begin{proof} \noproof \end{proof} \begin{eg}[Unbounded Linear Operators] Take $H = L^2(-\infty, \infty)$. Conisder the first multiplication operator \[ (Tx)(t) = t x(t), ~t \in \realn, \quad \domain(T) = \set[\int_{-\infty}^{\infty} t^2 \abs{x(t)}^2 \dd{t} < \infty]{x \in L^2(-\infty, \infty)} \] It should be noted that $\domain(T) \ne L^2(-\infty, \infty)$. Indeed \[ x(t) = \begin{cases} \rec{t}, & t \ge 1 \\ 0, & t < 1 \end{cases} \quad\in L^2(-\infty, \infty) \] because \[ \norm{x}^2 = \int_{-\infty}^{\infty} \abs{x(t)}^2 \dd{t} = \int_1^{\infty} \rec{t^2} \dd{t} = 1 \] but \[ \norm{Tx}^2 = \int_{-\infty}^{\infty} t^2 \abs{x(t)}^2 \dd{t} = \int_1^{\infty} 1 \dd{t} = \infty \] Let us recall the definition for boundedness of linear operators. An operator $T: \domain(T) \rightarrow H$ is bounded if \[ \exists C \ge 0 ~\forall x \in \domain(T): \quad \norm{Tx} \le C \norm{x} \] Consider the sequence \[ x_n = \begin{cases} 1, & n \le t < n + 1 \\ 0, & \text{else} \end{cases} \] This sequence has the norm \[ \norm{x_n}^2 = \int_{-\infty}^{\infty} \abs{x_n(t)}^2 \dd{t} = \int_n^{n+1} \dd{t} = 1 \] but \[ \norm{Tx_n}^2 = \int_{-\infty}^{\infty} t^2\abs{x_n(t)}^2 \dd{t} = \int_n^{n+1} t^2 \dd{t} \ge n^2 \] So $\norm{Tx_n}^2 \ge n^2 \norm{x_n}, ~\forall n \ge 1$, hence $T$ is unbounded. The differentiation operator \[ (Tx)(t) = ix'(t), \quad \domain(T) \subset L^2(-\infty, \infty) \] is also unbounded. We will not discuss what $\domain(T)$ is at this point, however we will do so later. Here we will only remark that all continuously differentiable functions with compact support and Hermite polynomials belong to $\domain(T)$. \end{eg} \begin{eg} Let $H$ be a complex Hilbert space. Let $T: \domain(T) \rightarrow H$ be a densely defined linear operator. The adjoint operator $T^*: \domain(T^*) \rightarrow H$ of $T$ is defined as follows. The domain $\domain(T^*)$ of $T^*$ consists of all $y \in H$ such that $\exists y^* \in H$ satisfying \[ \innerproduct{Tx}{y} = \innerproduct{x}{y^*}, \quad \forall x \in \domain(T) \] For each such $y \in \domain(T^*)$ define $T^*y := y^*$. Remark that $\domain(T^*)$ is not necessarily equal to $H$. Since $\domain(T)$ is dense in $H$, for every $y \in \domain(T^*)$ there exists a unique $y^*$ satisfying the above equation. Before we discuss the properties of adjoint operators, we will first take a look at the extension of a linear operator. Consider again the differentiation operator \[ (T_1x)(t) = ix'(t) \] We can define $T_1$ only for functions from \[ \domain(T_1) = C_0^1(\realn) = \set[f = 0 \text{ outside some interval}]{f \in C^1(\realn)} \] Now let \[ (T_2x)(t) = ix'(t), \quad \domain(T_2) = \set[\int_{-\infty}^{\infty} \abs{f}^2 \dd{t} < \infty, ~\int_{-\infty}^{\infty} \abs{f'}^2 \dd{t} < \infty]{f \in C(\realn)} \] $T_1$ and $T_2$ are different operators, but $\domain(T_1) \subset \domain(T_2)$ and $T_1 = T_2 \vert_{\domain(T_1)}$. \end{eg} \begin{defi} An operator $T_2$ is said to be an extension of another operator $T_1$ if $\domain(T_1) \subset \domain(T_2)$ and $T_1 = T_2 \vert_{\domain(T_1)}$. In this case we write $T_1 \subset T_2$. \end{defi} \begin{thm} Let $T: \domain(T) \rightarrow H$ be a linear operator, where $\domain(T) \subset H$. Then \begin{enumerate}[(i)] \item $T$ is closed if and only if $x_n \longrightarrow x, ~x_n \in \domain(T)$ and $Tx_n \longrightarrow y$ imply $x \in \domain(T)$ and $Tx = y$. \item If $T$ is closed and $\domain(T)$ is closed, then $T$ is bounded. \item Let $T$ be bounded. Then $T$ is closed if and only if $\domain(T)$ is closed. \end{enumerate} \end{thm} \begin{proof} \noproof \end{proof} \begin{thm} Let $T$ be a densely defined operator on $H$. Then the adjoint operator $T^*$ is closed. \end{thm} \begin{proof} \noproof \end{proof} \begin{defi} If a linear operator $T$ has an extension $T_1$ which is a closed linear operator, then $T$ is said to be closable. If $T$ is closable, then there exists a minimal closed operator $\closure{T}$ satisfying $T \subset \closure{T}$. The operator $\closure{T}$ is said to be the closure of $T$. \end{defi} \begin{thm} Let $T: \domain(T) \rightarrow H$ be a densely defined linear operator. If $T$ is symmetric, its closure $\closure{T}$ exists and is unique. \end{thm} \begin{proof} \noproof \end{proof} \begin{thm} Let $U: H \rightarrow H$ be a unitary operator. Then there exists a spectral family $\set{E_{\theta}}_{\pi}$ on $[-\pi, \pi]$ such that \[ U = \int_{-\pi}^{\pi} e^{i\theta} \dd{E_{\theta}} \] where the integral is understood in the sense of uniform operator convergence. \end{thm} \begin{hproof} One can show that there exists a bounded self-adjoint linear operator $S$ with $\sigma(S) \subset [-\pi, \pi]$ such that \begin{equation} U = e^{iS} = \cos S + i\sin S \end{equation} Let $\set{E_{\theta}}$ be a spectral family for $S$ on $[-\pi, \pi]$. Then \[ S = \int_{-\pi}^{\pi} \theta \dd{E_{\theta}} \] Hence \[ U = e^{iS} = \int_{-\pi}^{\pi} \cos\theta \dd{E_{\theta}} + i \int_{-\pi}^{\pi} \sin\theta \dd{E_{\theta}} = \int_{-\pi}^{\pi} e^{i\theta} \dd{E_{\theta}} \] \end{hproof} \begin{defi} Let $T: \domain(T) \rightarrow H$ be a self-adjoint linear operator, where $\domain(T)$ is dense in $H$ and $T$ may be unbounded. Define a new operator \[ U = (T - iI)(T + iI)^{-1} \] called the Cayley transform of $T$. It is defined on the entire Hilbert space since we know that $-i \not\in \sigma(T) \subset \realn$. One can also check that it is unitary and \[ T = i(I + U)(I - U)^{-1} \] \end{defi} \begin{thm}[Spectral Representation for Unbounded Self-Adjoint Operators] Let $T: \domain(T) \rightarrow H$ be a self-adjoint linear operator and let $\domain(T)$ be dense in $H$. Let $U$ be the Cayley transform of $T$ and $\set{\tilde{E}_{\theta}}$ a spectral family in the spectral representation for $-U$. Then \[ T = \int_{-\pi}^{\pi} \tan\frac{\theta}{2} \dd{\tilde{E}_{\theta}} = \int_{-\infty}^{\infty} \lambda \dd{E_{\lambda}} \] where $E_{\lambda} = \tilde{E}_{2\arctan\lambda}, ~\lambda \in \realn$. \end{thm} \begin{proof} \proof \end{proof} \begin{rem} We remark that $T = i(I+U)(I-U)^{-1} = f(-U)$, where $f(\theta) = i\frac{1-\theta}{1+\theta}$. Let \[ -U = \int_{-\pi}^{\pi} e^{i\theta} \dd{\tilde{E}_{\theta}} \] Then \begin{align*} T = \int_{-\pi}^{\pi} f(e^{i\theta}) \dd{\tilde{E}_{\theta}} &= \int_{-\pi}^{\pi} i \frac{1 - e^{i\theta}}{1 + e^{i\theta}} \dd{\tilde{E}_{\theta}} \\ &= \int_{-\pi}^{\pi} i\frac{(1 - \cos\theta) - i\sin\theta}{(1 + \cos\theta) + i\sin\theta} \dd{\tilde{E}_{\theta}} \\ &= \int_{-\pi}^{\pi} i\frac{-2i\sin\theta}{2 + 2\cos\theta} \dd{\tilde{E}_{\theta}} \\ &= \int_{-\pi}^{\pi} \tan\frac{\theta}{2} \dd{\tilde{E}_{\theta}} \end{align*} \end{rem} \begin{eg}[Spectral Representation of the Multiplication Operator] Consider the space $H = L^2(-\infty, \infty)$ which is to be taken over $\cmpln$ and take \[ (Tx)(t) = tx(t), ~t \in \realn, \quad \domain(T) = \set[\int_{-\infty}^{\infty} t^2\abs{x(t)}^2 \dd{t} < \infty]{x \in L^2(-\infty, \infty)} \] Then $T$ is self-adjoint and the spectral family associated with $T$ is \[ (F_{\lambda} x)(t) = \begin{cases} x(t), & t < \lambda \\ 0, & t \ge \lambda \end{cases} \] \end{eg} \end{document}