\documentclass[../script.tex]{subfiles} %! TEX root = ../../script.tex \begin{document} \section{Limits and Functions} In this chapter we will introduce the notation \[ \oball(x) = (x - \epsilon, x + \epsilon) \] \begin{defi} Let $D \subset \realn$ and $x \in \realn$. $x$ is called a boundary point of $D$ if \[ \forall \epsilon > 0: ~~D \cap \oball(x) \ne 0 \] The set of all boundary points of $D$ is called closure and is denoted as $\closure{D}$. \end{defi} \begin{eg} \begin{enumerate}[(i)] \item $x \in D$ is always a boundary point of $D$, because \[ x \in D \cap \oball(x) \] \item Boundary points don't have to be elements of $D$. If $D = (0, 1)$, then $0$ and $1$ are boundary points, because \[ \frac{\epsilon}{2} \in (0, 1) \cap \oball(0) = (-\epsilon, \epsilon) ~~\forall \epsilon > 0 \] \item Let $D = \ratn$. Every $x \in \realn$ is a boundary point, because $\forall \epsilon > 0$, $\oball(x)$ contains at least one rational number. I.e. $\closure{\ratn} = \realn$. \end{enumerate} \end{eg} \begin{rem} If $x$ is a boundary point, then \[ \forall \epsilon > 0 ~\exists y \in D: ~~|x - y| < \epsilon \] If $x$ is not a boundary point, then \[ \exists \epsilon > 0 ~\forall y \in D: ~~|x - y| \ge \epsilon \] \end{rem} \begin{thm} \[ x \in \realn \text{ is a boundary point of } D \subset \realn \iff \exists \anyseqdef{D} \text{ such that } x_n \rightarrow x \] \end{thm} \end{document}