% !TeX root = ../../script.tex \documentclass[../../script.tex]{subfiles} \begin{document} \section{Line Integrals} \begin{defi} Let $I$ be an interval and $n \in \natn$. A parametrized curve (or path) in $\realn^n$ is a continuous mapping \[ \gamma: I \longrightarrow \realn^n \] A parametrized curve is said to be regular if it is $C^1$ and $\gamma'(t) \ne 0 ~~\forall t \in I$. It is said to be piecewise regular if there is a disjoint decomposition \[ I = I_1 \cup I_2 \cup \cdots \cup I_n \] into partial intervals such that $\gamma$ is regular on each partial interval. A curve is a subset of $\realn^n$ that is the image of a parametrized curve. If $\curve$ is a curve, then \[ \gamma: I \longrightarrow \realn^n \] is said to be the parametrization of $\curve$, if $\gamma(I) = \curve$ and if $\gamma$ is injective on $\interior{I}$. The curves in this chapter will always be regular. \end{defi} \begin{eg} \begin{enumerate}[(i)] \item $\alpha, \kappa > 0$: \begin{align*} \gamma: \realn &\longrightarrow \realn^3 \\ t &\longmapsto (\cos(\alpha t), \sin(\alpha t), \kappa t) \end{align*} This is the parametrization of a screw curve. \item The unit circle \[ \set[x^2 + y^2 = 1]{(x, y) \in \realn^2} \] is a curve with the parametrization \begin{align*} \gamma: [0, 2\pi] &\longrightarrow \realn^2 \\ t &\longmapsto (\cos t, \sin t) \end{align*} \item A square \[ \set[\max\set{\abs{x_1}, \abs{x_2}} = 1]{(x, y) \in \realn^2} \] is a piecewise regular curve. \end{enumerate} \end{eg} \begin{rem} Let $\gamma: I \rightarrow \realn^n$ be regular, $f: \gamma(I) \rightarrow \realn$ be continuous and $a, b \in \interior{I}$. A decomposition $Z$ is given by the grid points \[ a = t_0 < t_1 < \cdots < t_n = b \] The fineness of $Z$ is given by \[ m(Z) := \max_{t \in \set{0, 1, \cdots, n-1}} (t_{i+1} - t_i) \] We can represent $I$ in terms of $Z$ via \[ I(Z) := \sum_{i=0}^{n-1} f(\gamma(t_i)) \norm{\gamma(t_{i+1}) - \gamma(t_i)} \] Or in integral representation \[ I(Z) = \int_a^b \underbrace{\sum_{i=0}^{n-1} f(\gamma(t_i)) \frac{\norm{\gamma(t_{i+1}) - \gamma(t_i)}}{\norm{t_{i+1} - t_i}} \charfun_{[t_i, t_{i+1})}(t)}_{g_Z(t)} \dd{t} \] So let $(Z_j)$ be a sequence of decompositions with \[ m(Z_j) \conv{j \rightarrow \infty} 0 \] Let $t \in [a, b]$ not be a grid point of any $Z_j$. Then there exists a unique grid poiont $t_{j, i_j}$ such that $t \in [t_{j, i_j}, t_{j, i_{j+1}}]$. Then \[ \limes{j}{\infty} t_{j, i_j} = \limes{j}{\infty} t_{j, i_{j+1}} = t \] And thus \[ \limes{j}{\infty} g_{Z_j}(t) = f(\gamma(t)) \norm{\gamma'(t)} \] $\forall t$ that are not grid points of $Z_j$, this means tahat \[ g_{Z_j} \conv{j \rightarrow \infty} f \norm{\gamma'} \] almost everywhere. The dominated convergence theorem then tells us \[ I(Z_j) = \int_a^b g_{Z_j}(t) \dd{t} \conv{j \rightarrow \infty} \int_a^b f(\gamma(t)) \norm{\gamma'(t)} \dd{t} \] Special case: For $f \equiv 1$ one gets the arc length. \end{rem} \begin{defi}[Line Integrals, Arc Length] Let $I$ be an interval and $\gamma: I \rightarrow \realn^n$ a parametrized curve. Define the functions \begin{align*} f: \gamma(I) \longrightarrow \realn && E: \gamma(I) \longrightarrow \realn^n \end{align*} Then \[ \int_{\gamma} f \dd{s} := \int_I f(\gamma(t)) \norm{\gamma'(t)} \dd{t} \] is said to be a scalar line integral (line integral of first kind), and \[ \int_{\gamma} \innerproduct{E}{\dd{s}} := \int_I \innerproduct{E(\gamma(t))}{\gamma'(t)} \dd{t} \] is said to be a vector line