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Chapter 1

Fundamentals and Notation

1.1 Logic

Definition 1.1 (Statements). A statement is a sentence (mathematically
or colloquially) which can be either true or false.

Example 1.2. Statements are

� Tomorrow is Monday

� x > 1 where x is a natural number

� Green rabbits grow at full moon

No statements are

� What is a statement?

� x+ 20y where x, y are natural numbers

� This sentence is false

Definition 1.3 (Connectives). When Φ,Ψ are statements, then

(i) ¬Φ (not Φ)

(ii) Φ ∧Ψ (Φ and Ψ)

(iii) Φ ∨Ψ (Φ or Ψ)

(iv) Φ =⇒ Ψ (if Φ then Ψ)

(v) Φ ⇐⇒ Ψ (Φ if and only if (iff.) Ψ)

3
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are also statements. We can represent connectives with truth tables

Φ Ψ ¬Φ Φ ∧Ψ Φ ∨Ψ Φ =⇒ Ψ Φ ⇐⇒ Ψ

t t f t t t t
t f f f t f f
f t t f t t f
f f t f f t t

Remark 1.4.

(i) ∨ is inclusive

(ii) Φ =⇒ Ψ, Φ ⇐= Ψ, Φ ⇐⇒ Ψ are NOT the same

(iii) Φ =⇒ Ψ is always true if Φ is false (ex falso quodlibet)

Definition 1.5 (Hierarchy of logical operators). ¬ is stronger than ∧ and
∨, which are stronger than =⇒ and ⇐⇒ .

Example 1.6.

¬Φ ∧Ψ ∼= (¬Φ) ∧Ψ

¬Φ =⇒ Ψ ∼= (¬Φ) ∧Ψ

Φ ∧Ψ ⇐⇒ Ψ ∼= (Φ ∧Ψ) ⇐⇒ Ψ

¬Φ ∨ ¬Ψ =⇒ ¬Ψ ∧Ψ ∼= ((¬Φ) ∨ (¬Ψ)) =⇒ ((¬Ψ) ∧Ψ)

We avoid writing statements like Φ∧Ψ∨Θ. A statement that is always true
is called a tautology. Some important equivalencies are

Φ equiv. ¬(¬Φ))

Φ =⇒ Ψ equiv. ¬Ψ =⇒ ¬Φ

Φ ⇐⇒ Ψ equiv. (Φ =⇒ Ψ) ∧ (Ψ =⇒ Φ)

Φ ∨Ψ equiv. ¬(¬Φ ∧ ¬Ψ)

Logical operators are commutative, associative and distributive.

Definition 1.7 (Quantifiers). Let Φ(x) be a statement depending on x.
Then ∀x Φ(x) and ∃x Φ(x) are also statements. The interpretation of these
statements is

� ∀x Φ(x): ”For all x, Φ(x) holds.”

� ∃x Φ(x): ”There is (at least one) x s.t. Φ(x) holds.”
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Remark 1.8.

(i) ∀x x ≥ 1 is true for natural numbers, but not for integers. We must
specify a domain.

(ii) If the domain is infinite the truth value of ∀x Φ(x) cannot be algorith-
mically determined.

(iii) ∀x Φ(x) and ∀y Φ(y) are equivalent.

(iv) Same operators can be exchanged, different ones cannot.

(v) ∀x Φ(x) is equivalent to ¬∃x ¬Φ(x).

1.2 Sets and Functions

Definition 1.9. A set is an imaginary ”container” for mathematical objects.
If A is a set we write

� x ∈ A for ”x is an element of A”

� x /∈ A for ¬x ∈ A

There are some specific types of sets

(i) ∅ is the empty set which contains no elements. Formally: ∃x∀y y /∈ x

(ii) Finite sets: {1, 3, 7, 20}

(iii) Let Φ(x) be a statement and A a set. Then {x ∈ A |Φ(x)} is the set
of all elements from A such that Φ(x) holds.

There are relation operators between sets. Let A,B be sets

(i) A ⊂ B means ”A is a subset of B”.

(ii) A = B means ”A and B are the same”

Each element can appear only once in a set, and there is no specific ordering
to these elements. This means that {1, 3, 3, 7} = {3, 1, 7}. There are also
operators between sets

(i) A ∪B is the union of A and B.

x ∈ A ∪B ⇐⇒ x ∈ A ∨ x ∈ B
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(ii) A ∩B is the intersection of A and B.

x ∈ A ∩B ⇐⇒ x ∈ A ∧ x ∈ B

This can be expanded to more than two sets (A∪B∪C). We can also
use the following notation. Let A be a set of sets. Then⋃

C∈A
C

is the union of all sets contained in A.

(iii) A \B is the difference of A and B.

x ∈ A \B ⇐⇒ x ∈ A ∧ x /∈ B

(iv) The power set of a set A is the set of all subsets of A. Example:

P({1, 2}) = {∅, {1}, {2}, {1, 2}}

Theorem 1.10. Let A,B,C be sets. Then

A \ (B ∪ C) = (A \B) ∩ (A \ C)

A \ (B ∩ C) = (A \B) ∪ (A \ C)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

Proof. Let A,B,C be sets.

x ∈ A ∩ (B ∪ C) ⇐⇒ x ∈ A ∧ x ∈ B ∪ C
⇐⇒ x ∈ A ∧ (x ∈ B ∨ x ∈ C)

⇐⇒ (x ∈ A ∧ x ∈ B) ∨ (x ∈ A ∧ x ∈ C)

⇐⇒ x ∈ A ∩B ∨ x inA ∩ C
⇐⇒ x ∈ (A ∩B) ∪ (A ∩ C)

(1.1)

The other equations are left as an exercise to the reader.

Definition 1.11. Let A,B be sets. For x ∈ A, y ∈ B we call (x, y) the
ordered pair from x, y. The Cartesian product is defined as

A×B = {(x, y) |x ∈ A ∧ y ∈ B}
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Remark 1.12.

(i) (x, y) is NOT equivalent to {x, y}. The former is an ordered pair, the
latter a set. It is important to note that

(x, y) = (a, b) ⇐⇒ x = a ∧ y = b

(ii) This can be extended to triplets, quadruplets, ...

A×B × C = {(x, y, z) |x ∈ A ∧ y ∈ B ∧ z ∈ C}

We use the notation A×A = A2

(iii) For R2 (R are the real numbers) we can view (x, y) as coordinates of
a point in the plane.

Definition 1.13. Let A, B be sets. A mapping f from A to B assigns each
x ∈ A exactly one element f(x) ∈ B. A is called the domain and B the
codomain.

A B

Figure 1.1: A mapping f : A→ B

As shown in figure 1.1, every element from A is assigned exactly one
element from B, but not every element from B must be assigned to an
element from A, and elements from B can be assigned more than one element
from A. The notation for such mappings is

f : A −→ B

A mapping that has numbers (N, R, · · · ) as the codomain is called a function.
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Example 1.14.

(i)

f : N −→ N
n 7−→ 2n+ 1

(ii)

f : R −→ R

x 7−→

{
0 x rational

1 x irrational

(iii) Addition on N
f : N× N −→ N

Instead of f(x, y) we typically write x+ y for addition.

(iv) The identity mapping is defined as

idA : A −→ A

x 7−→ x

Remark 1.15 (Mappings as sets).

(i) A mapping f : A → B corresponds to a subset of F = A × B, such
that

∀x ∈ A ∀y, z ∈ B (x, y) ∈ F ∧ (x, z) ∈ F =⇒ y = z

∀x ∈ A ∃y ∈ B (x, y) ∈ F

(ii) Simply writing ”Let the function f(x) = x2...” is NOT mathematically
rigorous.

(iii)
f is a mapping from A to B ⇐⇒ f(x) is a value in B

(iv)

f, g : A −→ B are the same mapping ⇐⇒ ∀x ∈ A f(x) = g(x)

Definition 1.16. We call f : A→ B
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A B

(a) Injective mapping. There is at
most one arrow per point in B

A B

(b) Surjective mapping. There is at
least one arrow per point in B

Figure 1.2: Visualizations of injective and surjective mappings

� injective if ∀x, x̃ ∈ A f(x) = f(x̃) =⇒ x = x̃

� surjective if ∀y ∈ B, ∃x ∈ A f(x) = y

� bijective if f is injective and surjective

Example 1.17.

(i)

f : N −→ N
n 7−→ n2

is not surjective (e.g. n2 6= 3), but injective.

(ii)

f : Z −→ N
n 7−→ n2

is neither surjective nor injective.

(iii)

f : N −→ N

n 7−→

{
n
2 neven
n+1

2 nodd

is surjective but not injective.
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Definition 1.18 (Function compositing). Let A, B, C be sets, and let
f : A→ B, g : B → C. Then the composition of f and g is the mapping

g ◦ f : A −→ C

x 7−→ g(f(x))

Remark 1.19. Compositing is associative (why?), but not commutative. For
example let

f : N −→ N
n 7−→ 2n

g : N −→ N
n 7−→ n+ 3

Then

f ◦ g(n) = 2(n+ 3) = 2n+ 6

g ◦ f(n) = 2n+ 3

Theorem 1.20. Let f : A → B be a bijective mapping. Then there exists
a mapping f−1 : B → A such that f ◦ f−1 = idB and f−1 ◦ f = idA. f−1 is
called the inverse function of f .

Proof. Let y ∈ B and f bijective. That means ∃x ∈ A such that f(x) = y.
Due to f being injective, this x must be unique, since if ∃x̃ ∈ A s.t. f(x̃) =
f(x) = y, then x = x̃. We define f(x) = y and f−1(y) = x, therefore

f ◦ f−1(y) = f(f−1(y)) = f(x) = y = idB(y) =⇒ f ◦ f−1 = idB (1.2)

and equivalently

f−1 ◦ f(x) = idA(x) =⇒ f−1 ◦ f = idA (1.3)

1.3 Numbers

Definition 1.21. The real numbers are a set R with the following structure

(i) Addition

+ : R× R −→ R

(ii) Multiplication

· : R× R −→ R

Instead of +(x, y) and ·(x, y) we write x+ y and x · y.
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(iii) Order relations

≤ is a relation on R, i.e. x ≤ y is a statement.

Definition 1.22 (Axioms of Addition).

A1: Associativity

∀a, b, c ∈ R : (a+ b) + c = a+ (b+ c)

A2: Existence of a neutral element

∃0 ∈ R ∀x ∈ R : x+ 0 = x

A3: Existence of an inverse element

∀x ∈ R ∃(−x) ∈ R : x+ (−x) = 0

A4: Commutativity
∀x, y ∈ R : x+ y = y + x

Theorem 1.23. x, y ∈ R

(i) The neutral element is unique

(ii) ∀x ∈ R the inverse is unique

(iii) −(−x) = x

(iv) −(x+ y) = (−x) + (−y)

Proof.

(i) Assume a, b ∈ R are both neutral elements, i.e.

∀x ∈ R : x+ a = x = x+ b (1.4)

This also implies that a+ b = a and b+ a = b.

=⇒ b = b+ a
A4
= a+ b = a (1.5)

Therefore a = b.
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(ii) Assume c, d ∈ R are both inverse elements of x ∈ R, i.e.

x+ c = 0 = x+ d (1.6)

c = 0 + c = x+ d+ c
A4
= x+ c+ d = 0 + d = d (1.7)

Therefore c = d.

(iii) Left as an exercise for the reader.

(iv)

x+ y + ((−x) + (−y)) = x+ y + (−x) + (−y)

A4
= x+ (−x) + y + (−y) = 0

(1.8)

Therefore (−x)+(−y) is the inverse element of (x+y), i.e. −(x+y) =
(−x) + (−y).

Definition 1.24 (Axioms of Multiplication).

M1: ∀x, y, z ∈ R : (xy)z = x(yz)

M2: ∃1 ∈ R ∀x ∈ R : x1 = x

M3: ∀x ∈ R \ {0} ∃x−1 ∈ R : xx−1 = 1

M4: ∀x, y ∈ R : xy = yx

Definition 1.25 (Compatibility of Addition and Multiplication).

R1: Distributivity

∀x, y, z ∈ R : x · (y + z) = (x · y) + (x · z)

R2: 0 6= 1

Theorem 1.26. x, y ∈ R

(i) x · 0 = 0

(ii) −(x · y) = x · (−y) = (−x) · y

(iii) (−x) · (−y) = x · y
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(iv) (−x)−1 = −(x−1) (only for x 6= 0)

(v) xy = 0 =⇒ x = 0 ∨ y = 0

Proof.

(i) x ∈ R
x · 0 A2

= x · (0 + 0)
R1
= x · 0 + x · 0 (1.9)

A3
=⇒ 0 = x · 0 (1.10)

(ii) x, y ∈ R

xy + (−(xy))
A3
= 0

(i)
= x · 0 = x(y + (−y))

R1
= xy + x(−y) (1.11)

A3
=⇒ −(xy) = x · (−y) (1.12)

(iii) Left as an exercise for the reader.

(iv) x ∈ R

x·(−(−x)−1)
(ii)
= −(x·(−x)−1)

(ii)
= (−x)·(−x)−1 M3

= 1
M3
= x·x−1 (1.13)

M3
=⇒ −(−x)−1 = x−1 1.23(iii)

=⇒ (−x)−1 = −(x−1) (1.14)

(v) x, y ∈ R and y 6= 0. Then ∃y−1 ∈ R:

xy = 0 =⇒ xyy−1 M3
= x · 1 M2

= x = 0 = 0 · y−1 (1.15)

Remark 1.27. A structure that fulfils all the previous axioms is called a field.
We introduce the following notation for x, y ∈ R, y 6= 0

x

y
= xy−1

Definition 1.28 (Order relations).

O1: Reflexivity
∀x ∈ R : x ≤ x

O2: Transitivity

∀x, y, z ∈ R : x ≤ y ∧ y ≤ z =⇒ x ≤ z



1.3. NUMBERS 14

O3: Anti-Symmetry

∀x, y ∈ R : x ≤ y ∧ y ≤ x =⇒ x = y

O4: Totality
∀x, y ∈ R : x ≤ y ∨ y ≤ x

O5:
∀x, y, z ∈ R : x ≤ y =⇒ x+ z ≤ y + z

O6:
∀x, y ∈ R : 0 ≤ x ∧ 0 ≤ y =⇒ 0 ≤ x · y

We write x < y for x ≤ y ∧ x 6= y

Theorem 1.29. x, y ∈ R

(i) x ≤ y =⇒ −y ≤ −x

(ii) x ≤ 0 ∧ y ≤ 0 =⇒ 0 ≤ xy

(iii) 0 ≤ 1

(iv) 0 ≤ x =⇒ 0 ≤ x−1

(v) 0 < x ≤ y =⇒ y−1 ≤ x−1

Proof.

(i)

x ≤ y O5
=⇒ x+ (−x) + (−y) ≤ y + (−x) + (−y)

⇐⇒ −y ≤ −x
(1.16)

(ii) With y ≤ 0
(i)

=⇒ 0 ≤ −y and x ≤ 0
(i)

=⇒ 0 ≤ −x follows from O6:

0 ≤ (−x)(−y) = xy (1.17)

(iii) Assume 0 ≤ 1 is not true. From O4 we know that

1 ≤ 0
(ii)

=⇒ 0 ≤ 1 · 1 = 1 (1.18)

(iv) Left as an exercise for the reader.
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(v)

0 ≤ x−1 ∧ 0 ≤ y−1 O6
=⇒ 0 ≤ x−1y−1 (1.19)

From x ≤ y follows 0 ≤ y − x

O6
=⇒ 0 ≤ (y − x)x−1y−1 R1

= yx−1y−1 − xx−1y−1 = x−1 − y−1 (1.20)

O5
=⇒ y−1 ≤ x−1 (1.21)

Remark 1.30. A structure that fulfils all the previous axioms is called an
ordered field.

Definition 1.31. Let A ⊂ R, x ∈ R.

(i) x is called an upper bound of A if ∀y ∈ A : y ≤ x

(ii) x is called a maximum of A if x is an upper bound of A and x ∈ A

(iii) x is called supremum of A is x is an upper bound of A and if for every
other upper bound y ∈ R the statement x ≤ y holds. In other words,
x is the smallest upper bound of A.

