% !TeX root = ../../script.tex \documentclass[../../script.tex]{subfiles} \begin{document} \section{Solution Methods} \begin{defi} An ordinary differential equation (ODE) is an equation of the form \[ F(x, y, y', \cdots, y^{(n)}) = 0 \] with $F: \realn^{n+2} \rightarrow \realn$. $n$ is the order of the ODE. Let $I$ be an open interval. A function $y: I \rightarrow \realn$ is a solution of the ODE if $y \in C^n(\realn)$ and \[ F(x, y(x), y'(x), \cdots, y^{(n)}(x)) = 0 ~~\forall x \in I \] \end{defi} \begin{eg} \begin{align*} y'' = -\frac{1}{y^2} && \text{Gravitational field} \\ y'' = -\sin y && \text{Pendulum} \end{align*} \end{eg} \begin{rem} \begin{enumerate}[(i)] \item Often times $F$ is only defined on subsets of $\realn^{n+2}$ \item ODEs are not simple to solve \item Even if we can't calculate explicit solutions, we can inspect the following properties \begin{itemize} \item Existence of solutions \item Uniqueness of solutions \item Dependency of solutions from initial conditions \item Sability \end{itemize} \end{enumerate} \end{rem} \begin{eg} \begin{enumerate}[(i)] \item Let $I$ be an open interval and $f: I \rightarrow \realn$ continuous. Then the solution of \[ y' = f(x) \] is the antiderivative of $f$. Let $x_0 \in I$, then \[ y(x) = \int_{x_0}^x f(t) \dd{t} + c ~~c \in \realn \] \item Consider the ODE \[ y' = y \] The functions $x \mapsto c e^x$ are solutions $\forall c \in \realn$. Are those all the solutions that exist? Let $y: I \rightarrow \realn$ be any solution, and consider \[ u(x) = y(x)e^{-x} \] Then \begin{align*} u'(x) &= y'(x) e^{-x} - y(x)e^{-x} \\ &= \left(y'(x) - y(x)\right) e^{-x} = 0 ~~\forall x \in I \end{align*} So $u(x) = c$. \end{enumerate} \end{eg} \begin{defi}[Initial Value Problem] Let $y_0, \cdots, y_{n-1} \in \realn$ and also $F: \realn^{n+2} \rightarrow \realn$. The system of equations \begin{align*} F(x, y, y', \cdots, y^{(n)}) = 0 && \begin{cases} y(0) = y_0 \\ y'(0) = y_1\\ \cdots \\ y^{(n-1)}(0) = y_{n-1} \end{cases} \end{align*} is said to be an initial value problem (IVP). \end{defi} \begin{eg} Consider the problem \begin{align*} y'' = -\rec{y^2} && \begin{cases} y(0) = y_0 \\ y'(0) = y_1 \end{cases} \end{align*} This describes the movement of a point mass in the gravitational field of the earth along a straight line through the center of the earth with the initial position $y_0$ and the initial velocity $y_1$. \end{eg} \begin{eg} Consider the problem \begin{align*} y' = -y^2 && y(0) = 1 \end{align*} Assume $y: I \rightarrow \realn$ is a solution and $y(x) > 0 ~~\forall x \in I$. Then \[ 1 = -\frac{1}{y(t)^2} ~y'(t) ~~\forall t \in I \] By integrating we get \begin{align*} x = -\int_0^x \frac{1}{y(t)^2} y'(t) \dd{t} &\equalexpl{Substitution} -\int_1^{y(x)} \rec{y^2} \dd{y} \\ &= \left. \rec{y} \right\vert_1^{y(x)} = \rec{y(x)} - 1 ~~\forall x \in I \end{align*} So a solution is \[ y(x) = \frac{1}{1+x} \] The biggest domain that makes sense is $(-1, \infty)$. Analogously one can approach equations with "separated variables", so of the form \begin{align*} y' = f(y)g(x) && y(x_0) = y_0 \end{align*} \end{eg} \begin{thm}[Separation of Variables] Let $I, J$ be open intervals, and let \begin{align*} f: I \longrightarrow \realn && g: J \longrightarrow \realn \end{align*} be continuous with $0 \ne f(I)$. Let $x_0 \in J, ~y_0 \in I$. Then there exists an open interval $I_2 \subset J$ and $x_0 \in I_2$ such that the IVP \begin{align*} y' = f(y)g(x) && y(x_0) = y_0 \end{align*} has exactly one solution on $I_2$. Set \[ F(y) = \int_{y_0}^y \rec{f(t)} \dd{t} \] Then $y: I_2 \rightarrow I$ is uniquely defined by \[ F(y(x)) = \int_{x_0}^x