integral (line integral of second kind). The function $f$ or the vector field $E$ are integrable along $\gamma$ if the according integral exists. The integral \[ \int_{\gamma} \dd{s} \] is the arc length of $\gamma$, and $\gamma$ is said to be rectifiable if this integral is finite. If the curve $\gamma$ is closed, i.e. if $I = [a, b] ~~a, b \in \realn$ and \[ \gamma(a) = \gamma(b) \] Then the above integrals are often notated as \begin{align*} \oint_{\gamma} \dd{s} && \oint_{\gamma} \innerproduct{E}{\dd{s}} \end{align*} to emphasize that the curve is closed. This changes nothing about the formulas, it is merely visual. I will try to adhere to this style. \end{defi} \begin{eg}[Circumference of the unit circle] Define \begin{align*} \gamma: [0, 2\pi] &\longrightarrow \realn^2 \\ t &\longrightarrow (\cos(t), \sin(t)) \end{align*} and derive this function \[ \gamma'(t) = (-\sin(t), \cos(t)) \implies \norm{\gamma'(t)} = 1 \] Then the circumference is \[ \oint_{\gamma} \dd{s} = \int_0^{2\pi} \dd{t} = 2\pi \] \end{eg} \begin{rem} \begin{enumerate}[(i)] \item If $\gamma$ is only piecewise regular then the integrands might not be defined for all $t$. \item Line integrals don't depend on the chosen parametrization. This means if $\curve$ is a curve and \begin{align*} \gamma: I \rightarrow \curve && \rho: J \rightarrow \curve \end{align*} are parametrizations, then \[ \int_{\gamma} f \dd{s} = \int_{\rho} f \dd{s} \] We also write \[ \int_{\curve} f \dd{s} \] The same holds for vector integrals. \item Both kinds of integrals depend on the scalar product. \item Both kinds of integrals are special cases of integrals over so called One-forms \end{enumerate} \end{rem} \begin{thm} Let $\gamma: I \rightarrow \realn^n$ be a parametrized curve, and $\vartheta: J \rightarrow I$ a diffeomorphism (so $\vartheta \in C^1$ and $\vartheta'(t) \ne 0 ~~\forall t \in J$). Let $f: \gamma(I) \rightarrow \realn$, then \[ \int_{\gamma} f \dd{s} = \int_{\gamma \circ \vartheta} f \dd{s} \] \end{thm} \begin{proof} We can assume $I, J$ to be open, since the endpoints of the integrals are a null set and thus don't matter. W.l.o.g. let $\gamma$ be regular. Then \begin{equation} \begin{split} \int_{\gamma \circ \vartheta} f \dd{s} &= \int_J f(\gamma \circ \vartheta)(t) \norm{(\gamma \circ \vartheta)'(t)} \dd{t} \\ &= \int_J f(\gamma(\vartheta(t))) \norm{\gamma'(\vartheta(t)) \vartheta'(t)} \dd{t} \\ &= \int_J f(\gamma(\vartheta(t))) \norm{\gamma'(\vartheta(t))} \abs{\vartheta'(t)} \dd{t} \\ &= \int_I f(\gamma(\tau)) \norm{\gamma'(\tau)} \dd{\tau} \\ &= \int_{\gamma} f \dd{s} \end{split} \end{equation} \end{proof} \begin{rem} \begin{enumerate}[(i)] \item One can show that for a curve $\curve$ and parametrizations \begin{align*} \gamma: I \rightarrow \curve && \rho: J \rightarrow \curve \end{align*} there exists a diffeomorphism $\vartheta: J \rightarrow I$ such that \[ \rho = \gamma \circ \vartheta \] So the line integral of first degree doesn't depend on the parametrization. \item A line integral of second degree doesn't depend on the parametrization if the parametrizations run along the curve in the same direction. So if $\vartheta' > 0$, $\vartheta$ is said to conserve orientation. If $\vartheta' < 0$ then the integral switches sign. \end{enumerate} \end{rem} \begin{eg} Let $\gamma: I \rightarrow \realn^3$ be the trajectory of a point mass, and $F: \realn^3 \rightarrow \realn^3$ a time-independent forcefield. The work done is then given by \[ W := \int_{\gamma} \innerproduct{F}{\dd{s}} \] The fact that the parametrization can be chosen arbitrarily means that the work done in a forcefield is independent from the velocity of the point mass. \end{eg} \begin{rem} \begin{enumerate}[(i)] \item Line integrals are linear in $f$ or $E$, meaning for \[ f, g: \gamma(I) \rightarrow \realn, ~~\lambda \in \realn \] we have \[ \int_{\gamma}(g + \lambda g) \dd{s} = \int_{\gamma} f \dd{s} + \lambda \int_{\gamma} g \dd{s} \] \item Parametrized curves over compact intervals can be reparametrized so that $I = [0, 1]$. \item Let \begin{align*} \gamma: [0, 1] \rightarrow \realn^n && \rho: [0, 1] \rightarrow \realn^n \end{align*} be curves with $\gamma(1) = \rho(0)$. Define \begin{align*} \inv{\gamma}: [0, 1] &\longrightarrow \realn^n & \gamma\rho: [0, 1] &\longrightarrow \realn^n \\ t &\longrightarrow \gamma(1 - t) & t &\longrightarrow \begin{cases} \gamma(2t), & t \le 0.5 \\ \rho(2t + 1), & t > 0.5 \end{cases} \end{align*} Then we have \begin{align*} &\int_{\inv{\gamma}} f \dd{s} = \int_{\gamma} f \dd{s} \\ &\int_{\gamma\rho} f \dd{s} = \int_{\gamma} f \dd{s} + \int_{\rho} f \dd{s} \\ &\int_{\inv{\gamma}} \innerproduct{E}{\dd{s}} = -\int_{\gamma} \innerproduct{E}{\dd{s}} \\ &\int_{\gamma\rho} \innerproduct{E}{\dd{s}} = \int_{\gamma} \innerproduct{E}{\dd{s}} + \int_{\rho} \innerproduct{E}{\dd{s}} \end{align*} \end{enumerate} \end{rem} \begin{defi} Let $U \subset \realn^n$ be open and $f: U \rightarrow \realn$ a $C^1$-function. Define \[ \grad f = (\partial_1 f, \partial_2 f, \cdots, \partial_m f) \] The vector field $E: U \rightarrow \realn^n$ is said to be conservative if there is a function $g: U \rightarrow \realn$ such that \[ E = \grad{g} \] $g$ is the potential of $E$. \end{defi} \begin{rem} \begin{enumerate}[(i)] \item In physics the sign is typically switched, so \[ E = -\grad{g} \] \item The IDE \[ p(x, y) + q(x, y)y' = 0 \] is exact if and only if the vector field $(p, q)$ is conservative. \item If $E$ is conservative and $C^1$, then \[ \partial_i E_j = \partial_j E_i \] This condition is not sufficient in general. \item If $g$ is a potential for $E$, then the functions \[ g + c ~~c \in \realn \] are also potentials. \item If $E$ is conservative, $g$ a potential and $\gamma: [a, b] \rightarrow \realn^n$ a curve, then \begin{align*} \int_{\gamma} \innerproduct{E}{\dd{s}} &= \int_a^b \innerproduct{E(\gamma(t))}{\gamma'(t)} \dd{t} \\ &= \int_a^b \left(\partial_1 g(\gamma(t)) \gamma_1'(t) + \cdots + \partial_n g(\gamma(t))\gamma_n'(t)\right) \dd{t} \\ &= \int_a^b (g \circ \gamma)'(t) \dd{t} = g(\gamma(b)) - g(\gamma(a)) \end{align*} The vector line integral over conservative fields is independent from the chosen path (it only depends on the start and end points). \item Let $U$ be open, path-connected and $E: U \rightarrow \realn^n$ a conservative vector field. Choose a fixed $x_0 \in U$, and for $x \in U$ choose a parametrized curve $\gamma_x$ from $x_0$ to $x$. Then \[ x \longmapsto \int_{\gamma_x} \innerproduct{E}{\dd{s}} \] is a potential, because if $g$ is an arbitrary potential we have \[ \int_{\gamma_x} \innerproduct{E}{\dd{s}} = g(x) - g(x_0) \quad \forall x \in U \] \end{enumerate} \end{rem} \begin{eg} \begin{enumerate}[(i)] \item Let \begin{align*} E: \realn^3 \setminus \set{0} &\longrightarrow \realn^3 \\ x &\longmapsto -\frac{x}{\norm{x}^3} \end{align*} This field is conservative, with the potential \begin{align*} \phi: \realn^3 \setminus \set{0} &\longrightarrow \realn \\ x &\longmapsto \rec{\norm{x}} \end{align*} \item Let \begin{align*} E: \realn^2 \setminus \set{0} &\longrightarrow \realn^2 \\ (x, y) &\longmapsto \left(-\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right) \end{align*} Then \[ \partial_1 E_2 = \frac{1}{x^2 + y^2} - \frac{2x^2}{(x^2 + y^2)} = \frac{y^2 - x^2}{(x^2 + y^2)^2} = \partial_2 E_1 \] We can calculate the line integral of $E$ along the unit circle \begin{align*} \gamma: [0, 2\pi] &\longrightarrow \realn^2 \\ t &\longmapsto (\cos t, \sin t) \end{align*} Then \[ E(\gamma(t)) = (-\sin t, \cos t) = \gamma'(t) \] The integral is then \[ \int_{\gamma} \innerproduct{E}{\dd{s}} = \int_0^{2\pi} \norm{(-\sin t, \cos t)}^2 \dd{t} = 2\pi \ne 0 \] \item In the chapter about differential equations we looked at an exact equation in \Cref{eg:817}: \[ (2x + y^2) + (2xy)y' = 0 \] We can now use curve integrals to calculate the potential function more easily. For that let $x_0 = (0, 0)$. Then for $(\xi, \eta)$ we can define a curve connecting $x_0$ and $(\xi, \eta)$ for $t \in [0, 1]$: \[ t \longmapsto (\xi t, \eta t) \] Consider the vector field \[ E(x, y) = (2x + y^2, 2xy) \] Then \begin{align*} (\xi, \eta) \longmapsto \int_{\gamma} \innerproduct{E}{\dd{s}} &= \int_0^1 \innerproduct{E(\xi t, \eta t)}{(\xi, \eta)} \dd{t} \\ &= \int_0^1 (2\xi^2 t + \eta^2\xi t^2 + 2\xi\eta^2 t^2) \dd{t} \\ &= \xi^2 + \eta^2\xi \end{align*} \end{enumerate} \end{eg} \begin{thm} Let $U \subset \realn^n$ be an open subset. A continuous vector field $E: U \rightarrow \realn^n$ is conservative if and only if for every closed curve $\gamma: [0, 1] \rightarrow U$ the following holds \[ \oint_{\gamma} \innerproduct{E}{\dd{s}} = 0 \] \end{thm} \begin{proof} Line integrals over $E$ are path independent. Let $\gamma, \rho: [0, 1] \rightarrow U$ be paths with \begin{align} \gamma(0) = \rho(0) && \gamma(1) = \rho(1) \end{align} Then $\gamma \inv{\rho}$ is closed, so \begin{equation} 0 = \int_{\gamma\inv{\rho}} \innerproduct{E}{\dd{s}} = \int_{\gamma} \innerproduct{E}{\dd{s}} - \int_{\rho} \innerproduct{E}{\dd{s}} \end{equation} Assume that $U$ is path continuous. Choose a fixed $x_0 \in U$ and let $g: U \rightarrow \realn$. Then \begin{equation} g(x) = \int_{x_0}^x \innerproduct{E}{\dd{s}} \end{equation} Performing a directional derivation in direction $h \in \realn^n$ yields \begin{equation} \begin{split} g(x + ah) - g(x) &= \int_{x_0}^{x + ah} \innerproduct{E}{\dd{s}} - \int_{x_0}^x \innerproduct{E}{\dd{s}} \\ &= \int_{x}^{x + ah} \innerproduct{E}{\dd{s}} \\ &= \int_0^a \innerproduct{E(x + th)}{h} \dd{t} \end{split} \end{equation} Here we have chosen a linear path of integration between $x_0$ and $x$, and between $x$ and $x + ah$. In other words, we're integrating along \begin{equation} t \longmapsto x + th \end{equation} Using the intermediate value theorem, we can find that $\exists \xi_a \in (0, a)$ such that \begin{equation} \int_0^a \innerproduct{E(x + th)}{h} \dd{t} = \innerproduct{E(x + \xi_a h)}{h} \cdot a \end{equation} Then we have \begin{equation} \partial_h g(x) = \limes{a}{0} \frac{g(x + ah) - g(x)}{a} = \limes{a}{0} \innerproduct{E(x + \xi_a h)}{h} = \innerproduct{E(x)}{h} \end{equation} So if $h$ is a standard basis $e_i$, then \begin{equation} \partial_i g(x) = E_i(x) \end{equation} Thus the partial derivative of $g$ is continuous, and therefore $g$ is continuously differentiable, and thus a potential. \end{proof} \end{document}