A is called bounded above if it has an upper bound. Analogously, there exists
a lower bound, a minimum and an infimum. We introduce the notation supA
for the supremum and inf A for the infimum.

Definition 1.32. a, b ∈ R, a < b. We define

� (a, b) := {x ∈ R | a < x ∧ x < b}

� [a, b] := {x ∈ R | a ≤ x ∧ x ≤ b}

� (a,∞) := {x ∈ R | a < x}

Example 1.33. (−∞, 1) is bounded above (1, 2, 1000, · · · are upper bounds),
but has no maximum. 1 is the supremum.

Definition 1.34 (Completeness of the real numbers). Every non-empty
subset of R with an upper bound has a supremum.

Definition 1.35. A set A ⊂ R is called inductive if 1 ∈ A and

x ∈ A =⇒ x+ 1 ∈ A
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Lemma 1.36. Let I be an index set, and let Ai be inductive sets for every
i ∈ I. Then

⋂
i∈I Ai is also inductive.

Proof. Since Ai is inductive ∀i ∈ I, we know that 1 ∈ Ai. Therefore

1 ∈
⋂
i∈I

Ai (1.22)

Now let x ∈
⋂
i∈I Ai, this means that x ∈ Ai ∀i ∈ I.

=⇒ x+ 1 ∈ Ai ∀i ∈ I =⇒ x+ 1 ∈
⋂
i∈I

Ai (1.23)

Definition 1.37. The natural numbers are the smallest inductive subset of
R. I.e. ⋂

A inductive

A =: N

Theorem 1.38 (The principle of induction). Let Φ(x) be a statement with
a free variable x. If Φ(1) is true, and if Φ(x) =⇒ Φ(x + 1), then Φ(x)
holds for all x ∈ N.

Proof. Define A = {x ∈ R |Φ(x)}. According to the assumptions, A is
inductive and therefore N ⊂ A. This means that ∀n ∈ N : Φ(n).

Corollary 1.39. m,n ∈ N

(i) m+ n ∈ N

(ii) mn ∈ N

(iii) 1 ≤ n ∀n ∈ N

Proof. We will only proof (i). (ii) and (iii) are left as an exercise for the
reader. Let n ∈ N. Define A = {m ∈ N |m + n ∈ N}. Then 1 ∈ A, since N
is inductive. Now let m ∈ A, therefore n+m ∈ N.

=⇒ n+m+ 1 ∈ N (1.24)

⇐⇒ m+ 1 ∈ A (1.25)

Hence A is inductive, so N ⊂ A. From A ⊂ N follows that N = A.

Theorem 1.40. n ∈ N. There are no natural numbers between n and n+1.
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Heuristic Proof. Show that x ∈ N ∩ (1, 2) implies that N \ {x} is inductive.
Now show that if N∩ (n, n+ 1) = ∅ and x ∈ N∩ (n+ 1, n+ 2) then N \ {x}
is inductive.

Theorem 1.41 (Archimedian property).

∀x ∈ R ∃n ∈ N : x < n

Proof. If x < 1 there is nothing to prove, so let x ≥ 1. Define the set

A = {n ∈ N |n ≤ x} (1.26)

A is bounded above by definition. There exists the supremum s = supA.
By definition, s− 1 is not an upper bound of A, i.e. ∃m ∈ A : s− 1 < m.
Therefore s ≤ m+ 1.

m ∈ A ⊂ N =⇒ m+ 1 ∈ N (1.27)

Since s is an upper bound of A, this implies that m + 1 6⊂ A, so therefore
m+ 1 > x.

Corollary 1.42. Every non-empty subset of N has a minimum, and every
non-empty subset of N that is bounded above has a maximum.

Proof. Let A ⊂ N. Propose that A has no minimum. Define the set

Ã := {n ∈ N | ∀m ∈ A : n < m} (1.28)

1 is a lower bound of A, but according to the proposition A has no minimum,
so therefore 1 /∈ A. This implies that 1 ∈ Ã.

n ∈ Ã =⇒ n < m ∀m ∈ A (1.29)

But since there exists no natural number between n and n + 1, this means
that n+ 1 is also a lower bound of A, and therefore

n+ 1 ≤ m ∀m ∈ A =⇒ n+ 1 ∈ Ã (1.30)

So Ã is an inductive set, hence Ã = N. Therefore A = ∅.

Definition 1.43. We define the following new sets:

Z := {x ∈ R |x ∈ N0 ∨ (−x) ∈ N0}

Q :=

{
p

q
| p, q ∈ Z ∧ q 6= 0

}
Z are called integers, and Q are called the rational numbers. N0 are the
natural numbers with the 0 (N0 = N ∩ {0}).
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Remark 1.44.

x, y ∈ Z =⇒ x+ y, x · y, (−x) ∈ Z
x, y ∈ Q =⇒ x+ y, x · y, (−x) ∈ Q and x−1 ∈ Q if x 6= 0

The second statement implies that Q is a field.

Corollary 1.45 (Density of the rationals). x, y ∈ R, x < y. Then

∃r ∈ Q : x < r < y

Proof. This proof relies on the Archimedian property.

∃q ∈ N :
1

y − x
< q

(
⇐⇒ 1

q
< y − x

)
(1.31)

Let p ∈ Z be the greatest integer that is smaller than y · q. The existence of
p is ensured by corollary Corollary 1.42. Then p

q < y and

p+ 1 ≥ y · q =⇒ y ≤ p

q
+

1

q
<
p

q
+ (y − x) (1.32)

=⇒ x <
p

q
< y (1.33)

Definition 1.46 (Absolute values). We define the following function

| · | : R −→ [0,∞)

x 7−→

{
x , x ≥ 0

−x , x < 0

Theorem 1.47.
x, y ∈ R =⇒ |xy| = |x||y|

Proof. Left as an exercise for the reader.

Definition 1.48 (Complex numbers). Complex numbers are defined as the
set C = R2. Addition and multiplication are defined as mappings C×C→ C.
Let (x, y), (x̃, ỹ) ∈ C.

(x, y) + (x̃, ỹ) := (x+ x̃, y + ỹ)

(x, y) · (x̃, ỹ) := (xx̃− yỹ, xỹ + x̃y)

C is a field. Let z = (x, y) ∈ C. We define

<(z) = Re(z) = x the real part

=(z) = Im(z) = y the imaginary part
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Remark 1.49.

(i) We will not prove that C fulfils the field axioms here, this can be
left as an exercise to the reader. However, we will note the following
statements

� Additive neutral element: (0, 0)

� Additive inverse of (x, y): (−x,−y)

� Multiplicative neutral element: (1, 0)

� Multiplicative inverse of (x, y) 6= (0, 0):
(

x
x2+y2

,− y
x2+y2

)
(ii) Numbers with y = 0 are called real.

(iii) The imaginary unit is defined as i = (0, 1)

(0, 1) · (x, y) = (−y, x)

Especially
i2 = (0, 1)2 = (−1, 0) = −(1, 0) = −1

We also introduce the following notation

(x, y) = (x, 0) + i · (y, 0) = x+ iy

Theorem 1.50 (Fundamental theorem of algebra). Every non-constant,
complex polynomial has a complex root. I.e. for n ∈ N, α0, · · · , αn ∈ C,
αn 6= 0 there is some x ∈ C such that

n∑
i=0

αix
i = α0 + α1x+ α2x

2 + · · ·+ αnx
n = 0

Proof. Not here.



Chapter 2

Real Analysis: Part I

2.1 Elementary Inequalities

Example 2.1.

� x ∈ R =⇒ x2 ≥ 0

� x2 − 2xy + y2 = (x− y)2 ≥ 0 ∀x, y ∈ R

� x2 + y2 ≥ 2xy

Theorem 2.2 (Absolute inequalities). Let x ∈ R, c ∈ [0,∞). Then

(i) −|x| ≤ x ≤ |x|

(ii) |x| ≤ c ⇐⇒ −c ≤ x ≤ c

(iii) |x| ≥ c ⇐⇒ x ≤ −c ∨ c ≤ x

(iv) |x| = 0 ⇐⇒ x = 0

Theorem 2.3 (Triangle inequality). Let x, y ∈ R. Then

|x+ y| ≤ |x|+ |y|

Proof. From Theorem 2.2 follows x ≤ |x| and y ≤ |y|.

=⇒ x+ y ≤ |x|+ |y| (2.1)

However, from the same theorem follows −|x| ≤ x and −|y| ≤ y.

=⇒ −|x| − |y| = x+ y (2.2)

=⇒ |x+ y| ≤ |x|+ |y| (2.3)

20
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Corollary 2.4. n ∈ N, x1, · · · , xn ∈ R. Then∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣ ≤
n∑
i=1

|xi|

Proof. Proof by induction. Let n = 1:

|x1| ≤ |x1| (2.4)

This statement is trivially true. Now assume the corollary holds for n ∈ N.
Then ∣∣∣∣∣

n+1∑
i=1

xi

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

xi + xn+1

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
i=1

xn

∣∣∣∣∣+ |xn+1|

≤
n∑
i=1

|xi|+ |xn+1|

=
n+1∑
i=1

|xi|

(2.5)

Theorem 2.5 (Bernoulli inequality). Let x ∈ [−1,∞) and n ∈ N. Then

(1 + x)n ≥ 1 + nx

Proof. Proof by induction. Let n = 1:

1 + x ≥ 1 + 1 · x (2.6)

This is trivial. Now assume the theorem holds for n ∈ N. Then

(1 + x)n+1 = (1 + x)n(1 + x) ≥ (1 + nx)(1 + x)

= 1 + (n+ 1)x+ nx2

≥ 1 + (n+ 1)x

(2.7)

2.2 Sequences and Limits

Definition 2.6. Let M be a set (usually M is R or C). A sequence in M
is a mapping from N to M . The notation is (xn)n∈N ⊂M or (xn) ⊂M . xn
is called element of the sequence at n.
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Example 2.7. Some real sequences are

� xn = 1
n

(
1, 1

2 ,
1
3 ,

1
4 , · · ·

)
� xn =

∑n
k=1 k (1, 3, 6, 10, 15, · · · )

� xn = ”smallest prime factor of n” (∗, 2, 3, 2, 5, 2, 7, 2, 3, 2, · · · )

Definition 2.8 (Convergence). Let (xn) ⊂ R be a sequence, and x ∈ R.
Then

(xn) converges to x ⇐⇒ ∀ε > 0 ∃N ∈ N : |xn − x| < ε ∀n ≥ N

A complex sequence (zn) ⊂ C converges to z ∈ C if the real and imaginary
parts of (zn) converge to the real and imaginary parts of z. x (or z) is called
the limit of the sequence. Common notation:

xn −→ x xn
n→∞−−−→ x lim

n→∞
xn = x

If a sequence converges to 0 it is called a null sequence.

Example 2.9.

(i) x ∈ R, xn = x (constant sequence). This sequence converges to x. To
show this, let ε > 0. Then for N = 1:

|xn − x| = |x− x| = 0 < ε

(ii) xn = 1
n is a null sequence. Let ε > 0. By the Archimedean property:

∃N ∈ N :
1

ε
< N

Then for n ≥ N :

|xn − 0| = |xn| =
1

n
≤ 1

N
< ε

(iii) The sequence

xn =

{
1 , n even

−1 , n odd

does not converge.

Remark 2.10. A property holds for almost every (a.e.) n ∈ N if it doesn’t
hold for only finitely many n. (e.g. n < 10 is true for a.e. n ∈ N)



2.2. SEQUENCES AND LIMITS 23

Theorem 2.11. A sequence (xn) ⊂ R (or C) has at most one limit.

Proof. Propose that x, x̃ are different limits of (xn). Without loss of gener-
ality (w.l.o.g.) we can write x < x̃. Now define ε = 1

2(x̃− x) > 0.

xn −→ x ⇐⇒ ∃N1 : xn ∈ (x− ε, x+ ε) =

(
x− ε, x+ x̃

2

)
(2.8)

xn −→ x̃ ⇐⇒ ∃N2 : xn ∈ (x̃− ε, x̃+ ε) =

(
x+ x̃

2
, x+ ε

)
(2.9)

Since these intervals are disjoint, the proposition led to a contradiction.

Theorem 2.12. Let (xn) ⊂ R (or C) be sequence with limit x ∈ R. Then
for m ∈ N

lim
n→∞

xn+m = x

Proof. Left as an exercise for the reader.

Definition 2.13. The sequence (xn) ⊂ R is bounded above if {xn |n ∈ N}
is bounded above. A number K ∈ R is an upper bound if ∀n ∈ N : xn ≤ K.

Theorem 2.14. Every convergent sequence is bounded.

Proof. Let (xn) ⊂ R converge to x ∈ R. For ε = 1 we trivially know that

∃N ∈ N ∀n ≥ N : |xn − x| < ε = 1 (2.10)

Let
K = max{x1, x2, · · · , xN , |x|+ 1} (2.11)

Then
|xn| ≤ K ∀n ∈ N (2.12)

This is trivial for n ≤ N . For n > N we can use the triangle inequality:

|xn| = |(xn − x) + x| ≤ |xn − x|+ |x| ≤ |x|+ 1 (2.13)

Theorem 2.15. If (xn) ⊂ R bounded and (yn) ⊂ R null sequence, then
(xn) · (yn) is also a null sequence.
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Proof. If (xn) is bounded, this means that ∃K ∈ (0,∞) such that

|xn| ≤ K ∀n ∈ N (2.14)

Since (yn) is a null sequence we know that

∀ε > 0 ∃N ∈ N ∀n ≥ N : |yn| < ε (2.15)

Now let ε > 0, then ∃N ∈ N such that

∀n ≥ N : |yn| <
ε

K
(2.16)

|xn · yn| = |xn||yn| ≤ K
ε

K
= ε (2.17)

Therefore (xn)(yn) is a null sequence.

Theorem 2.16 (Squeeze theorem). Let (xn), (yn), (zn) ⊂ R be sequences
such that

xn ≤ yn ≤ zn
for a.e. n ∈ N, and let xn → x, zn → x. Then

lim
n→∞

yn = x

Proof. Let ε > 0. Then ∃N1, N2, N3 ∈ N such that

∀n ≥ N1 : xn ≤ yn ≤ zn (2.18)

∀n ≥ N2 : |xn − x| < ε (2.19)

∀n ≥ N3 : |zn − x| < ε (2.20)

Choose N = max{N1, N2, N3}. Then

∀n ≥ N : − ε < xn − x ≤ yn − x ≤ zn − x < ε (2.21)

Therefore |yn − x| < ε

Example 2.17. ∀n ∈ N : n ≤ n2 (why?).

=⇒ 0 ≤ 1

n2
≤ 1

n
=⇒ lim

n→∞

1

n2
= 0

Theorem 2.18. Let (xn), (yn) ⊂ R and xn → x, yn → y. Then x ≤ y.

Proof. Left as an exercise for the reader.



2.2. SEQUENCES AND LIMITS 25

Remark 2.19. If xn < yn ∀n ∈ N, then x = y can still be true.

Lemma 2.20. Let (xn) ∈ R and x ∈ R.

(xn) −→ x ⇐⇒ (|xn − x|) is null sequence

Especially:
(xn) null sequence ⇐⇒ |xn| null sequence

Proof.
||xn − x| − 0| = |xn − x| (2.22)

Theorem 2.21. Let (xn), (xn) ⊂ R (or C) with xn → x, yn → y (x, y ∈ R).
Then all of the following are true:

(i)
lim
n→∞

xn + yn = x+ y = lim
n→∞

xn + lim
n→∞

yn

(ii)
lim
n→∞

xnyn = xy = lim
n→∞

xn · lim
n→∞

yn

(iii) If y 6= 0:

lim
n→∞

xn
yn

=
x

y
=

limn→∞ xn
limn→∞ yn

Proof.