g(t) \dd{t} \] \end{thm} \begin{proof} $f$ does not have any roots, thus w.l.o.g. $f > 0$. \begin{equation} F'(y) = \rec{f(y)} > 0 \implies F \text{ strictly monotonically increasing} \end{equation} Therefore there exists an inverse function $H: F(I) \rightarrow I$. According to the theorem about inverse functions, $H$ is $C^1$ and \begin{equation} H'(z) = \rec{F'(H(z))} ~~\forall z \in F(I) \end{equation} $F(I)$ is an open interval containing the $0$. Then we have \begin{equation} y(x) = H(G(x)) ~~x \in I_2 \end{equation} where \begin{equation} G(x) = \int_{x_0}^x g(t) \dd{t} \end{equation} Now choose $I_2$ such that $x_0 \in I_2$ and $G(I_2) \subset F(I)$. Then \begin{equation} \begin{split} y'(x) &= H'(G(x)) \cdot G'(x) \\ &= \rec{F'(H(G(x)))} \cdot G'(x) \\ &= \rec{F'(y(x))} \cdot G'(x) \\ &= f(y(x)) g(x) \end{split} \end{equation} So $y$ solves the ODE. However, if $\tilde{y}: I \rightarrow \realn$ some solution of the IVP, then $\forall x \in I_2$ \begin{equation} \begin{split} G(x) = \int_{x_0}^x g(x) \dd{x} = \int_{x_0}^x \frac{\tilde{y}(x)}{f(\tilde{y}(x))} \dd{x} = \int_{\tilde{y}(x_0)}^{\tilde{y}(x)} \rec{f(y)} \dd{y} = F(\tilde{y}(x)) \end{split} \end{equation} So $\tilde{y}(x) = H(G(x))$ \end{proof} \begin{rem} $I_2$ is obviously not unique. We can find the biggest possible domain with \[ \bigcup_{\substack{x \in I_2 \\ I_2 \text{ open} \\ G(I_2) \subset F(I)}} I_2 = I_{2, \max} \] \end{rem} \begin{thm} Let $f: \realn \rightarrow \realn$ be a continuous function, $a, b, c \in \realn$ and $I$ an open interval. Then $y: I \rightarrow \realn$ is a solution of the ODE \[ y' = f(ax + by + c) \] if and only if $ u(x) := ax + by + c$ is a solution of \[ u' = a + bf(u) \] \end{thm} \begin{hproof} Consider \[ u'(x) = a + by'(x) \] \end{hproof} \begin{eg}[Euler Homogeneous ODE] Let $f: \realn \rightarrow \realn$ be a function and $I$ an open interval not containing the $0$. Then $y: I \rightarrow \realn$ is a solution of the ODE \[ y' = f(\frac{y}{x}) \] if and only if \[ u(x) = \frac{y(x)}{x} \] solves the ODE \[ u' = \frac{f(u) - u}{x} \] \end{eg} \begin{eg} Let $f: \realn \rightarrow \realn$ be continuous and $a_1, a_2, b_1, b_2, c_1, c_2 \in \realn$ such that \[ \begin{vmatrix} a_1 && b_1 \\ a_2 && b_2 \end{vmatrix} \ne 0 \] Now let $\tilde{x}, \tilde{y}$ be the solutions of the equation system \begin{align*} a_1\tilde{x} + b_1\tilde{y} + c_1 &= 0 \\ a_2\tilde{x} + b_2\tilde{y} + c_2 &= 0 \end{align*} Let $I$ be an open interval not containing the $0$. Then $y: I \rightarrow \realn$ is a solution to \[ y' = f\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right) \] if and only if \begin{align*} u: I - \tilde{x} &\longrightarrow \realn \\ x &\longmapsto y(x + \tilde{x}) - \tilde{y} \end{align*} is a solution to \[ u' = f\left(\frac{a_1 + b_y \frac{u}{x}}{a_2 + b_2 \frac{u}{x}}\right) \] \end{eg} \begin{proof} Let $y: I \rightarrow \realn$ be a solution to the initial equation. Then \begin{equation} \begin{split} u'(x) &= y'(x + \tilde{x}) = f\left( \frac{a_1(x + \tilde{x}) + b_1 y(x + \tilde{x}) + c_1}{a_2(x + \tilde{x}) + b_2y(x + \tilde{x}) + c_2} \right) \\ &= f\left( \frac{a_1x + b_1u(x) + a_1\tilde{x} + b_1\tilde{y} + c_1}{a_2x + b_2u(x) + a_2\tilde{x} + b_2\tilde{y} + c_2} \right) \\ &= f\left(\frac{a_1 + b_1 \frac{u(x)}{x}}{a_2 + b_2 \frac{u(x)}{x}}\right) \end{split} \end{equation} The other direction is left to the reader. \end{proof} \begin{defi}[Exact ODE] Let $D \subset \realn^2$ be open, and $p, q: D \rightarrow \realn$ continuous. The ODE \[ p(x, y) + q(x, y) y' = 0 \] is said to be exact if there exists a $C^1$-function $H: D \rightarrow \realn$, such that \begin{align*} \partial_1 H = p && \partial_2 H = q \end{align*} Such a function is called a potential function. \end{defi} \begin{thm} Let $D \subset \realn^2$ be open, and $p, q: D \rightarrow \realn$ continuous. Let \[ p(x, y) + q(x, y)y' = 0 \] be exact and $H$ a potential function. Furthermore let $I$ be an open interval and $y: I \rightarrow \realn$ a $C^1$-function such that \[ \set[x \in I]{(x, y(x))} \subset D \] Then $y$ solves the ODE if and only if $\exists c \in \realn$ such that \[ H(x, y(x)) = c \] \end{thm} \begin{proof} \begin{equation} \begin{split} \dv{x} H(x, y(x)) &= \partial_1 H(x, y(x)) + \partial_2 H(x, y(x)) y'(x) \\ &= p(x, y) + q(x, y)y'(x) \end{split} \end{equation} \end{proof} \begin{thm} Let $D \subset \realn^2$ be open, and $p, q: D \rightarrow \realn$ continuously differentiable. If \[ p(x, y) + q(x, y)y' = 0 \] is exact, then \[ \partial_2 p = \partial_1 q \] \end{thm} \begin{proof} Let $H$ be a potential $C^2$-function. Then \begin{equation} \partial_2 p = \partial_2 \partial_1 H = \partial_1 \partial_2 H = \partial_1 q \end{equation} \end{proof} \begin{rem} The above condition is merely necessary! However, for "nice" $D$ it can be considered sufficient. \end{rem} \begin{eg}\label{eg:817} Consider \begin{align*} \underbrace{(2x + y^2)}_p + \underbrace{2xyy'}_q = 0 && y(1) = 1 \end{align*} Then \begin{align*} \partial_2 p = 2y && \partial_1 q = 2y \end{align*} So $\partial_2 p = \partial_1 q$. If $H$ is a potential function, then \begin{align*} \partial_1 H(x, y) &= p(x, y) = 2x + y^2 \\ \implies H(x, y) &= \int p(x, y) \dd{x} = x^2 + y^2x + G(y) \end{align*} and \begin{align*} \partial_2 H(x, y) &= q(x, y) = 2xy = 2xy + G'(y) \\ \implies G(y) &= c \end{align*} So the potential function is \[ H(x, y) = x^2 + y^2 x \] We can insert the initial condition \[ H(1, 1) = 2 \] So the solution has to fulfil \[ x^2 + y(x)^2 x = 2 ~~\forall x \in I \] and thus \[ y(x) = \pm \sqrt{\frac{2}{x} - x} \] Only the positive sign fulfils the initial conditions, so the solution is \[ y(x) = \sqrt{\frac{2}{x} - x} \] This function is defined on $(-\infty, -\sqrt{2}] \cup (0, \sqrt{2}]$, however due to the initial conditions $(0, \sqrt{2}]$ is the only useful domain. \end{eg} \begin{rem} If \[ p(x, y) + q(x, y)y' = 0 \] is not exact one can try and find an "integrating factor", i.e. $h: D \rightarrow \realn$ such that \[ h(x, y)p(x, y) + h(x, y)q(x, y)y' = 0 \] is exact. A necessary condition is \[ \left(\partial_2 h(x, y)\right)p(x, y) + h(x, y) \partial_2 p(x, y) = \left(\partial_1 h(x, y)\right) q(x, y) + h(x, y) \partial_1 q(x, y) \] This is a partial differential equation and won't be discussed further in this chapter. \end{rem} \begin{defi}[Ordinary Differential Equation System] An ordinary differential equation system (ODES) is an equation of the form \[ F(x, y, y', \cdots, y^{(n)}) = 0 \] with \[ F: \realn \times \realn^L \times \realn^L \times \cdots \times \realn^L \longrightarrow \realn^m \] \end{defi} \begin{eg} \begin{enumerate}[(i)] \item Let $z = (z_1, z_2, z_3)$, then \[ z'' = -\frac{z}{\norm{z}^3} = -\rec{\norm{z}^2} \frac{z}{\norm{z}} \] is the Kepler problem. \item The equation \begin{align*} b' &= \alpha_1 b - \gamma_1 br \\ r' &= -\alpha_2 r + \gamma_2 br \end{align*} is called the "Lotka-Volterra-Equation" and it models the population of prey and predators. \end{enumerate} \end{eg} \begin{rem} The ODES \[ F(x, y, y', y'', \cdots, y^{((n)}) = 0 \] is equivalent to the ODES of first order \begin{align*} F(x, y, y_1, y_2, \cdots, y_{n-1}) = 0 && \begin{cases} y_1 = y' \\ y_2 = y_1' \\ \vdots \end{cases} \end{align*} \end{rem} \end{document}