% !TeX root = ../../script.tex \documentclass[../../script.tex]{subfiles} \begin{document} \section{Product measures and Fubini's Theorem} \begin{eg} Let \[ f: [0, 1] \times [0, 1] \longrightarrow [0, \infty) \] Question: What is the volume (or the $\lambda^2$ measure) under the graph of $f$, i.e. \[ \set[0 \le z \le f(x, y)]{(x, y, z) \in \realn^3} \] The possibilities are \begin{gather*} \int f \dd\lambda^2 \\ \int_0^1 \int_0^1 f(x, y) \dd x \dd y ~~\text{ or }~~ \int_0^1 \int_0^1 f(x, y) \dd y \dd x \end{gather*} \end{eg} From now on we define $\measure$ and $(\Phi, \setfamb, \nu)$ to be measure spaces. \begin{defi} The product $\sigma$-algebra $\setfam \otimes \setfamb$ is the smallest $\sigma$-algebra on $\Omega \times \Phi$ that contains all sets of type $A \times B$ for $A \in \setfam, B \in \setfamb$. Examples for $A \times B$ are \begin{center} \begin{minipage}{.49\linewidth} \begin{center} \begin{tikzpicture} \draw[very thick, ->] (0, 0) -- (5, 0); \draw[very thick, ->] (0, 0) -- (0, 5); \draw (1, 1) -- (4, 1) -- (4, 4) -- (1, 4) -- (1, 1); \draw[dashed] (0, 4) -- (1, 4); \draw[dashed] (0, 1) -- (1, 1); \draw[dashed] (1, 0) -- (1, 1); \draw[dashed] (4, 0) -- (4, 1); \node[below] at (2.5, 0) {$A$}; \node[left] at (0, 2.5) {$B$}; \end{tikzpicture} \end{center} \end{minipage} \begin{minipage}{.49\linewidth} \begin{center} \begin{tikzpicture} \draw[very thick, ->] (0, 0) -- (5, 0); \draw[very thick, ->] (0, 0) -- (0, 5); \draw (1, 1) -- (2, 1) -- (2, 2) -- (1, 2) -- (1, 1); \draw (3, 1) -- (4, 1) -- (4, 2) -- (3, 2) -- (3, 1); \draw (1, 3) -- (2, 3) -- (2, 4) -- (1, 4) -- (1, 3); \draw (3, 3) -- (4, 3) -- (4, 4) -- (3, 4) -- (3, 3); \draw[dashed] (0, 4) -- (1, 4); \draw[dashed] (0, 3) -- (1, 3); \draw[dashed] (0, 2) -- (1, 2); \draw[dashed] (0, 1) -- (1, 1); \draw[dashed] (4, 0) -- (4, 1); \draw[dashed] (3, 0) -- (3, 1); \draw[dashed] (2, 0) -- (2, 1); \draw[dashed] (1, 0) -- (1, 1); \node[left] at (0, 3.5) {$B$}; \node[left] at (0, 1.5) {$B$}; \node[below] at (1.5, 0) {$A$}; \node[below] at (3.5, 0) {$A$}; \end{tikzpicture} \end{center} \end{minipage} \end{center} \pagebreak NO examples for $A \times B$ are \begin{center} \begin{minipage}{.49\linewidth} \begin{center} \begin{tikzpicture} \draw[very thick, ->] (0, 0) -- (5, 0); \draw[very thick, ->] (0, 0) -- (0, 5); \draw (1, 1) -- (2, 1) -- (2, 2) -- (1, 2) -- (1, 1); \draw (3, 1) -- (4, 1) -- (4, 2) -- (3, 2) -- (3, 1); \draw (1, 3) -- (2, 3) -- (2, 4) -- (1, 4) -- (1, 3); \draw[dashed] (0, 4) -- (1, 4); \draw[dashed] (0, 3) -- (1, 3); \draw[dashed] (0, 2) -- (1, 2); \draw[dashed] (0, 1) -- (1, 1); \draw[dashed] (4, 0) -- (4, 1); \draw[dashed] (3, 0) -- (3, 1); \draw[dashed] (2, 0) -- (2, 1); \draw[dashed] (1, 0) -- (1, 1); \node[left] at (0, 3.5) {$B$}; \node[left] at (0, 1.5) {$B$}; \node[below] at (1.5, 0) {$A$}; \node[below] at (3.5, 0) {$A$}; \end{tikzpicture} \end{center} \end{minipage} \begin{minipage}{.49\linewidth} \begin{center} \begin{tikzpicture} \draw[very thick, ->] (0, 0) -- (5, 0); \draw[very thick, ->] (0, 0) -- (0, 5); \draw (2.5, 2.5) circle[radius=1.5]; \node[below] at (0, 0) {\quad}; \end{tikzpicture} \end{center} \end{minipage} \end{center} A measure $\vartheta$ defined on $\setfam \otimes \setfamb$ is said to be a product measure of $\mu, \nu$ if \[ \vartheta(A \times B) = \mu(A) \nu(B) ~~A \in \setfam, B \in \setfamb \] \end{defi} \begin{rem} Product measures always exist. For $\sigma$-finite measure spaces they are unique. Notation: \[ \mu \otimes \nu ~~\text{ or }~~ \mu^2 = \mu \otimes \mu \] \end{rem} \begin{eg} $\realn$ with Lebesgue measure $\lambda$. $\lambda^2$ is the product measure on $\realn^2$. \begin{align*} \lambda^2([a, b] \times [c, d]) &= \lambda([a, b])\lambda([c, d]) \\ &= (b - a)(d - c) \end{align*} This means the product measure characterizes the area. Analogously this can be extended for $\lambda^3$, $\lambda^4$ etc. \end{eg} \begin{eg} Consider \begin{align*} f: \realn^2 &\longrightarrow \realn \\ f &= \sum_{n=0}^{\infty} \left(\charfun_{[n, n+1)^2} - \charfun_{[n+1, n+2) \times [n, n+1)}\right) \end{align*} \begin{center} \begin{tikzpicture} \draw[->, very thick] (0, 0) -- (0, 3.5) node[above] {$y$}; \draw[->, very thick] (0, 0) -- (5.5, 0) node[right] {$x$}; \foreach \x in {1,...,5} \draw (\x, -0.1) -- (\x, 0.1); \foreach \y in {1,...,3} \draw (-0.1, \y) -- (0.1, \y); \draw (0, 1) -- (3, 1); \draw (1, 2) -- (4, 2); \draw (2, 3) -- (4, 3); \draw (1, 2) -- (1, 0); \draw (2, 3) -- (2, 0); \draw (3, 3) -- (3, 1); \draw (4, 3) -- (4, 2); \node at (4.5, 2.5) {$\cdots$}; \node at (0.5, 0.5) {$1$}; \node at (1.5, 0.5) {$-1$}; \node at (1.5, 1.5) {$1$}; \node at (2.5, 1.5) {$-1$}; \node at (2.5, 2.5) {$1$}; \node at (3.5, 2.5) {$-1$}; \draw[dashed] (0, 0.8) -- (5, 0.8) node[right] {$=0$}; \draw[dashed] (0.4, 0) -- (0.4, 3) node[above] {$=1$}; \draw[dashed] (1.8, 0) -- (1.8, 3) node[above] {$=0$}; \end{tikzpicture} \end{center} \begin{align*} \iint f(x, y) \dd x \dd y = 0 && \iint f(x, y) \dd y \dd x = 1 \end{align*} But the integral $\int f \dd\lambda^2$ doesn't exist \[ \int \abs{f} \dd\lambda^2 = \sum_{n=0}^{\infty} 2 = \infty \] \end{eg} \begin{thm}[Tonelli's Theorem] Let $f: \Omega \times \Phi \rightarrow [0, \infty)$ be measurable (in terms of $\setfam \otimes \setfamb$). Then the functions \[ \omega \longmapsto f(\omega, \phi) \] are measurable for almost all $\phi \in \Phi$. Analogously \[ \phi \longmapsto f(\omega, \phi) \] is measurable for almost all $\omega \in \Omega$. \begin{align*} \phi &\longmapsto \int f(\omega, \phi) \dd\mu(\omega) \text{ measurable} \\ \omega &\longmapsto \int f(\omega, \phi) \dd\mu(\phi) \text{ measurable} \end{align*} and \begin{align*} \int f(\omega, \phi) \dd (\mu \otimes \nu) (\omega, \phi) &= \iint f(\omega, \phi) \dd\mu(\omega) \dd\nu(\phi) \\ &= \iint f(\omega, \phi) \dd\nu(\phi) \dd\mu(\omega) \end{align*} Furthermore, $f$ is integrable in terms of $\mu \otimes \nu$ is one of the above integrals is finite. \end{thm} \begin{proof} Without proof. \end{proof} \begin{cor}[Cavalieri's Principle] Let $A \subset \setfam \otimes \setfamb$. Define \[ A_{\omega} = \set[(\omega, \phi) \in A]{\phi \in \Phi} \] Then \[ \omega \longmapsto \nu(A_{\omega}) \] is measurable