(i) Let ε > 0. Then ∃N1, N2 ∈ N such that

∀n ≥ N1 : |xn − x| <
ε

2
(2.23)

∀n ≥ N2 : |yn − y| <
ε

2
(2.24)

Now choose N = max{N1, N2}. Then ∀n ≥ N :

|xn + yn − (x+ y)| = |(xn − x) + (yn − y)|
≤ |xn − x|+ |yn − y|

<
ε

2
+
ε

2
= ε

(2.25)

=⇒ xn + yn −→ x+ y (2.26)
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(ii)

0 ≤ |xnyn − xy| = |(xnyn − xny) + (xny − xy)|
≤ |xn(yn − y)|+ |(xn − x)y|
= |xn||yn − y|+ |xn − x||y| −→ 0

(2.27)

Therefore |xnyn − xy| is a null sequence and

xnyn −→ xy (2.28)

(iii) Now we need to show that if y 6= 0 then 1
yn
→ 1

y . We know that
|y| > 0. So ∃N ∈ N such that

∀n ≥ N : |yn − y| <
|y|
2

(2.29)

This implies that

∀n ≥ N : 0 <
|y|
2
≤ |yn| (2.30)

From this we now know that 1
yn

is defined and bounded∣∣∣∣ 1

yn

∣∣∣∣ =
1

|yn|
≤ 2

|y|
(2.31)

So finally∣∣∣∣ 1

yn
− 1

y

∣∣∣∣ =

∣∣∣∣ 1

yn

(
1− yn

1

y

)∣∣∣∣ =

∣∣∣∣ 1

yn

∣∣∣∣ ∣∣∣∣1− yn 1

y

∣∣∣∣ −→ 0 (2.32)

And therefore

yn −→ y =⇒ yn
y
−→ 1

Thm. 2.15
=⇒

∣∣∣∣1− yn
y

∣∣∣∣ is a null sequence

Lem. 2.20
=⇒ 1

yn
−→ 1

y

(2.33)

Corollary 2.22. Let k ∈ N, a0, · · · , ak, b0, · · · , bk ∈ R and bk 6= 0. Then

lim
n→∞

a0 + a1n+ a2n
2 + · · ·+ ak−1n

k−1 + akn
k

b0 + b1n+ b2n2 + · · ·+ bk−1nk−1 + bknk
=
ak
bk
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Proof. Multiply the numerator and the denominator with 1
nk

a0
nk

+ a1
nk−1 + a2

nk−2 + · · ·+ ak−1

n + ak
b0
nk

+ b1
nk−1 + b2

nk−2 + · · ·+ bk−1

n + bk
−→
n→∞

0 (2.34)

Example 2.23. Let x ∈ (−1, 1). Then limn→∞ x
n = 0

Proof. For x = 0 this is trivial. For x 6= 0 it follows that |x| ∈ (0, 1) and
1
|x| ∈ (1,∞). Choose s = 1

|x| − 1 > 0 and apply the Bernoulli inequality

(Theorem 2.5).
(1 + s)n ≥ 1 + n · s (2.35)

0 ≤ |x|n =

(
1

1 + s

)n
=

1

(1 + s)n
≤ 1

1 + n · s
=

1 + n · 0
1 + n · s

2.22−→ 0 (2.36)

The squeeze theorem now tells us that |xn| = |x|n → 0 and therefore xn →
0.

Definition 2.24. A sequence (xn) ⊂ R is called monotonic increasing (de-
creasing) if xn+1 ≥ xn (xn+1 ≤ xn) ∀n ∈ N.

Theorem 2.25 (Monotone convergence theorem). Let (xn) ⊂ R be a mono-
tonic increasing (or decreasing) sequence that is bounded above (or below).
Then (xn) converges.

Proof. Let (xn) be monotonic increasing and bounded above. Define

x = sup {xn |n ∈ N}︸ ︷︷ ︸
A

(2.37)

Now let ε > 0, then x − ε is not an upper bound of A, this means ∃N ∈ N
such that xN > x− ε. The monotony of (xn) implies that

∀n ≥ N : xn > x− ε (2.38)

So therefore
x− ε < xn < x+ ε =⇒ |xn − x| < ε (2.39)

Remark 2.26.

(xn) is monotonic increasing ⇐⇒ xn+1

xn
≥ 1 ∀n ∈ N

(xn) is monotonic decreasing ⇐⇒ xn+1

xn
≤ 1 ∀n ∈ N
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Example 2.27. Consider the following sequence

x1 = 1

xn+1 =
1

2

(
xn +

a

xn

)
, a ∈ [0,∞)

Notice that 0 < xn ∀n ∈ N. For n ∈ N one can show that

x2
n+1 =

1

4

(
x2
n + 2a+

a2

x2
n

)
=

1

4

(
x2
n − 2a+

a2

x2
n

)
+ a

=
1

4

(
xn −

a

xn

)2

+ a ≥ a

So x2
n ≥ a ∀n ≥ 2, and therefore a

xn
≤ xn. Finally

xn+1 =
1

2

(
xn +

a

xn

)
≤ 1

2
(xn + xn) = xn ∀n ≥ 2

This proves that (xn) is monotonic decreasing and bounded below.

Theorem 2.28 (Square root). This theorem doubles as the definition of the
square root. Let a ∈ [0,∞). Then ∃!x ∈ [0,∞) such that x2 = a. Such an x
is called the square root of a, and is notated as x =

√
a.

Proof. First we want to prove the uniqueness of such an x. Assume that
x2 = y2 = a with x, y ∈ [0,∞). Then 0 = x2 − y2 = (x− y)(x+ y).

=⇒ x+ y = 0 =⇒ x = y = 0 (2.40)

=⇒ x− y = 0 =⇒ x = y (2.41)

Now to prove the existence, review the previous example.

xn −→ x for some x ∈ [0,∞) (2.42)

By using the recursive definition we can write

2xn · xn+1 = x2
n + a −→ x2 + a (2.43)

=⇒ 2x2 = x2 + a =⇒ x2 = a (2.44)



2.2. SEQUENCES AND LIMITS 29

Remark 2.29. Analogously ∃!x ∈ [0,∞) ∀a ∈ [0,∞) such that xn = a.

(Notation: n
√
a or x = a

1
n ). We will also introduce the power rules for

rational exponents. Let x, y ∈ R, u, v ∈ Q.

(x · y)u = xuyu xu · xv = xu+v (xu)v = xu·v

Theorem 2.30. Let x, y ∈ R, n ∈ N. Then

0 ≤ x < y =⇒ n
√
x < n

√
y

Let n,m ∈ N, n < m, x ∈ (1,∞), y ∈ (0, 1). Then
n
√
x > m

√
x n

√
y < m

√
y

Proof. Left as an exercise for the reader.

Theorem 2.31. Let a ∈ (0,∞). Then

lim
n→∞

n
√
n = 1 lim

n→∞
n
√
a = 1

Proof. Let ε > 0. Then
n

(n+ ε)n
n→∞−−−→ 0 (2.45)

This means that
∃N ∈ N ∀n ≥ N :

n

(n+ ε)n
< 1 (2.46)

Therefore

n < (1 + ε)n =⇒ 1− ε < 1 ≤ n
√
n < 1 + ε ⇐⇒

∣∣ n√n− 1
∣∣ < ε (2.47)

This proves the first statement. The second statement is trivially true for
a = 1, so let a > 1. Then ∃n ∈ N such that a < n:

=⇒ 1 < n
√
a < n

√
n −−−→ 1 (2.48)

Squeeze
=⇒ n

√
a

n→∞−−−→ 1 (2.49)

Now let a < 1. Then 1
a < 1

lim
n→∞

n
√
a = lim

n→∞

1

n

√
1
a

n→∞−−−→ 1

1
= 1 (2.50)

Definition 2.32. Let z ∈ C, x, y ∈ R such that z = x+ iy.

|z| :=
√
zz̄ =

√
x2 + y2
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Theorem 2.33. Let u, v ∈ C. Then

|u · v| = |u||v|
∣∣∣∣1u
∣∣∣∣ =

1

|u|
|u+ v| ≤ |u|+ |v|

Proof.
|uv| =

√
uv · ūv =

√
uū · vv̄ =

√
uū ·
√
vv̄ = |u||v| (2.51)∣∣∣∣1u

∣∣∣∣ |u| = ∣∣∣∣1uu
∣∣∣∣ = |1| =⇒

∣∣∣∣1u
∣∣∣∣ =

1

|u|
(2.52)

For the final statement, remember that complex numbers can be represented
as z = x+ iy, and then

Re(z) ≤ |Re(z)| ≤ |z| (2.53)

Im(z) ≤ | Im(z)| ≤ |z| (2.54)

So therefore

|u+ v|2 = (u+ v) · (ū+ v̄)

= uū+ vū+ uv̄ + vv̄

= |u|2 + 2 Re(ūv) + |v|2

≤ |u|2 + 2|ūv|+ |v|2

= |u|2 + 2|u||v|+ |v|2

= (|u|+ |v|)2

(2.55)

Lemma 2.34. Let (zn) ⊂ C, z ∈ C.

(zn) −−−→ z ⇐⇒ (|zn − z|) null sequence

Proof. Let xn = Re(zn) and yn = Im(zn). Then x = Re(z) and y = Im(z).
First we prove the ”⇐= ” direction. Let (|zn − z|) be a null sequence.

0 ≤ |xn| − |x| = |Re(zn − z)| ≤ |zn − z| −−−→ 0 (2.56)

Analogously, this holds for yn and y. We know that (|xn − x|) is a null
sequence if xn −−−→ x (same for yn and y), therefore

=⇒ zn −−−→ z (2.57)
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To prove the ” =⇒ ” direction we use the triangle inequality:

0 ≤ |zn − z| = |(xn − x) + i(yn − y)|
≤ |xn − x|+ |i(yn − y)|︸ ︷︷ ︸

|yn−y|

−−−→ 0 (2.58)

By the squeeze theorem, |zn − z| is a null sequence.

Remark 2.35. Lemma 2.34 allows us to generalize Theorem 2.21 and Corol-
lary 2.22 for complex sequences.

Definition 2.36 (Cauchy sequence). A sequence (xn) ⊂ R (or C) is called
Cauchy sequence if

∀ε > 0 ∃N ∈ N ∀n,m ≥ N : |xn − xm| < ε

Theorem 2.37 (Cauchy convergence test). A sequence (xn) ⊂ R (or C)
converges if and only if it is a Cauchy sequence.

Proof. Firstly, let (xn) converge to x, and let ε > 0. Then

∃N ∈ N ∀n ≥ N : |xn − x| <
ε

2
(2.59)

So therefore ∀n,m ≥ N :

|xn − xm| = |xn − x+ x− xm| ≤ |xn − x|+ |x− xm| < ε (2.60)

This proves the ” =⇒ ” direction of the theorem. To prove the inverse let
(xn) be a Cauchy sequence. That means

∃N ∈ N ∀n,m ≥ N : |xn − xm| ≤ 1 (2.61)

=⇒ |xn| = |xn − xN + xN | ≤ |xn − xN |+ |xN |
≤ |xN |+ 1 ∀n ≥ N

(2.62)

We will now introduce the two auxiliary sequences

yn = sup{xk | k ≥ n} zn = inf{xk | k ≥ n} (2.63)

(yn) and (zn) are bounded, and for ñ ≤ n

{xk | k ≥ ñ} ⊃ {xk | k ≥ n} (2.64)
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=⇒ yn = sup{xk|k ≥ n} ≤ sup{xk|k ≥ ñ} = yñ (2.65)

=⇒ (xn) monotonic decreasing and therefore converging to y (2.66)

Analogously, this holds true for (zn) as well. Trivially,

zn ≤ xn ≤ yn (2.67)

If y = z, then (xn) converges according to the squeeze theorem. Assume
z < y. Choose ε > y−z

2 > 0. If N is big enough, then

sup{xk | k ≥ N} = yN > y − ε (2.68)

inf{xk | k ≥ N} = zN < z + ε (2.69)

So for every N ∈ N, we know that

∃k ≥ N : xk > y − 2ε (2.70)

∃l ≥ N : xl < z + 2ε (2.71)

For these elements the following holds

|xk − xl| ≥ ε =
y − z

2
(2.72)

This is a contradiction to our assumption that (xn) is a Cauchy sequence,
so y = z and therefore (xn) converges.

Remark 2.38.

(i) xn = (−1)n. For this sequence the following holds

∀n ∈ N : |xn − xn+1| = 2

So this sequence isn’t a Cauchy sequence-

(ii) It is NOT enough to show that |xn − xn+1| tends to 0! Example:
(xn) =

√
n

√
n+ 1−

√
n = (

√
n+ 1−

√
n)

√
n+ 1 +

√
n√

n+ 1 +
√
n

=
�n + 1−�n√
n+ 1 +

√
n

=
1√

n+ 1 +
√
n

n→∞−−−→ 0

However (
√
n) doesn’t converge.
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(iii) We introduce the following

Limes superior lim sup
n→∞

xn = lim
n→∞

sup{xk | k ≥ n}

Limes inferior lim inf
n→∞

xn = lim
n→∞

inf{xk | k ≥ n}

lim supn→∞ xn ≥ lim infn→∞ xn always holds, and if (xn) converges
then

xn
n→∞−−−→ x ⇐⇒ lim sup

n→∞
xn = lim inf

n→∞
xn

Definition 2.39. A sequence (xn) ⊂ R is said to be properly divergent to
∞ if

∀k ∈ (0,∞) ∃N ∈ N ∀n ≥ N : xn > k

We notate this as
lim
n→∞

xn =∞

Theorem 2.40. Let (xn) ⊂ R be a sequence that diverges properly to ∞.
Then

lim
n→∞

1

xn
= 0

Conversely, if (yn) ⊂ (0,∞) is a null sequence, then

lim
n→0

1

yn
=∞

Proof. Let ε > 0. By condition

∃N ∈ N ∀n ≥ N : |xn| >
1

ε

(
⇐⇒ 1

|xn|
< ε

)
(2.73)

Therefore 1
xn

is a null sequence. The second part of the proof is left as an
exercise for the reader.

Remark 2.41 (Rules for computing). In this remark we will introduce some
basic ”rules” for working with infinities. These rules are exclusive to this
topic, and are in no way universal! This should become obvious with our
first two rules:

1

±∞
= 0

1

0
=∞
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Obviously, division by 0 is still a taboo, however it works in this case since
we are working with limits, and not with absolutes. Let a ∈ R, b ∈ (0,∞),
c ∈ (1,∞), d ∈ (0, 1). The remaining rules are:

a+∞ =∞ a−∞ = −∞
∞+∞ =∞ −∞−∞ = −∞
b · ∞ =∞ b · (−∞) = −∞
∞ ·∞ =∞ ∞ · (−∞) = −∞

c∞ =∞ c−∞ = 0

d∞ = 0 d−∞ =∞

There are no general rules for the following:

∞−∞ ∞
∞

0 · ∞ 1∞

Theorem 2.42. Let (xn) ⊂ R be a sequence converging to x, and let (kn) ⊂
N be a sequence such that

lim
n→∞

kn =∞

Then
lim
n→∞

xkn = x

Proof. Let ε > 0. Then

∃N ∈ N ∀n ≥ N : |xn − x| < ε (2.74)

Furthermore
∃Ñ ∈ N ∀n ≥ Ñ : kn > N (2.75)

Therefore
∀n ≥ Ñ : |xkn − x| < ε (2.76)

Example 2.43. Consider the following sequence

xn =
n2n + 2nn

n3n − nn

This can be rewritten as

n2n + 2nn

n3n − nn
=

(nn)2 + 2(nn)

(nn)3 − (nn)

Introduce the subsequence kn = nn:

lim
k→∞

k2 + 2k

k3 − k
= 0 =⇒ lim

n→∞

n2n + 2nn

n3n − nn
= 0
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2.3 Convergence of Series

Definition 2.44. Let (xn) ⊂ R (or C). Then the series

∞∑
k=1

xk

is the sequence of partial sums (sn):

sn =
n∑
k=1

xk

If the series converges, then
∑∞

k=1 denotes the limit.

Theorem 2.45. Let (xn) ⊂ R (or C). Then

∞∑
n=1

xn converges =⇒ (xn) null sequence

Proof. Let sn =
∑∞

n=1 xn. This is a Cauchy series. Let ε > 0. Then

∃N ∈ N ∀n ≥ N : |sn+1 − sn| = |xn+1| < ε (2.77)

Example 2.46 (Geometric series). Let x ∈ R (or C). Then

∞∑
k=1

xk

converges if |x| < 1. (Why?)

Example 2.47 (Harmonic series). This is a good example of why the inverse
of Theorem 2.45 does not hold. Consider

xn =
1

n

This is a null sequence, but
∑∞

k=1
1
k does not converge. (Why?)

Lemma 2.48. Let (xn) ⊂ R (or C). Then

∞∑
k=1

xn converges ⇐⇒
∞∑
k=N

xn converges for some N ∈ N
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Proof. Left as an exercise for the reader.

Theorem 2.49 (Alternating series test). Let (xn) ⊂ [0,∞) be a monotonic
decreasing null sequence. Then

∞∑
k=1

(−1)kxk

converges, and ∣∣∣∣∣
∞∑
k=1

(−1)kxk −
N∑
k=1

(−1)kxk

∣∣∣∣∣ ≤ xN+1

Proof. Let sn =
∑n

k=1(−1)kxn, and define the sub sequences an = s2n,
bn = s2n+1. Then

an+1 = s2n − (x2n+1 − x2n+2)︸ ︷︷ ︸
≥0

≤ s2n = an (2.78)

Hence, (an) is monotonic decreasing. By the same argument, (bn) is mono-
tonic decreasing. Let m,n ∈ N such that m ≤ n. Then

bm ≤ bn = an − x2n+1 ≤ an ≤ am (2.79)

Therefore (an), (bn) are bounded. By Theorem 2.25, these sequence converge

(an)
n→∞−−−→ a (bn)

n→∞−−−→ b (2.80)

Furthermore
bn − an = −x2n+1

n→∞−−−→ 0 =⇒ a = b (2.81)

From eq. (2.79) we know that

bm ≤ b = a ≤ am (2.82)

So therefore

|s2n − a| = an − a ≤ an − bn = x2n+1 (2.83)

|s2n+1 − a| = b− bn ≤ am+1 − bn = x2n+2 (2.84)
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Example 2.50 (Alternating harmonic series).

s =

∞∑
k=1

(−1)k+1 1

k
= 1− 1

2
+

1

3
− 1

4
+

1

5
− · · ·

=

(
1− 1

2

)
− 1

4
+

(
1

3
− 1

6

)
− 1

8
+

(
1

5
− 1

10

)
− 1

12
+ · · ·

=
1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+ · · ·

=
1

2

(
1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

)
=

1

2
s

But s ∈
[

1
2 , 1
]
, this is an example on why rearranging infinite sums can lead

to weird results.

Remark 2.51.

(i) The convergence behaviour does not change if we rearrange finitely
many terms.

(ii) Associativity holds without restrictions

∞∑
k=1

xk =

∞∑
k=1

(x2k + x2k−1)

(iii) Let I be a set, and define

I −→ R
i 7−→ ai

Consider the sum ∑
i∈I

ai

If I is finite, there are no problems. However if I is infinite then the
solution of that sum can depend on the order of summation!

Definition 2.52. Let (xn) ⊂ R (or C). The series
∑∞

k=1 xk is said to con-
verge absolutely if

∑∞
k=1 |xk| converges.
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Remark 2.53. Let (xn) ⊂ [0,∞). Then the sequence

sn =
n∑
k=1

xk

is monotonic increasing. If (sn) is bounded it converges, if it is unbounded
it diverges properly. The notation for absolute convergence is

∞∑
k=1

|xk| <∞

Lemma 2.54. Let
∑∞

k=1 xk be a series. Then the following are all equivalent

(i)
∞∑
k=1

xk converges absolutely

(ii) {∑
k∈I
|xk|

∣∣∣∣∣ I ⊂ N finite

}
is bounded

(iii)

∀ε > 0 ∃I ⊂ N finite ∀J ⊂ N finite :
∑
k∈J\I

|xk| < ε

Proof. To prove the equivalence of all of these statements, we will show that
(i) =⇒ (ii) =⇒ (iii) =⇒ (i). This is sufficient. First we prove (i) =⇒
(ii). Let

∞∑
n=1

|xn| = k ∈ [0,∞) (2.85)

Let I ⊂ N be a finite set, and let N = max I. Then

∑
n∈I
|xn| ≤

N∑
n=1

|xn| ≤x
Monotony of the partial sums

∞∑
n=1

|xn| (2.86)

Now to prove (ii) =⇒ (iii), set

K :=

{∑
k∈I
|xk|

∣∣∣∣∣ I ⊂ N finite

}
(2.87)
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Let ε > 0. Then by definition of sup

∃I ⊂ N finite :
∑
k∈I
|xk| > k − ε (2.88)

Let J ⊂ N finite. Then

k − ε <
∑
k∈I
|xk| ≤

∑
k∈I∪J

|xk| ≤ K (2.89)

Hence ∑
k∈J\I

|xk| =
∑
k∈I∪J

|xk| −
∑
k∈I
|xk| ≤ ε (2.90)

Finally we show that (iii) =⇒ (i). Choose I ⊂ N finite such that

∀J ⊂ N finite :
∑
k∈J\I

|xk| < 1 (2.91)

Then ∀J ⊂ N finite∑
k∈J
|xk| ≤

∑
k∈J\I

|xk|+
∑
k∈I
|xk| ≤

∑
k∈I
|xk|+ 1 (2.92)

Therefore
∑n

k=1 |xk| is bounded and monotonic increasing, and hence it is
converging. So

∑∞
k=1 |xk| <∞.

Theorem 2.55. Every absolutely convergent series converges and the limit
does not depend on the order of summation.

Proof. Let
∑∞

k=1 xk be absolutely convergent and let ε > 0. Choose I ⊂
N finite such that

∀J ⊂ N :
∑
k∈I
|xk| < ε (2.93)

Choose N = max I. Define the series

sn =

n∑
k=1

xk (2.94)

Then for n ≤ m ≤ N

|sn − sm| ≤
n∑

k=m+1

|xk| ≤
∑

k∈{1,··· ,n}\I

|xk| < ε (2.95)
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Hence sn is a Cauchy sequence, so it converges. Let φ : N → N be a bi-
jective mapping. According to Lemma 2.54 the series

∑∞
k=1 xφ(n) converges

absolutely. Let ε > 0. According to the same Lemma

∃I ⊂ N finite ∀J ⊂ N finite :
∑
k∈J\I

|xk| <
ε

2
(2.96)

Choose N ∈ N such that

I ⊂ {1, · · · , N} ∩ {φ(1), φ(2), · · · , φ(n)} (2.97)

Then for n ≥ N∣∣∣∣∣
∞∑
k=1

xk −
n∑
k=1

xφ(k)

∣∣∣∣∣ =

∣∣∣∣∣∣
∑

k∈{1,··· ,N}\I

xk −
∑

k∈{φ(1),··· ,φ(n)}\I

xk

∣∣∣∣∣∣
≤

∑
k∈{1,··· ,N}\I

|xk|+
∑

k∈{φ(1),··· ,φ(n)}\I

|xk| < ε

(2.98)

Therefore

lim
n→∞

(
n∑
k=1

xk −
n∑
k=1

xφ(k)

)
= 0 (2.99)

Theorem 2.56. Let
∑∞

k=1 xk be a converging series. Then∣∣∣∣∣
∞∑
k=1

xk

∣∣∣∣∣ ≤
∞∑
k=1

|xk|

Proof. Left as an exercise for the reader.

Theorem 2.57 (Direct comparison test). Let
∑∞

k=1 xk be a series. If a
converging series

∑∞
k=1 yk exists with |xk| ≤ yk for all sufficiently large

k, then
∑∞

k=1 xk converges absolutely. If a series
∑∞

k=1 zk diverges with
0 ≤ zk ≤ xk for all sufficiently large k, then

∑∞
k=1 xk diverges.

Proof.

n∑
k=1

|xk| ≤
n∑
k=1

yk =⇒
n∑
k=1

xk bounded
Lem. 2.54

=⇒
∞∑
k=1

|xk| <∞ (2.100)

n∑
k=1

zk ≤
n∑
k=1

xk =⇒
∞∑
k=1

xk unbounded (2.101)
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Corollary 2.58 (Ratio test). Let (xn) be a sequence. If ∃q ∈ (0, 1) such
that ∣∣∣∣xn+1

xn

∣∣∣∣ ≤ q
for a.e. n ∈ N, then

∑∞
k=1 xk converges absolutely. If∣∣∣∣xn+1

xn

∣∣∣∣ ≥ 1

then the series diverges.

Proof. Let q ∈ (0, 1) and choose N ∈ N such that

∀n ≥ N :

∣∣∣∣xn+1

xn

∣∣∣∣ ≤ q (2.102)

Then
|xN+1| ≤ q|xN |, |xN+2| ≤ q|xN+1| ≤ q2|xN |, · · · (2.103)

This means that

∞∑
k=1

|xk| ≤
N∑
k=1

|xk|+
∞∑

k=N+1

qk−N · |xN | <∞ (2.104)

Hence,
∑∞

k=1 xk converges absolutely. Now choose N ∈ N such that

∀n ≥ N :

∣∣∣∣xn+1

xn

∣∣∣∣ > 1 (2.105)

However this means that

|xn+1| ≥ |xn| ∀n ≥ N (2.106)

So (xn) is monotonic increasing and therefore not a null sequence. Hence∑∞
k=1 xk diverges.

Corollary 2.59 (Root test). Let (xn) be a sequence. If ∃q ∈ (0, 1) such
that

n
√
|xn| ≤ q

for a.e. n ∈ N, then
∑∞

k=1 xk converges absolutely. If

n
√
|xn| ≥ 1

for all n ∈ N then
∑∞

k=1 xk diverges.
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Proof. Left as an exercise for the reader.

Remark 2.60. The previous tests can be summed up by the formulas

lim
n→∞

∣∣∣∣xn+1

xn

∣∣∣∣ < 1 lim
n→∞

n
√
|xn| < 1

lim
n→∞

∣∣∣∣xn+1

xn

∣∣∣∣ > 1 lim
n→∞

n
√
|xn| > 1

for convergence and divergence respectively. If any of these limits is equal
to 1 then the test is inconclusive.

Example 2.61. Let z ∈ C. Then

exp(z) :=
∞∑
k=0

zk

k!

converges. To prove this, apply the ratio test:

|z|k+1k!

(k + 1)!|z|k
=
|z|
k + 1

−−−→ 0

The function exp : C→ C is called the exponential function.

Remark 2.62 (Binomial coefficient). The binomial coefficient is defined as(
n

0

)
:= 1

(
n

k + 1

)
=

(
n

k

)
· n− k
k + 1

and represents the number of ways one can choose k objects from a set of n
objects. Some rules are

(i) (
n

k

)
= 0 if k > n

(ii)

k ≤ n :

(
n

k

)
=

n!

k!(n− k)!

(iii) (
n

k

)
+

(
n

k − 1

)
=

(
n+ 1

k

)
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(iv)

∀x, y ∈ C : (x+ y)n =

n∑
k=1

(
n

k

)
xkyn−k

Theorem 2.63.

∀u, v ∈ C : exp(u+ v) = exp(u) · exp(v)

Proof.

exp(u) · exp(v) =

( ∞∑
n=0

un

n!

)
·

( ∞∑
m=0

vm

m!

)
=
∞∑
n=0

∞∑
m=0

unvm

n!m!

=

∞∑
l=0

l∑
k=0

ukvl−k

k!(l − k)!

=

∞∑
l=0

(u+ v)l

l!

= exp(u+ v)

(2.107)

Remark 2.64. We define Euler’s number as

e := exp(1)

We will also take note of the following rules ∀x ∈ C, n ∈ N

exp(0) = exp(x) exp(−x) = 1 =⇒ exp(−x) =
1

exp(x)

exp(nx) = exp(x+ x+ x+ · · ·+ x) = exp(x)n

exp(x)
1
n = exp

(x
n

)
Alternatively we can write

exp(z) = ez

Theorem 2.65. Let x, y ∈ R.

(i)
x < y =⇒ exp(x) < exp(y)
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(ii)
exp(x) > 0 ∀x ∈ R

(iii)
exp(x) ≥ 1 + x ∀x ∈ R

(iv)

lim
n→∞

nd

exp(n)
= 0 ∀d ∈ N

Proof.

(i) Left as an exercise for the reader.

(ii) For x ≥ 0 this is trivial. For x < 0

exp(x) =
1

exp(−x)
> 0 (2.108)

(iii) For x ≥ 0 this is trivial. For x < 0

∞∑
k=0

xk

k!
(2.109)

is an alternating series, and therefore the statement follows from The-
orem 2.49.

(iv) Let d ∈ N. Then ∀n ∈ N

0 <
nd

exp(n)
<

nd∑d+1
k=0

nk

k!

n→∞−−−→ 0 (2.110)

Definition 2.66. Define

sin, cos : R −→ R

as

sin(x) := Im(exp(ix))

cos(x) := Re(exp(ix))
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Remark 2.67.

(i) Euler’s formula
exp(ix) = cos(x) + i sin(x)

(ii) ∀z ∈ C : exp(z) = exp(z̄)

| exp(ix)|2 = exp(ix) · exp(ix) = exp(ix) · exp(−ix) = 1

Also:
1 = cos2(x) + sin2(x)

On the symmetry of cos and sin:

cos(−x) + i sin(−x) = exp(−ix) = exp(ix) = cos(x)− i sin(x)

(iii) From

exp(ix) =
∞∑
k=0

(ix)k

k!
(i0 = 1, i1 = i, i2 = −1, i3 = −i, i4 = 1, · · · )

follow the following series

sin(x) =

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
cos(x) =

∞∑
k=0

(−1)kx2k

(2k)!

(iv) For x ∈ R

exp(i2x) = cos(2x) + i sin(2x)

= (cos(x) + i sin(x))2

= cos2(x)− sin2(x) + 2i sin(x) cos(x)

By comparing the real and imaginary parts we get the following iden-
tities

cos(2x) = cos2(x)− sin2(x)

sin(2x) = 2 sin(x) cos(x)

(v) Later we will show that cos as exactly one root in the interval [0, 2].
We define π as the number in the interval [0, 4] such that cos

(
π
2

)
= 0.

=⇒ sin
(π

2

)
= ±1

cos and sin are 2π-periodic.
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Theorem 2.68. ∀z ∈ C

lim
n→∞

(
1 +

z

n

)n
= lim

n→∞

(
1− z

n

)−n
= exp(z)

Proof. Without proof.



Chapter 3

Linear Algebra

3.1 Vector Spaces

We introduce the new field K which will stand for any field. It can be either
R, C or any other set that fulfils the field axioms.

Definition 3.1. A vector space is a set V with the operations

Addition

+ : V × V −→ V

(x, y) 7−→ x+ y

Scalar Multiplication

· : K× V −→ V

(α, y) 7−→ αx
We require the following conditions for these operations

(i) ∃0 ∈ V ∀x ∈ V : x+ 0 = x

(ii) ∀x ∈ V ∃(−x) ∈ V : x+ (−x) = 0

(iii) ∀x, y ∈ V : x+ y = y + x

(iv) ∀x, y, z ∈ V : (x+ y) + z = x+ (y + z)

(v) ∀α ∈ K ∀x, y ∈ V : α(x+ y) = αx+ αy

(vi) ∀α, β ∈ K ∀x ∈ V : (α+ β)x = αx+ βx

(vii) ∀α, β ∈ K ∀x ∈ V : (αβ)x = α(βx)

(viii) ∀x ∈ V : 1 · x = x

Elements from V are called vectors, elements from K are called scalars.

47
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Remark 3.2. We now have two different addition operations that are denoted
the same way:

(i) + : V × V → V

(ii) + : K×K→ K

Analogously there are two neutral elements and two multiplication opera-
tions.

Example 3.3.

(i) K is already a vector space

(ii) V = K2. In the case that K = R this vector space is the two-
dimensional Euclidean space. The neutral element is (0, 0), and the
inverse is (χ1, χ2)→ (−χ1,−χ2). This can be extended to Kn.

(iii) K-valued sequences:

V =
{

(χn)n∈N
∣∣χ ∈ K ∀n ∈ N

}
(iv) Let M be a set. Then the set of all K-valued functions on M is a

vector space
V = {f | f : M → K}

Definition 3.4. Let V be a vector space, let x, x1, · · · , xn ∈ V and let
M ⊂ V .