and \[ (\mu \otimes \nu)(A) = \int \nu(A_{\omega}) \dd\mu(A_{\omega}) \] \end{cor} \begin{proof} It is easy to see \begin{equation} (\omega, \phi) \in A \iff \phi \in A_{\omega} \end{equation} Thus we can see \begin{equation} \charfun_A(\omega, \phi) = \charfun_{A_{\omega}} (\phi) \end{equation} And then \begin{equation} \begin{split} (\mu \otimes \nu)(A) &= \int \charfun_A(\omega, \phi) \dd{(\mu \otimes \nu)}(\omega, \phi) \\ &= \iint \underbrace{\charfun_A (\omega, \phi)}_{\charfun_{A_{\omega}}(\phi)} \dd{\nu}(\phi) \dd{\mu}(\omega) \\ &= \int \nu(A_{\omega}) \dd{\mu}(\omega) \end{split} \end{equation} \end{proof} \begin{thm}[Fubini's Theorem] Let $f: \Omega \times \Phi \rightarrow \field$ be measurable with measures $\mu, \nu$, which is integrable in terms of $\mu \otimes \nu$. Then the functions $\omega \mapsto f(\omega, \phi)$ are measurable and integrable for $\nu$-almost every $\phi \in \Phi$, and the functions $\phi \mapsto f(\omega, \phi)$ are measurable and integrable for $\mu$-almost every $\omega \in \Omega$. The functions \begin{align*} \omega &\longmapsto \int f(\omega, \phi) \dd{\nu}(\phi) && \phi \longmapsto \int f(\omega, \phi) \dd{\mu}(\omega) \end{align*} are measurable and integrable, and \begin{align*} \int f(\omega, \phi) \dd{(\mu \otimes \nu)} &= \iint f(\omega, \phi) \dd{\nu}(\phi) \dd{\mu}(\omega) \\ &= \iint f(\omega, \phi) \dd{\mu}(\omega) \dd{\nu}(\phi) \end{align*} \end{thm} \begin{proof} Without proof. \end{proof} \begin{cor} Let $a_i, b_i \in \realn$, $a_i < b_i ~~\forall i \in \set{1, \cdots, n}$. \[ D = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n] \] Let $f: D \rightarrow \realn$ be continuous or bounded. Then \[ \int_D f \dd{\lambda^n} = \int\limits_{a_1}^{b_1} \cdots \int\limits_{a_n}^{b_n} f(x_1, \cdots, x_n) \dd{x_n} \cdots \dd{x_1} \] and the order of integration is irrelevant. \end{cor} \begin{proof} $f$ is bounded by $k \in \realn$ (continuous with compact domain) \begin{equation} \int_D \abs{f} \dd{\lambda^n} \le \int_D k \dd{\lambda^n} = k \cdot (b_1 - a_1)(b_2 - a_2) \cdots (b_n - a_n) < \infty \end{equation} $f$ is $\lambda^n$-integrable. By applying Fubini's theorem the desired statement follows. \end{proof} \begin{eg} Calculate the center of mass of \[ A = \set[x \ge y^2 \wedge x \le 1]{(x, y) \in \realn^2} \] \begin{center} \begin{tikzpicture}[scale=2] \draw[->, thick] (-0.5, 0) -- (3.5, 0); \draw[->, thick] (0, -1.2) -- (0, 1.2); \draw[domain=-1:1, smooth, variable=\y] plot({3*\y*\y}, {\y}); \draw[dashed] (3, -1) -- (3, 1); \end{tikzpicture} \end{center} The center of mass is defined by \[ \int \begin{pmatrix} x \\ y \end{pmatrix} \underbrace{\dd{\lambda^2}(x, y)}_{\dd A} \] In component form this is \begin{align*} \int_A x \dd{\lambda^2}(x, y) &= \int x \charfun_A(x, y) \dd{\lambda^2}(x, y) \\ &= \int_{[0, 1] \times [-1, 1]} x \charfun_A(x, y) \dd{\lambda^2}(x, y) \\ &= \int_0^1 \int_{-1}^1 x \charfun_{[-\sqrt{x}, \sqrt{x}]}(y) \dd{y}\dd{x} \\ &= \int_0^1 x \cdot 2 \cdot \sqrt{x} \dd{x} = \frac{4}{5} \end{align*} Meaning the center of mass is at $(\frac{4}{5}, 0)$. \end{eg} \end{document}