(i) x is said to be a linear combination of x1, · · · , xn if ∃α1, · · · , αn ∈ K
such that

x =

n∑
k=1

αkxk

(ii) The set of all linear combinations of elements from M is called the
span, or the linear hull of M

spanM :=

{
n∑
k=1

αkxk

∣∣∣∣∣n ∈ N, α1, · · · , αn ∈ K, x1, · · · , xn ∈ V

}

(iii) M (or the elements of M) are said to be linearly independent if
∀α1, · · · , αn ∈ K, x1, · · · , xn ∈ V

n∑
k=1

αkxk = 0 =⇒ α1 = α2 = · · · = αn = 0
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(iv) M is said to be a generator (of V ) if

spanM = V

(v) M is said to be a basis of V if it is a generator and linearly independent.

(vi) V is said to be finite-dimensional if there is a finite generator.

Example 3.5.

(i) For V = R2 consider the vectors x = (1, 0), y = (1, 1). These vectors
are linearly independent, since

αx+ βy = α(1, 0) + β(1, 1) = (0, 0) =⇒ α+ β = 0 ∧ β = 0

So therefore α = β = 0. We can show that span{x, y} = R2 because

(α, β) = (α− β)x+ βy

So {x, y} is a generator, hence R2 is finite-dimensional.

(ii) For V = R3 consider x = (1,−1, 2), y = (2,−1, 0), z = (4,−3, 3).
These vectors are linearly dependent because

2x+ y − z = (0, 0, 0)

(iii) Let V = {f | f : R→ R}. Consider the vectors

fn : R −→ R
x 7−→ xn

The f0, f1, · · · , fn, · · · are linearly independent, because

0 =
∞∑
=1

k = 0nαkfk =
∞∑
=1

k = 0nαkx
k

implies α0 = α1 = · · · = αn = 0. The span of the fk is the set of all
polynomials of (≤ n)-th degree. The function x 7→ (x− 1)3 is a linear
combination of f0, · · · , f3:

(x− 1)3 = x3 − 3x2 + 3x− 1
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Remark 3.6. Let V be a vector space, y ∈ V a linear combination of
y1, · · · , yn, and each of those a linear combination of x1, · · · , xn. I.e.

∃α1, · · · , αn ∈ K : y =

n∑
k=1

αkyk

and

∃βk,l ∈ K : yk =

n∑
l=1

βk,lxl

Then

y =

n∑
k=1

αkyk =

n∑
k=1

αk

n∑
l=1

βk,lxl =

n∑
l=1

(
n∑
k=1

αkβk,l

)
︸ ︷︷ ︸

∈K

xl

So therefore
span(span(M)) = span(M)

Theorem 3.7. Let V be a finite-dimensional vector space, and let x1, · · · , xn ∈
V . Then the following are equivalent

(i) x1, · · · , xn is a basis.

(ii) x1, · · · , xn is a minimal generator (Minimal means that no subset is a
generator).

(iii) x1, · · · , xn is a maximal linearly independent system (Maximal means
that x1, · · · , xn, y is not linearly independent).

(iv) ∀x ∈ V there exists a unique α1, · · · , αn ∈ K

x =

n∑
k=1

αkxk

Proof. First we prove ”(i) =⇒ (ii)”. Let x1, · · · , xn be a basis of V .
By definition x1, · · · , xn is a generator. Assume that x2, · · · , xn is still a
generator, then

∃α2, · · · , αn ∈ K : x1 =

n∑
k=1

αkxk (3.1)
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However this contradicts the linear independence of the basis. Next, to prove
”(ii) =⇒ (iii)” let x1, · · · , xn be a minimal generator. Let α1, · · · , αn ∈ K
such that

0 =

n∑
k=1

αkxk (3.2)

Assume that one coefficient is 6= 0 (w.l.o.g. α1 = 0). Then

x1 =

n∑
k=2

−αk
α1
xk (3.3)

x1, · · · , xn is a generator, i.e. for x ∈ V

∃β1, · · · , βn ∈ K : x =
n∑
k=1

βkxk =
n∑
k=2

(
βk −

αk
α1

)
xk (3.4)

But this implies that x2, · · · , xn is a generator. That contradicts the as-
sumption that x1, · · · , xn was minimal.

=⇒ α1 = α2 = · · · = αn = 0 (3.5)

Now let y ∈ V . Then

∃γ1, · · · , γn ∈ K : y =
n∑
k=1

γkxk (3.6)

So x1, · · · , xn, y is linearly dependent, and therefore x1, · · · , xn is maximal.
To prove ”(iii) =⇒ (iv)” let x1, · · · , xn be a maximal linearly independent
system. If y ∈ V , then

∃α1, · · · , αk, β ∈ K :
n∑
k=1

αkxk + βy = 0 (3.7)

Assume β = 0, then consequently

x1, · · · , xn linearly independent =⇒ α1 = α2 = · · · = αn = 0 (3.8)

This is a contradiction, so therefore β 6= 0:

y =

n∑
k=1

−αk
β
xk (3.9)
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The uniqueness of these coefficients are left as an exercise for the reader.
Finally, to finish the proof we need to show ”(iv) =⇒ (i)”. By definition

V = span {x1, · · · , xn} (3.10)

Hence, {x1, · · · , xn} is a generator. In case

0 =
n∑
k=1

αkxk (3.11)

holds, then α1 = · · · = αn = 0 follows from the uniqueness.

Corollary 3.8. Every finite-dimensional vector space has a basis.

Proof. By condition, there is a generator x1, · · · , xn. Either this generator
is minimal (then it would be a basis), or we remove elements until it is
minimal.

Lemma 3.9. Let V be a vector space and x1, · · · , xk ∈ V a linearly inde-
pendent set of elements. Let y ∈ V , then

x1, · · · , xk, y linearly independent ⇐⇒ y /∈ span {x1, · · · , xk}

Proof. To prove ”⇐= ”, assume y 6= span {x1, · · · , xk}. Therefore x1, · · · , xk, y
must be linearly independent. To see this, consider

0 =
n∑
k=1

αkxk + βy α1, · · · , αn ∈ K (3.12)

Then β = 0, otherwise we could solve the above for y, and that would
contradict our assumption. The argument works in the other direction as
well.

Theorem 3.10 (Steinitz exchange lemma). Let V be a finite-dimensional
vector space. If x1, · · · , xm is a generator and y1, · · · , yn a linear indepen-
dent set of vectors, then n ≤ m. In case x1, · · · , xm and y1, · · · , yn are both
bases, then n = m.

Heuristic Proof. Let K ∈ {0, · · · ,min {m,n} − 1} and let

x1, · · · , xK , yK+1, · · · , yn (3.13)

be linearly independent. Assume that

xK+1, · · · , xm ∈ span {x1, · · · , xk, yK+2, · · · , yn} (3.14)
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Then

yK+1 ∈ span {x1, · · · , xm} ⊂ span {x1, · · · , xK , yK+2, · · · , ym} (3.15)

This contradicts with the linear independence of x1, · · · , xK , yK+2, · · · yn.
Furthermore,

∃xi ∈ V : xi /∈ span {x1, · · · , xK , yK+2, · · · , yn} (3.16)

W.l.o.g. x : i = xK+1. By Lemma 3.9, x1, · · · , xK+1, yK+2, · · · yn is linearly
independent. We can now sequentially replace yi with xi without losing the
linear independence. Assume n > m, then this process leads to a linear
independent system x1, · · · , xm, ym+1, · · · , yn. But since x1, · · · , xm is a
generator, ym+1 is a linear combination of x1, · · · , xm. If x1, · · · , xm and
y1, · · · , yn are both bases, then we cannot change the roles and therefore
m = n.

Definition 3.11. The amount of elements in a basis is said to be the di-
mension of V , and is denoted as dimV .

Example 3.12.

(i) Let V = Rn (or Cn). Define

ek = (0, 0, · · · , 0, 1
↑

k-th position

, 0, · · · , 0)

Then e1, · · · , en is a basis, in fact, it is the standard basis of Rn (Cn).

(ii) Let V be the vector space of polynomials

V =

{
f : R −→ R

∣∣∣∣∣n ∈ N, α1, · · · , αn ∈ R, f(x) =
n∑
k=1

αkx
k ∀x ∈ R

}

This space has the basis

{x 7−→ xn |n ∈ N0}

Corollary 3.13. In an n-dimensional vector space, every generator has
at least n elements, and every linearly independent system has at most n
elements.
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Proof. Let M ⊂ span {x1, · · · , xn}. Then

V = spanM ⊂ spanx1, · · · , xn (3.17)

Hence, x1, · · · , xn is a generator. On the other hand, assume

∃y ∈M \ span {x1, · · · , xn} (3.18)

Then x1, · · · , xn, y is linearly independent (Lemma 3.9), and we can sequen-
tially add elements from M until x1, · · · , xn, yn+1, · · · , yn+m is a genera-
tor.

Definition 3.14 (Vector subspace). Let V be a vector space. A non-empty
set W ⊂ V is called a vector subspace if

∀x, y ∈W ∀α ∈ K : x+ αy ∈W

Example 3.15. Consider

W =
{

(χ, χ) ∈ R2
∣∣χ ∈ R

}
This is a subspace, because

(χ, χ) + α(η, η) = (χ+ αη, χ+ αη)

However,
A =

{
(χ, η) ∈ R2

∣∣χ2 + η2 = 1
}

is not a subspace, because (1, 0), (0, 1) ∈ A, but (1, 1) /∈ A.

Remark 3.16.

(i) Every subspace W ⊂ V contains the 0 and the inverse elements.

(ii) Let W ⊂ V be a subspace. Then

∀x1, · · · , xn ∈W, α1, · · · , αn ∈ K :

n∑
k=1

αkxk ∈W

Furthermore, M ⊂W =⇒ spanM ⊂W .

(iii) M ⊂ V is a subspace if and only of spanM = M .

(iv) Let I be an index set, and Wi ⊂ V subspaces. Then⋂
i∈I

Wi

is also a subspace
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(v) The previous doesn’t hold for unions.

(vi) Let M ⊂ V :

spanM =
⋂

W⊃M subspace of V

W

3.2 Matrices and Gaussian elimination

Definition 3.17. Let aij ∈ K, with i ∈ {1, · · · , n}, j ∈ {1, · · · ,m}. Then
a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm


is called an n×m-matrix. (n,m) is said to be the dimension of the matrix.
An alternative notation is

A = (aij) ∈ Kn×m

Kn×m is the space of all n×m-matrices. The following operations are defined
for A,B ∈ Kn×m, C ∈ Km×l:

(i) Addition

A+B =

a11 + b11 · · · a1m + b1m
...

. . .
...

an1 + bn1 · · · anm + bnm


(ii) Scalar multiplication

α ·A =

αa11 · · · αa1m
...

. . .
...

αan1 · · · αanm


(iii) Matrix multiplication

A·C =

a11c11 + a12c21 + · · ·+ a1mcm1 · · · a11c1l + a12c2l + · · ·+ a1mcml
...

. . .
...

an1c11 + an2c21 + · · ·+ anmcm1 · · · an1c1l + an2c2l + · · ·+ anmcml


or in shorthand notation

(AC)ij =
m∑
k=1

aikckj
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(iv) Transposition

The transposed matrix AT ∈ Km×n is created by writing the rows of
A as the columns of AT (and vice versa).

(v) Conjugate transposition

AH =
(
A
)T

Remark 3.18.

(i) Kn×m (for n,m ∈ N) is a vector space.

(ii) A ·B is only defined if A has as many columns as B has rows.

(iii) Kn×1 and K1×n can be trivially identified with Kn.

(iv) Let A,B,C,D,E matrices of fitting dimensions and α ∈ K. Then

(A+B)C = AC +BC

A(B + C) = AB +AC

A(CE) = (AC)E

α(AC) = (αA)C = A(αC)

(A+B)T = AT +BT (A+B) = A+B

(αA)T = α(A)T (αA) = AA

(AC)T = CT ·AT (AC) = CA

Proof of associativity. Let A ∈ Kn×m, C ∈ Km×l, E ∈ Kl×p. Further-
more let i ∈ {1, · · · , n} , j ∈ {1, · · · , p}.

((AC)E)ij =
l∑

k=1

(AC)ikEkj =

l∑
k=1

 m∑
k̃=1

aik̃ck̃k

 · ekj
=

l∑
k=1

m∑
k̃=1

aik̃ · ck̃k · ekj

=

m∑
k̃=1

aik̃

(
l∑

k=1

ck̃kekj

)

=

m∑
k̃=1

aik̃ · (CE)k̃j

= (A(CE))ij

(3.19)
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=⇒ A(CE) = A(CE) (3.20)

(v) Matrix multiplication is NOT commutative. First off, AB and BA are
only well defined when A ∈ Kn×m and B ∈ Km×n. Example:(

0 1
0 0

)(
0 0
1 0

)
=

(
1 0
0 0

)
6=
(

0 0
1 0

)(
0 1
0 0

)
=

(
0 0
0 1

)
(vi) Let n,m ∈ N. There exists exactly one neutral additive element in

Kn×m, which is the zero matrix. Multiplication with the zero matrix
yields a zero matrix.

(vii) We define

δij =

{
1, i = j

0 else

The respective matrix I = (δij) ∈ Kn×m is called the identity matrix.

(viii) A 6= 0 and B 6= 0 can still result in AB = 0:(
0 1
0 0

)2

=

(
0 0
0 0

)
Example 3.19 (Linear equation system). Consider the following linear equa-
tion system

a11x1 + a12x2 + · · ·+ a1mxm = b1

a21x1 + a22x2 + · · ·+ a2mxm = b2
...

an1x1 + an2x2 + · · ·+ anmxm = bn

This can be rewritten using matrices

A =

a11 · · · a1m
...

. . .
...

an1 · · · anm

 x =

x1
...
xm

 b =

b1...
bn


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Which results in

Ax = B, A ∈ Km×n, x ∈ Km×1, b ∈ Kn×1

Such an equation system is called homogeneous if b = 0.

Theorem 3.20. Let A ∈ Kn×m, b ∈ Kn. The solution set of the homoge-
neous equation system Ax = 0, (that means {x ∈ Km |Ax = 0} ⊂ Km) is
a linear subspace. If x and x̃ are solutions of the inhomogeneous system
Ax = b, then x− x̃ solves the corresponding homogeneous problem.

Proof. A · 0 = 0 shows that Ax = 0 has a solution. Let x, y be solutions, i.e.
Ax = 0 and Ay = 0. Then ∀α ∈ K:

A(x+ αy) = Ax+A(αy) = Ax︸︷︷︸
0

+α( Ay︸︷︷︸
0

) = 0 (3.21)

=⇒ x+ αy ∈ {x ∈ Km |Ax = 0} (3.22)

Next, let x, x̃ be solutions of Ax = b, i.e.

Ax = b, Ax̃ = b (3.23)

Then
A(x− x̃) = Ax−Ax̃ = b− b = 0 (3.24)

Therefore, x− x̃ is the solution of the homogeneous equation system

Remark 3.21 (Finding all solutions). First find a basis e1, · · · , ek of

{x ∈ Km |Ax = 0}

Next find some x0 ∈ Km such that Ax0 = b. Then every solution of Ax = b
can be written as

x = x0 + α1e1 + · · ·+ αkek

Example 3.22. Let

A =


1 2 0 0 1
0 0 1 0 0
0 0 0 1 −1
0 0 0 0 0

 b =


1
2
3
4

 c =


3
2
1
0


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Then Ax = b has no solution, since the fourth row would state 0 = 4.
However, Ax = c has the particular solution

x =


3
0
2
1
0


If we consider the homogeneous problem Ay = 0, we can come up with the
solution

y =


−2
1
0
0
0

 y2 +


−1
0
0
1
1

 y5

and in turn find the set of solutions{
y ∈ K5

∣∣Ay = 0
}

= span
{

(−2, 1, 0, 0, 0)T , (−1, 0, 0, 1, 1)T
}{

x ∈ K5
∣∣Ax = c

}
=
{

(3, 0, 2, 1, 0)T + α(−2, 1, 0, 0, 0)T + β(−1, 0, 0, 1, 1)T
}

Definition 3.23 (Row Echelon Form). A zero row is a row in a matrix
containing only zeros. The first element of a row that isn’t zero is called the
pivot.

A matrix in row echelon form must meet the following conditions

(i) Every zero row is at the bottom

(ii) The pivot of a row is always strictly to the right of the pivot of the
row above it

A matrix in reduced row echelon form must additionally meet the fol-
lowing conditions

(i) All pivots are 1

(ii) The pivot is the only non-zero element of its column

Remark 3.24. Let A ∈ Kn×m and b ∈ Kn. If A is in reduced row echelon
form, then Ax = b can be solved through trivial rearranging.

Definition 3.25 (Matrix row operations). Let A be a matrix. Then the
following are row operations
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(i) Swapping of rows i and j

(ii) Addition of row i to row j

(iii) Multiplication of a row by λ 6= 0

(iv) Addition of row i multiplied by lambda to row j

Theorem 3.26 (Gaussian Elimination). Every matrix can be converted into
reduced row echelon form in finitely many row operations.

Heuristic Proof. If A is a zero matrix the proof is trivial. But if it isn’t:

� Find the first column containing a non-zero element.

– Swap rows such that this element is in the first row

� Multiply every other row with multiples of the first row, such that all
other entries in that column disappear.

� Repeat, but ignore the first row this time

At the end of this the matrix will be in reduced row echelon form.

Definition 3.27. A ∈ Kn×n is called invertible if there exists a multiplica-
tive inverse. I.e.

∃B ∈ Kn×n : AB = BA = I

We denote the multiplicative inverse as A−1

Remark 3.28. We have seen matrices A 6= 0 such that A2 = 0. Such a
matrix is not invertible.

Theorem 3.29. Let A,B,C ∈ Kn×n, B invertible and A = BC. Then

A invertible ⇐⇒ C invertible

Especially, the product of invertible matrices is invertible.

Proof. Without proof.

Remark 3.30. Matrix multiplication with A from the left doesn’t ”mix” the
columns of matrix B

Theorem 3.31. Let A be a matrix, and let Ã be the result of row operations
applied to A. Then

∃T invertible : Ã = TA

We say: The left multiplication with T applies the row operations.
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Heuristic proof. You can find invertible matrices T1, · · · , Tn that each apply
one row operation. Then we can see that

Ã = TnTn−1 · · ·T1︸ ︷︷ ︸
T

A (3.25)

Since T is the product of invertible matrices, it must itself be invertible.

Corollary 3.32. Let A ∈ Kn×m, b ∈ Kn, T ∈ Kn×m. Then Ax = b and
TAx = Tb have the same solution sets.

Proof. If Ax = b it is trivial that

Ax = b =⇒ TAx = Tb (3.26)

If TAx = Tb, then
Ax = T−1TAx = T−1Tb = b (3.27)

Lemma 3.33. Let A ∈ fieldn×m be in row echelon form. Then

A invertible ⇐⇒ The last row is not a zero row

and
A invertible ⇐⇒ All diagonal entries are non-zero

Proof. Let A be invertible with a zero-row as its last row. Then

(0, · · · , 0, 1) ·A = (0, · · · , 0, 0) (3.28)

Multiplying with A−1 from the right would result in a contradiction. There-
fore the last row of A can’t be a zero row.

Now let the diagonal entries of A be non-zero. This means we can use
row operations to transform A into the identity matrix, i.e.

∃T invertible : TA = I =⇒ A = T−1 (3.29)

Corollary 3.34. Let A ∈ Kn×n. Then

A invertible ⇐⇒ Every row echelon form has non-zero diagonal entries

and

A invertible ⇐⇒ The reduced row echelon form is the identity matrix
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Proof. Every row echelon form of A has the form TA with T an invertible
matrix. Especially, ∃S invertible such that SA is in reduced row echelon
form. Then

TA invertible ⇐⇒ A invertible (3.30)

Remark 3.35. Let A ∈ Kn×n be invertible, B ∈ Kn×m. Our goal is to
compute A−1B. First, write (A |B). Now apply row operations until we
reach the form (I | B̃). Let S be the matrix realising these operations, i.e.
SA = I. Then B̃ = SB = A−1B. If B = I this can be used to compute
A−1.

Example 3.36. Let

A =

1 1 1
0 1 1
0 0 1


Rewrite this as 1 1 1 1 0 0

0 1 1 0 1 0
0 0 1 0 0 1


Turn this into 1 1 0 1 0 −1

0 1 0 0 1 −1
0 0 1 0 0 1


And finally 1 0 0 1 −1 0

0 1 0 0 1 −1
0 0 1 0 0 1


The right part of the above matrix is A−1.

Definition 3.37. Let A ∈ Kn×m and let z1, · · · , zn ∈ K1×m be the rows of
A. The row space of A is defined as

span {z1, · · · , zn}

The dimension of the row space is the row rank of the matrix. Analogously
this works for the column space and the column rank. Later we will be able
to show that row rank and column rank are always equal. They’re therefore
simply called rank of the matrix.

Theorem 3.38. The row operations don’t effect the row space.
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Proof. It is obvious that multiplication with λ and swapping of rows don’t
change the row space. Furthermore it is clear that every linear combination
of z1 + z2, z2, · · · , zn is also a linear combination of z1, z2, · · · , zn, and vice
versa.

Theorem 3.39. Let A be in row echelon form. Then the non-zero rows of
the matrix are a basis of the row space of the matrix.

Proof. Let z1, · · · , zk ∈ K1×n be the non-zero rows of A. They create the
space span {z1, · · · , zn}, since zk, · · · zn are only zero rows. Analogously,

α1z1 + α2z2 + · · ·+ αkzk = 0 (3.31)

Let j be the index of the column of the pivot of z1. Then z2, · · · , zk have
zero entries in the j-th column. Therefore

α1 zij︸︷︷︸
6=0

= 0 =⇒ α1 = 0 (3.32)

By inductivity, this holds for every row.

Remark 3.40. (i) To compute the rank of A, bring A into row echelon
form and count the non-zero rows.

(ii) Let v1, · · · , vm ∈ Kn. To find a basis for

span {v1, · · · vm}

write v1, · · · , vm as rows of a matrix and bring it into row echelon
form.

3.3 The Determinant

In this section we always define A ∈ Kn×n and z1, · · · , zn the row vectors of
A. We declare the mapping

det : Kn×n −→ K

and define
det(A) := det(z1, z2, . . . , zn)

Definition 3.41. There exists exactly one mapping det such that
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(i) It is linear in the first row, i.e.

det(z1 + λz̃1, z2, · · · , zn) = det(z1, z2, · · · , zn) + λ det(z̃1, z2, · · · , zn)

(ii) If Ã is obtained from A by swapping two rows

det(A) = −det
(
Ã
)

(iii) det(I) = 1

This mapping is called the determinant, and we write

detA =

∣∣∣∣∣∣∣
a11 · · · a1n
...

. . .
...

an1 · · · ann

∣∣∣∣∣∣∣
Example 3.42. ∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = a11a22 − a21a12

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ =a11a22a33 + a12a23a31 + a13a21a32

− a31a22a13 − a32a23a11 − a33a21a12

Remark 3.43. (i) Every determinant is linear in every row

(ii) If two rows are equal then det(A) = 0

(iii) If one row (w.l.o.g. z1) is a linear combination of the others, so

z1 = α2z2 + α3z3 + · · ·+ αnzn, α1, · · · , αn ∈ K

then

det(z1, z2, · · · , zn) =α2 det(z2, z2, z3, · · · , zn)︸ ︷︷ ︸
0

+

α3 det(z3, z2, z3, · · · , zn)︸ ︷︷ ︸
0

+

· · ·+
αn det(zn, z2, z3, · · · , zn)︸ ︷︷ ︸

0

= 0
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(iv) Adding a multiple of a row to another doesn’t change the determinant

(v) Define

Tij swaps rows i and j

Mi(λ) multiplies row i with λ 6= 0

Lij(λ) adds λ-times row j to row i

Then

det(TijA) = −det(A)

det(Lij(λ)A) = det(A)

det(Mi(λ)A) = λ det(A)

Lemma 3.44. Let det be the determinent, and A,B ∈ Kn×n. Let A be in
row echelon form, then

det(AB) = a11 · a22 · · · · · ann · det(B)

Proof. First consider the case of A not being invertible. This means that
the last row of A is a zero row, which in turn means that det(A) = 0. This
also means that the last row of AB is a zero row and therefore det(AB) = 0.

Now let A be invertible. This means that all the diagonal entries are
non-zero. It is possible to bring A into diagonal form without changing the
diagonal entries themselves. So, w.l.o.g. let A be in diagonal form:

A = Mn(ann) · · · · ·M2(a22)M1(a11)I (3.33)

and thus

det(AB) = det(Mn(ann) · · · · ·M2(a22)M1(a11)B)

= ann · · · · · a22 · a11 det(B)
(3.34)

Remark 3.45. For B = I this results in

det(A) = a11a22 · · · ann

Theorem 3.46. Let A,B ∈ Kn×n. Then

detAB = detA · detB
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Proof. Let i, j ∈ {1, · · · , n} and λ 6= 0. Then

det(TijAB) = −det(AB) (3.35a)

det(Lij(λ)AB) = det(AB) (3.35b)

Bring A with Tij and Lij(λ) operations into row echelon form. Then

det(AB) = a11a22 · · · ann · det(B) (3.36)

and therefore
det(AB) = detA · detB (3.37)

Corollary 3.47.

A ∈ Kn×n invertible ⇐⇒ detA 6= 0

Proof. Row operations don’t effect the invertibility or the determinant (ex-
cept for the sign) of a matrix. Therefore we can limit ourselves to matrices
in row echelon form (w.l.o.g.). Let A be in row echelon form, then

detA 6= 0 ⇐⇒ a11a22 · · · ann 6= 0

⇐⇒ a11 6= 0, a22 6= 0, · · · , ann 6= 0

⇐⇒ A invertible since diagonal entries are non-zero

(3.38)

Theorem 3.48.
detA = detAT

Proof. First consider the explicit representation of row operations:

Tij =



j i

1
i 0 1

1
j 1 0

1

 (3.39a)

Lij(λ) =



j

1
i 1 λ

1
1

1

 (3.39b)
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Thus we can see
det(Tij) = det

(
T Tij
)

= −1 (3.40a)

det(Lij(λ)) = det
(
Lij(λ)T

)
= 1 (3.40b)

Let T be one of those matrices. Then

det
(
(TA)T

)
= det

(
AT · T T

)
= detAT · detT T

= detAT · detT

(3.41)

and
detTA = detA · detT (3.42)

And therefore

det
(
(TA)T

)
= det(TA) ⇐⇒ detAT = detA (3.43)

Now w.l.o.g. let A be in row echelon form. Let A be non-invertible, i.e.
the last row is a zero row. Thus detA = 0. This implies that AT has a
zero column. Row operations that bring AT into row echelon form (w.l.o.g.)
perserve this zero column. Therefore the resulting matrix must also have a
zero column, and thus det

(
AT
)

= 0.
Now assume A is invertible, and use row operations to bring A into a

diagonalised form (w.l.o.g.). For diagonalised matrices we know that

A = AT =⇒ detA = detAT (3.44)

Remark 3.49. Let Aij be the matrix you get by removing the i-th row and
the j-th column from A.

detA =
n∑
i=1

(−1)i+j · aij · det(Aij), j ∈ {1, · · · , n}

Remark 3.50 (Leibniz formula). Let n ∈ N, and let there be a bijective
mapping

σ : {1, · · · , n} −→ {1, · · · , n}

σ is a permutation. The set of all permutations is labeled Sn, and it contains
n! elements. Then

detA =
∑
σ∈Sn

sgn(σ)

n∏
i=1

ai,σ(i)
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A permutation that swaps exactly two elements is called elementary per-
mutation. Every permutation can be written as a number of consecutively
executed elementary permutations.

sgn(σ) = (−1)k

where σ is the permutation in question and k is the number of elementary
permutations it consists of.

3.4 Scalar Product

In this section V will always denote a vector space and K a field (either R
or C).

Definition 3.51. A scalar product is a mapping

〈·, ·〉 : V × V −→ K

that fulfils the following conditions: ∀v1, v2, w1, w2 ∈ V, λ ∈ K

Linearity 〈v1, w1 + λw2〉 = 〈w1, w1〉+ λ〈v1, w2〉
Conjugated symmetry 〈v1, w1〉 = 〈w1, v1〉

Positivity 〈v1, v1〉 ≥ 0

Definedness 〈v1, v2〉 = 0 =⇒ v1 = 0

Conjugated linearity 〈v1 + λv2, w1〉 = 〈v1, w1〉+ λ〈v2, w1〉

The mapping

‖·‖ : V −→ K

v 7−→
√
〈v, v〉

Example 3.52. On Rn the following is a scalar product

〈(x1, x2, · · · , xn)T , (y1, y2, · · · , yn)T 〉 =
n∑
k=1

xkyk

The norm is then equivalent to the Pythagorean theorem

‖v‖ =
√
〈v, v〉 =

√
x2

1 + x2
2 + · · ·+ x2

n
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Analogously for Cn

〈(u1, u2, · · · , un)T , (v1, v2, · · · , vn)T 〉 =
n∑
k=1

ukvk

Remark 3.53. � The length of v ∈ V is ‖v‖

� The distance between elements v, w ∈ V is ‖v − w‖

� The angle φ between v, w ∈ V is cosφ = 〈v,w〉
‖v‖·‖w‖

Theorem 3.54. Let v, w ∈ V . Then

Cauchy-Schwarz-Inequality |〈v, w〉| ≤ ‖v‖‖w‖
Triangle Inequality ‖v + w‖ ≤ ‖v‖+ ‖w‖

Proof. For λ ∈ K we know that

0 ≤ 〈v − λw, v − λw〉 = 〈v − λw, v〉 − λ〈v − λw,w〉
= 〈v, v〉 − λ〈w, v〉 − λ〈v, w〉+ λλ︸︷︷︸

|λ|2
〈w,w〉 (3.45)

Let λ = 〈w,v〉
‖w‖2 . Then

0 ≤ ‖v‖2 − 〈w, v〉
‖w‖2

· 〈w, v〉 − 〈w, v〉
‖w‖2

· 〈v, w〉+
|〈w, v〉|2

‖w‖4
‖w‖2

= ‖v‖2 − |〈w, v〉|
2

‖w‖2
−

�
�

�
��|〈w, v〉|2

‖w‖2
+

�
�

�
��|〈w, v〉|2

‖w‖2

= ‖v‖2 − |〈w, v〉|
2

‖w‖2

(3.46)

Through the monotony of the square root this implies that

|〈w, v〉| ≤ ‖v‖‖w‖ (3.47)

To prove the triangle inequality, consider

||v + w||2 = 〈v + w, v + w〉
= 〈v, v〉︸ ︷︷ ︸
‖v‖2

+〈v, w〉+ 〈w, v〉︸ ︷︷ ︸
〈v,w〉

+ 〈w,w〉︸ ︷︷ ︸
‖w‖2

≤ ‖v‖2 + 2 · Re〈v, w〉+ ‖w‖2

≤ ‖v‖2 + 2‖v‖‖w‖+ ‖w‖2

= (‖v‖+ ‖w‖)2

(3.48)
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Using the same argument as above, this implies

‖v + w‖ ≤ ‖v‖+ ‖w‖ (3.49)

Definition 3.55. v, w ∈ V are called orthogonal if

〈v, w〉 = 0

The elements v1, · · · , vm ∈ V are called an orthogonal set if they are non-
zero and they are pairwise orthogonal. I.e.

∀i, j ∈ {1, · · · ,m} : 〈vi, vj〉 = 0

If ‖vi‖ = 1, then the vi are called an orthonormal set. If their span is V
they are an orthonormal basis.

Theorem 3.56. If v1, · · · , vn are an orthonormal set, they are linearly in-
dependent.

Proof. Let α1, · · · , αn ∈ K, such that

0 = α1v1 + α2v2 + · · ·+ αnvn (3.50)

Then

0 = 〈vi, 0〉 = 〈vi, α1v1 + α2v2 + · · ·+ αnvn〉
= α1〈vi, v1〉+ α2〈vi, v2〉+ · · ·+ αn〈vi, vn〉
= αi〈vi, vi〉 i ∈ {1, · · · , n}

(3.51)

Since vi is not a zero vector, 〈vi, vi〉 6= 0, and thus αi = 0. Since i is arbitrary,
the vi are linearly independent.

Example 3.57. (i) The canonical basis in Rn is an orthonormal basis re-
garding the canonical scalar product.

(ii) Let φ ∈ R. Then

v1 = (cosφ, sinφ)T v2 = (− sinφ, cosφ)T

are an orthonormal basis for R2
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Theorem 3.58. Let v1, · · · , vn be an orthonormal basis of V . Then for
v ∈ V :

v =
n∑
i=1

〈vi, v〉vi

Proof. Since v1, · · · , vn is a basis,

∃α1, · · · , αn ∈ K : v =

n∑
i=1

αivi (3.52)

And therefore, for j ∈ {1, · · · , n}

〈vj , v〉 =
n∑
i=1

αi〈vj , vi〉 = αj 〈vj , vj〉︸ ︷︷ ︸
‖vj‖2=1

(3.53)

Theorem 3.59. Let A ∈ Km×n and 〈·, ·〉 the canonical scalar product on
Kn. Then

〈v,Aw〉 = 〈AHv, w〉

Proof. First consider

(Aw)i =

n∑
j=1

Aijwi (3.54a) (AHw)j =

n∑
i=1

Ajivi (3.54b)

Now we can compute

〈v,Aw〉 =

n∑
i=1

vi(Aw)i =

n∑
i=1

vi · n∑
j=1

Aijwj

 =

n∑
i=1

n∑
j=1

Aijviwj

=

n∑
j=1

(
n∑
i=1

Aijvi

)
wj =

n∑
j=1

(
n∑
i=1

Aijvi

)
wj

=

n∑
j=1

(AHv)j · wj

= 〈AHv, w〉

(3.55)
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Definition 3.60. A matrix A ∈ Rn×n is called orthogonal if

ATA = AAT = I

or
AT = A−1

The set of all orthogonal matrices

O(n) :=
{
A ∈ Rn× n

∣∣ATA = I
}

is called the orthogonal group.

SO(n) =
{
A = Rn× n

∣∣ATA = I ∧ detA = 1
}
⊂ O(n)

is called the special orthogonal group.6

Example 3.61. Let φ ∈ [0, 2π], then

A =

(
cosφ − sinφ
sinφ cosφ

)
is orthogonal.

Remark 3.62. (i) Let A,B ∈ Kn×n, then

AB = I =⇒ BA = I

(ii)
1 = det I = detATA = detAT · detA = det2A

(iii) The i-j-component of ATA is equal to the canonical scalar product of
the i-th row of AT and the j-th column of A. Since the rows of AT

are the columns of A, we can conclude that

A orthogonal ⇐⇒ 〈ri, rj〉 = δij

where the ri are the columns of A. In this case, the ri are an orthonor-
mal basis on Rn. This works analogously for the rows.

(iv) Let A be orthogonal, and x, y ∈ Rn

〈Ax,Ay〉 = 〈ATAx, y〉 = 〈x, y〉

‖Ax‖ =
√
〈Ax,Ax〉 =

√
〈x, x〉 = ‖x‖

A perserves scalar products, lengths, distances and angles. These kinds
of operations are called mirroring and rotation.
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(v) Let A,B ∈ O(n)

(AB)T · (AB) = BTATAB = BT IB = I

This implies (AB) ∈ O(n). It also implies I ∈ O(n). Now consider
A ∈ O(n). Then

(A−1)TA−1 = (AT )T ·AT = AAT = I

This implies A−1 ∈ O(T ). Such a structure (a set with a multiplication
operation, neutral element and multiplicative inverse) is called a group.

Example 3.63. O(n), SO(n), R \ {0}, C \ {0}, Gl(n) (set of invertible ma-
trices) and Sn are all groups.

Definition 3.64. A matrix U ∈ Cn×n is called unitary if

UHU = I = UUH

We also introduce {
U ∈ Cn× n

∣∣UHU = I
}

the unitary group, and{
U ∈ Cn× n

∣∣UHU = I ∧ detU = 1
}

the special unitary group.

3.5 Eigenvalue problems

Definition 3.65. Let A ∈ Kn×n. Then λ ∈ K is called an eigenvalue of A,
if

∃v ∈ Kn, v 6= 0 : Av = λv

Such a vector v is called eigenvector. We call

{v ∈ Kn |Av = λv} =: Eλ

eigenspace belonging to λ.

Example 3.66. Let

A =

2 1 −1
0 1 0
0 0 1


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Then

A ·

1
0
0

 =

2
0
0

 = 2 ·

1
0
0


A ·

 1
−1
0

 =

 1
−1
0

 = 1 ·

 1
−1
0


A ·

1
0
1

 =

1
0
1

 = 1 ·

1
0
1


The eigenspaces are

E2 =

κ ·
1

0
0

∣∣∣∣∣∣κ ∈ R


E1 =

κ ·
 1
−1
0

+ ρ ·

1
0
1

∣∣∣∣∣∣κ, ρ ∈ R

 = span


 1
−1
0

 ,

1
0
1


Remark 3.67. The eigenspace to an eigenvalue λ is a linear subspace.

Remark 3.68. We want to find λ ∈ K, v ∈ Kn such that

Av = λv ⇐⇒ (A− λI︸ ︷︷ ︸
∈Kn×n

)v = 0

If (A−λI) is invertible, then v = 0. So the interesting case is when (A−λI)
not invertible.

(A− λI) not invertible ⇐⇒ det(A− λI) = 0

This determinant is called the characteristic polynomial. This polynomial
has degree n, and the eigenvalues are the roots of that polynomial. So let λ
be an eigenvalue of A, then

(A− λI)v = 0

is a linear equation system for the components of v.

Example 3.69. Let

A =

(
0 1
−1 0

)
∈ C2×2
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The characteristic polynomial is

det(A− λI) =

∣∣∣∣−λ 1
−1 −λ

∣∣∣∣ = λ2 + 1

Its roots are

λ1 = i λ2 = −i

To find the eigenvector belonging to λ1, we declare v1 = (x, y) ∈ C2 and
solve the linear equation system

(A− λ1I)v1 = 0 −ix+ 1y = 0

−1x− iy = 0

It has the solutions x = −i and y = 1, so

v1 =

(
−i
1

)
Doing the same for v2 yields

v2 =

(
i
1

)
It is to be noted that the eigenvectors aren’t unique (multiples of eigenvectors
are also eigenvectors).

Example 3.70. Let D be a diagonal matrix, with the diagonal entries λj .
Then

det(D − λI) =

∣∣∣∣∣∣∣∣∣
λ1 − λ

λ2 − λ
. . .

λn − λ

∣∣∣∣∣∣∣∣∣
The roots (eigenvalues) are λ1, λ2, · · · , λn, and the eigenvectors are Dei =
λiei.

Definition 3.71. A ∈ Kn×n is called diagonalizable if there exists a basis
of Kn that consists of eigenvectors.

Theorem 3.72. A matrix A ∈ Kn×n is diagonalizable, if and only if there
exists a diagonal matrix D and a invertible matrix T such that

D = T−1AT
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Proof. Let e1, e2, · · · , en be the canonical basis of Kn. Define TDT−1 = A,
and let λ1, · · · , λn be the diagonal entries of D. Then we know that

Dei = λiei, ∀i ∈ {1, · · ·n} (3.56)

Since T is invertible, the Te1, · · ·Ten form a basis.

A(Tei) = T (T−1AT )ei = TDei = Tλiei = λi(Tei) (3.57)

Therefore Tei is an eigenvector of A to the eigenvalue λi. Now let v1, · · · , vn
be a basis of Kn and

Avi = λivi, λ1, · · · , λn ∈ Kn (3.58)

Write write v1, · · · , vn as the columns of a matrix, therefore

T = (v1, v2, · · · , vn) (3.59a)

D =

λ1
...
λn

 (3.59b)

So Tei = vi, and thus

A(Tei) = Avi = λivi = λi(Tei) = Tλiei = TDei (3.60)

This means that (AT − TD)ei = 0, ∀i ∈ {1, · · · , n}.

=⇒ AT = TD (3.61)

T is invertible (left as an exercise for the reader), and thus

=⇒ T−1AT = D (3.62)

Example 3.73. (i) Let

A =

(
0 1
−1 0

)
The eigenvalues and eigenvectors are
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A ·
(
−i
1

)
= i

(
−i
1

)
A ·
(
i
1

)
= −i

(
i
1

)
Therefore

T =

(
−i i
1 1

)
which has the inverse

T−1 =
1

2

(
i 1
−i 1

)
Finally,

T−1AT =
1

2

(
i 1
−i 1

)(
1 1
i −i

)
=

1

2

(
2i 0
0 −2i

)
=

(
i 0
0 −i

)
This is a diagonal matrix, therefore A is diagonalizable.

(ii) The matrix (
0 1
0 0

)
is not diagonalizable since its only eigenvector is (1, 0)T .

Remark 3.74. For diagonal matrices the following is true
λ1

λ2

. . .

λ3


k

=


λk1

λk2
. . .

λk3


If T−1AT = D (where D is a diagonal matrix), then

Dk = (T−1AT )k = T−1AT · T−1AT · · · ·︸ ︷︷ ︸
k times

= T−1AkT

=⇒ Ak = TDkT−1

Theorem 3.75. Let A ∈ Rn×n be a symmetric matrix, i.e. A = AT . (Or
if A ∈ Cn×n a self-adjoint matrix A = AH). Then A has an orthonormal
basis consisting of eigenvectors and is diagonalizable.
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Proof. Let λ ∈ C be an eigenvalue of A ∈ Kn×n with eigenvector v ∈ Kn

and A = AH . Then

λ〈v, v〉 = 〈v, λv〉 = 〈v,Av〉 = 〈AHv, v〉 = 〈Av, v〉 = 〈λv, v〉 = λ〈v, v〉 (3.63)

Therefore
(λ− λ) 〈v, v〉︸ ︷︷ ︸

0

= 0 (3.64)

=⇒ (λ− λ) = 0 =⇒ λ = λ =⇒ λ ∈ R (3.65)

Now let λ, ρ ∈ R be eigenvalues to the eigenvectors v, w, and require λ 6= ρ.
Then

ρ〈v, w〉 = 〈v,Aw〉 = 〈Av,w〉 = λ〈v, w〉 = λ〈v, w〉 (3.66)

And thus
(ρ− λ)︸ ︷︷ ︸
6=0

〈v, w〉︸ ︷︷ ︸
=0

= 0 =⇒ v ⊥ w (3.67)



Chapter 4

Real Analysis: Part II

4.1 Limits and Functions

In this chapter we will introduce the notation

Bε(x) = (x− ε, x+ ε)

Definition 4.1. Let D ⊂ R and x ∈ R. x is called a boundary point of D
if

∀ε > 0 : D ∩Bε(x) 6= 0

The set of all boundary points of D is called closure and is denoted as D̄.

Example 4.2. (i) x ∈ D is always a boundary point of D, because

x ∈ D ∩Bε(x)

(ii) Boundary points don’t have to be elements of D. If D = (0, 1), then
0 and 1 are boundary points, because

ε

2
∈ (0, 1) ∩Bε(0) = (−ε, ε) ∀ε > 0

(iii) Let D = Q. Every x ∈ R is a boundary point, because ∀ε > 0, Bε(x)
contains at least one rational number. I.e. Q̄ = R.

Remark 4.3. If x is a boundary point, then

∀ε > 0 ∃y ∈ D : |x− y| < ε

If x is not a boundary point, then

∃ε > 0 ∀y ∈ D : |x− y| ≥ ε

79
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Theorem 4.4.

x ∈ R is a boundary point of D ⊂ R ⇐⇒ ∃ (xn) ⊂ D such that xn → x

Proof. Let x be a boundary point of D. Then

∀n ∈ N ∃xn ∈ D ∩
(
x− 1

n
, x+

1

n

)
(4.1)

The resulting sequence (xn) is in D, and

|x− xn| ≤
1

n
(4.2)

holds. Therefore, xn converges to x. Now let (xn) ⊂ D, with xn → x. This
means

∀ε > 0 ∃N ∈ N : |x− xN | < ε (4.3)

Then
xN ∈ D ∩Bε(x) (4.4)

Since ε is arbitrary, x is a boundary point of D.

Definition 4.5. Let D ⊂ R and f : D → R. Let x0 be a boundary point of
D. We say that f converges to y ∈ R for x→ x0 and write

lim
x→x0

f(x) = y

if
∀ε > 0 ∃δ > 0 : |x− x0| < δ =⇒ |f(x)− f(y)| < ε

Remark 4.6. This definition only makes sense for boundary points x0 of D.
The most imoprtant case is

D = (x0 − a, x0 + a) \ {x0}

Example 4.7. (i) Let a ∈ R

f : R −→ R
x 7−→ ax

Consider a 6= 0: Let ε > 0. We want that

|f(x)− 0| = |a||x|
!
< ε
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Choose δ = ε
|a| . Then we have

|x| = |x− 0| < δ =⇒ |f(x)− 0| = |a||x| < |a|δ = |a| ε
|a|

= ε

Therefore
lim
x→0

f(x) = 0

(ii) Consider

f : R −→ R

x 7−→

{
1, x > 0

−1, x < 0

f doesn’t converge for x → 0. Assume y ∈ R is the limit of x at 0.
This means that there is a δ > 0 such that

|f(x)− y| < 1 if |x| = |x− 0| < δ

Then, for any x ∈ (0, δ) we have

2 = |f(x)− f(−x)| ≤ |f(x)− y|︸ ︷︷ ︸
<1

+ |y − f(−x)|︸ ︷︷ ︸
<1

< 2

which is a contradiction.

Theorem 4.8. Let f : D → R, x0 a boundary point of D and y ∈ R. Then

lim
x→x0

f(x) = y ⇐⇒ ∀ (xn) ⊂ D with xn −→ x0 : lim
n→∞

f(xn) = x0

Proof. Assume that limx→x0 f(x) and that there is (xn) ⊂ D converging to
x. Let ε > 0, then

∃δ > 0 : |x− x0| < δ =⇒ |f(x)− y| < ε (4.5)

Since xn → x0, we know that

∃N ∈ N ∀n > N : |xn − x0| < δ (4.6)

For such n, the epsilon criterion |f(xn)− y| < ε also holds, and thus

f(xn)
n→∞−−−→ y (4.7)
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Now to prove the ”⇐= ” direction, assume that limx→x0 f(x) 6= y, i.e.

∃ε > 0 ∀δ > 0 ∃x ∈ D : |x− x0| < δ ∧ |f(x)− y| ≥ ε (4.8)

Choose ∀x ∈ N one xn such that

|xn − x0| <
1

n
but |f(xn)− y| ≥ ε (4.9)

Then xn → x0, but |f(xn)− y| ≥ ε ∀n ∈ N, so

lim
n→∞

f(xn) 6= y (4.10)

This indirectly proves ”⇐= ”.

Example 4.9. Consider D = R ⊂ {0}, we want to prove

lim
x→0

1

1− x
= 1

So let (xn) ⊂ D with xn → 0. Then

1

1− xn
n→∞−−−→ 1

=⇒ lim
x→0

1

1− x
= 1

However, the limit limx→1 doesn’t exist. Let xn = 1
n +1 with xn → 1. Then

1

1− ( 1
n + 1)

= −n n→∞−−−→ −∞

This doesn’t converge, thus there is no limit.

Corollary 4.10. Let f, g : D → R, x0 a boundary point and y, z ∈ R such
that

lim
x→x0

f(x) = y lim
x→x0

g(x) = z

Then

lim
x→x0

(f(x) + g(x)) = y + z

lim
x→x0

(f(x) · g(x)) = y · z

If z 6= 0, then

lim
x→x0

(
f(x)

g(x)
) =

y

z
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Proof. Here we will only prove the last statement. Let limx→x0 = z 6= 0.
Then

∃δ > 0 ∀x ∈ Bδ(x0) : |g(x)− z| < |z| (4.11)

g doesn’t have any roots on Bδ(x0). Let (xn) ⊂ D ∩Bδ(x0) converge to x0.
According to prerequisites, we have

lim
n→∞

f(xn) = y (4.12a) lim
n→∞

g(xn) = z 6= 0 (4.12b)

Thus

=⇒ lim
n→∞

f(xn)

g(xn)
=
y

z
=⇒ lim

x→x0

f(x)

g(x)
=
y

z
(4.13)

Corollary 4.11 (Squeeze Theorem). Let f, g, h : D → R and x a boundary
point of D. If for y ∈ R

lim
x→x0

f(x) = y = lim
x→x0

h(x)

and
f(x) ≤ g(x) ≤ h(x) ∀x ∈ Bε(x0)

then
lim
x→x0

g(x) = y

Example 4.12. Consider exp(x). We already know that

1 + x ≤ exp(x) ∀x ∈ R

This also implies that

1− x ≤ exp(−x) =
1

exp(x)
∀x ∈ R

So

1 + x ≤ exp(x) ≤ 1

1− x
The limits of these terms are

lim
x→0

(1 + x) = 1 lim
x→0

(
1

1− x

)
= 1

And using the squeeze theorem this results in

lim
x→0

exp(0) = 1
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Definition 4.13. Let f : D → R and x0 a boundary point of D. We say f
diverges to infinity for x→ x0 and write

lim
x→x0

f(x) =∞

if
∀K ∈ (0,∞) ∃δ > 0 : |x− x0| < δ =⇒ f(x) ≥ K

Definition 4.14. Let D ⊂ R be unbounded above. We say f converges for
x→∞ to y ∈ R and write

lim
x→∞

f(x) = y

if
∀ε > 0 ∃K ∈ (0,∞) ∀x > K : |f(x)− y| < ε

Remark 4.15. Let f : D → C and x0 a boundary point of D. Then

lim
x→x0

f(x) = y ∈ C

⇐⇒ lim
x→x0

Re(f(x)) = Re(y) ∧ lim
x→x0

Im(f(x)) = Im(y)

⇐⇒ lim
x→x0

|f(x)− y| = 0

Definition 4.16. Let D ⊂ K, f : D → K and x0 ∈ D. f is called
continuous in x0 if

∀ε > 0 ∃δ > 0 : |x− x0| < δ =⇒ |f(x)− f(x0)| < ε

If f is continuous in every point of D, we call f continuous.
f is called Lipschitz continuous if

∃L ∈ (0,∞) ∀x, y ∈ D : |f(x)− f(y)| ≤ L|x− y|

L is called Lipschitz constant

Remark 4.17. Let f : D → K

f is continuous in x0 ∈ D ⇐⇒ lim
x→x0

f(x) = f(x0)

Example 4.18. We want to show that

f : R −→ R
x 7−→ x2
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is continuous. To do that, let x0 ∈ R, ε > 0. We want

|f(x)− f(x0)| = |x2 − x2
0| = |x− x0||x+ x0|

!
≤ ε

So we choose

δ = min

{
1,

ε

2|x0|+ 1

}
> 0

Then for every x with |x− x0| < δ

|f(x)− f(x0)| = |x− x0||x+ x0| ≤ δ(|x|+ |x0|) ≤ δ(|x0|+ δ + |x0|)

≤ δ(2|x0|+ 1) ≤ ε

2|x0|+ 1
(2|x0|+ 1) = ε

Theorem 4.19. Every Lipschitz continuous function is continuous

Proof. Let f : D → K be a Lipschitz continuous function with Lipschitz
constant L > 0. I.e.

∀x, y ∈ D : |f(x)− f(y)| ≤ L|x− y| (4.14)

Let x0 ∈ R and ε > 0. Choose δ = ε
L . Then |x− x0| < δ implies

|f(x)− f(x0)| ≤ L|x− x0| ≤ L · δ = ε (4.15)

Example 4.20. (i) Consider the constant function x 7→ c, c ∈ K.

|f(x)− f(y)| = |c− c| = 0 ≤ 1 · |x− y|

(ii) Consider the linear function x 7→ cx, c ∈ K.

|f(x)− f(y)| = |cx− cy| = |c||x− y|

These two functions are Lipschitz continuous, and therefore continuous.

(iii) Consider x 7→ Re(x). Then

|Re(x)− Re(y)| = |Re(x− y)| ≤ |x− y|

Analogously this works for Im(x). Both of those are Lipschitz contin-
uous.
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(iv) Lipschitz continuity depends on D. E.g.

f : [0, 1] −→ R
x 7−→ x2

is Lipschitz continuous:

|f(x)− f(y)| = |x− y||x+ y| ≤ 2 · |x− y|

However,

g : R −→ R
x 7−→ x2

is NOT Lipschitz continuous, because

|g(n+ 1)− g(n)|
(n+ 1)− n

= 2n+ 1
n→∞−−−→∞

Remark 4.21. Let f : D → K.

f is continuous in x0 ∈ D
⇐⇒

∀ (xn) ⊂ D with xn → x0 : lim
n→∞

f(xn) = f(x0)

If f, g are continuous in x0, then f + g and f · g are also continuous in x0,
and if g(x0) 6= 0 then f/g is also continuous in x0. Notably, polynomials
are continuous. A rational function (the quotient of two polynomials) is
continuous in all points that are not roots of the denominator.

Theorem 4.22. Let D ⊂ K, and let

f : D −→ K continuous in x0 ∈ D (4.16a)

g : f(D) −→ K continuous in f(x0) (4.16b)

Then g ◦ f is also continuous in x0.

Proof. Let ε > 0. Since g is continuous in f(x0),

∃δ1 > 0 : |y − f(x0)| < δ1 =⇒ |g(y)− g(f(x0))| < ε (4.17)

Since f is continuous in x0,

∃δ2 > 0 : |x− x0| < δ2 =⇒ |f(x)− f(x0)| < δ1 (4.18)
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For such x the following holds

|(g ◦ f)(x)− (g ◦ f)(x0)| = |g(f(x))− g(f(x0))| < ε (4.19)

which implies that g ◦ f is continuous in x0.

Example 4.23. Consider the following mappings

f : R −→ R, x 7−→ |x|

g : R −→ R \ {−1} , y 7−→ 1− y
1 + y

h : R −→ R, x 7−→ 1− |x|
1 + |x|

It is clear that h = g◦f . Since f , g are continuous, hmust also be continuous.

Example 4.24. The functions exp, sin and cos are continuous. We know that

lim
h→0

exp(k)− 1

h
= 1

From this follows that

lim
h→0

exp(k) = exp(0) = 0

Thus, exp is continuous in 0. Let x0 ∈ R, then

lim
x→x0

exp(x) = lim
h→0

exp(x0 + h) = lim
h→0

exp(x0) exp(h)

= exp(x0)− lim
h→0

exp(h) = exp{x0}

Now, consider the function x 7→ exp(ix). For x0 ∈ R

| exp(i(x0 + h))︸ ︷︷ ︸
exp(ix0) ˙exp(ih)

− exp(ih0)| = | exp(ix0)|︸ ︷︷ ︸
1

| exp(ih)− 1|

≤ 1 ·

∣∣∣∣∣
∞∑
k=0

(ih)k

k!
− 1

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
k=1

(ih)k

k!

∣∣∣∣∣
≤
∞∑
k=1

∣∣∣∣(ih)k

k!

∣∣∣∣
=

∞∑
k=1

|h|k

k!
=
∞∑
k=0

|h|k

k!
− 1 = exp(|h|)− 1
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For h→ 0, the absolute function converges |h| → 0, and therefore

limh0| exp(i(x0 + h))− exp(ix)| = 0

due to the squeeze theorem. I.e., x 7→ exp(ix) is also continuous. Thus

cosx = Re(exp(ix)) sinx = Im(exp(ix))

are also continuous due to the concatination of continuous functions.

Lemma 4.25. Let a, b ∈ R with a < b, and let

f : [a, b] −→ R

be a continuous function. Furthermore, let y ∈ R. Now if the set

{x ∈ [a, b] | f(x) ≥ y}

is non-empty, it has a smallest element.

Proof. Let M be non-empty. Set x0 = inf {M}. Then it is to be shown that
x0 ∈ M , or that f(x0) ≥ y. There exists a sequence (xn) ⊂ M such that
xn → x0. Because of the continuity of f ,

f(x0) = f( lim
n→∞

xn) = lim
n→∞

f(xn) ≥ y (4.20)

holds, thus x0 ∈M .

Theorem 4.26 (Extreme value theorem). Let a, b ∈ R with a < b, and let
f : [a, b]→ R continuous. Then the function f attains a maximum, i.e.

∃x0 ∈ [a, b] ∀x ∈ [a, b] : f(x) ≤ f(x0)

Proof. First we show that f is bounded. Assume f is unbounded above, i.e.

{x ∈ [a, b] | f(x) ≥ n} =: Mn, n ∈ N (4.21)

According to the last lemma, every Mn has a smallest element xn. The
sequence (xn)n∈N is monotonically increasing (Mn+1 ⊂ Mn) and bounded
above by b. Thus, xn converges to some x0 ∈ [a, b]. Now consider the
sequence (f(xn))n∈N. By definition

lim
n→∞

f(xn) ≥ lim
n→∞

n =∞ (4.22)
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And since f is continuous, limn→∞ f(xn) = f(x0) must hold. This contra-
dicts the assumption, so f is bounded.

Now set
y = sup {f(x) |x ∈ [a, b]} (4.23)

In case f is equal to y everywhere, there is nothing to show. So assume
that there are values for which f 6= y. According to the definition of the
supremum, the sets {

x ∈ [a, b]

∣∣∣∣ f(x) ≥ y − 1

n

}
(4.24)

are non-empty for all n ∈ N, and thus they have a smallest element xn. The
sequence (xn)n∈N is monotonically increasing and bounded, i.e. it converges
to x0 ∈ [a, b]. Therefore

y ≥ f(x0) = lim
n→∞

f(xn) ≥ lim
n→∞

y − 1

n
= y (4.25)

From this follows

f(x0) = y =⇒ f(x0) upper bound of {f(x) |x ∈ [a, b]} (4.26)

Theorem 4.27 (Intermediate value theorem). Let a, b ∈ R with a < b, and
f : [a, b]→ R a continuous function with f(a) < f(b).

y ∈ (f(a), f(b)) =⇒ ∃x0 ∈ (a, b) : f(x0) = y

Proof. Without proof.

Example 4.28. cos has in [0, 2] exactly one root. Consider the definition

cosx =
∞∑
k=0

(−1)kx2k

(2k)!

We know that cos 0 = 1. Furthermore we can show that

−1 = 1− 22

2!︸ ︷︷ ︸
2nd partial sum

≤ cos(2) ≤ 1− 22

2!
+

24

4!︸ ︷︷ ︸
3rd partial sum

< 0
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The intermediate value theorem tells us that there exists a root in [0, 2].
Now we need to show that cos is strictly monotonically decreasing on [0, 2].
Choose z ∈ [0, 2]. Then

z ≤ sin z ≤ z − z3

3!

The addition theorem tells us that

cos(x)− cos(y) = −2 sin

(
x+ y

2

)
sin

(
x− y

2

)
< 0

for x, y ∈ (0, 2] and x > y. Thus cos is strictly monotonically decreasing on
[0, 2].

Corollary 4.29. Let I be an interval and f : I → R continuous. Then f(I)
is also an interval.

Proof. Left as an exercise for the reader.

Theorem 4.30. Let I be an interval, f : I → R continuous. If f is strictly
monotonically increasing, then the inverse function f−1 : f(I) → I exists
and is continuous.

Heuristic Proof. f(I) is an interval, and f is injective. This is because if
f(x) = f(x̃), then x = x̃ or else f wouldn’t be strictly monotonic. This
means

∃g : f(I) −→ R : f(x) = y ⇐⇒ g(y) = x (4.27)

Let y0 ∈ f(I) and ε > 0. We require that x0 is not a boundary point of I.
Then choose 0 < ε̃ < ε such that (x0 − ε̃, x0 + ˜epsilon) ∈ I. Choose

δ = min

f(x0 + ε̃)− y0︸ ︷︷ ︸
>0

, y0 − f(x0 − ε̃)︸ ︷︷ ︸
>0

 > 0 (4.28)

If y ∈ f(I) with |y − y0| < δ then

f(xo − ˜epsilon) ≤ x0 − δ < y < y0 + δ ≤ f(x0 + ε̃) (4.29)

From the strict monotony of g we can conclude

x0 − ˜epsilon < g(y) < x0 + ε̃ (4.30)

so
|g(y)− g(y0)| = |g(y)− x0| < ε̃ < ε (4.31)



4.2. DIFFERENTIAL CALCULUS 91

Thus, g is continuous in y0. Since y0 ∈ f(I) was chose arbitrarily, all of g is
continuous. To prove the monotony of g, assume y < ỹ and g(y) ≥ g(ỹ) for
y, ỹ ∈ f(I). From the monotony of f we know that

y ≥ ỹ (4.32)

which is a contradiction, so g is strictly monotonic.

Example 4.31. (i) Let n ∈ N and consider

f : [0,∞) −→ R
x 7−→ xn

f is continuous and strictly monotonically increasing. Thus the inverse
function

n
√
· : [0,∞) −→ R+

is also continuous.

(ii) Consider exp : R→ R. It’s clear that exp(R) = (0,∞), so the mapping

ln : (0,∞)→ R

is continuous and strictly monotonically increasing.

(iii) Equal arguments can be made for the trigonometric functions.

4.2 Differential Calculus

Definition 4.32. Let I be an open interval ((a, b), a < b, a, b =∞ possible).
Let f : I → K and x ∈ I. f is called differentiable in x if

f ′(x) = lim
h→0

f(x+ h)− f(x)

h︸ ︷︷ ︸
Difference quotient

exists. f ′(x) is called the differential quotient, or derivative of f in x. f is
called differentiable if it is differentiable in every x.

Example 4.33. (i) Let f(x) = c with c ∈ K be a constant function

f ′(x) = lim
h→0

c− c
h

= 0
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(ii) For n ∈ N consider f : R→ R x 7→ xn

f ′(x) = lim
h→0

(x+ h)n − xn

h
= lim

h→0

n∑
k=0

(
n

k

)
hk−1xk−1 = nxn−1

(iii) Consider the exponential function

f ′(x) = lim
h→0

exp(x+ h)− exp(x)

h
= lim

h→0
exp(x)

exp(h)− 1

h
= exp(x)

Theorem 4.34. Let f : I → K be differentiable in x. Then f is also
continuous in x.

Proof. Let f be continuous in x. Then

lim
h→0

(f(x+ h)− f(x)) = 0 (4.33)

Assume f to be uncontinuous in x. This means that

∃ε > 0 ∀δ > 0 ∃h ∈ (−δ, δ) : |f(x+ h)− f(x)| ≥ ε (4.34)

In particular, for every n there exists an hn ∈
(−1
n ,

1
n

)
⊂ {0}, such that

|f(x+ hn)− f(x)| ≥ ε (4.35)

hn is a null sequence and∣∣∣∣f(x+ hn)− f(x)

hn

∣∣∣∣ ≥ ε
1
n

= n · ε −→∞ (4.36)

So the above term doesn’t converge, thus

f(x+ h)− f(x)

h
−→∞ (4.37)

Therefore, f isn’t differentiable in x.

Remark 4.35. The inverse is not true.

Theorem 4.36. Let I be an open interval and f, g : I → K differentiable
in x ∈ I. Then f + g and f · g are differentiable too, and if g(x) 6= 0 then
f/g is also differentiable.

(f + g)′(x) = f ′(x) + g′(x)

(f · g)′(x) = f ′(x)g(x) + f(x)g′(x)(
1

g

)′
(x) =

−g′(x)

g(x)2
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Proof. Left as an exercise for the reader.

Theorem 4.37 (Chain rule). Let I, J be open intervals, and let

g : J −→ I f : i −→ K

g and f are to be differentiable in x and f(x) respectively. Then f ◦ g is
differentiable in x and

(f ◦ g)′ = g′(x) · f ′(g(x))

Proof. Consider the following function

φ : J −→ K φ(ξ) =

{
f(g(x)+ξ)−f(g(x))

ξ , ξ 6= 0

f ′(g(x)), ξ = 0
(4.38)

ξ is continuous, since f is continuous and

lim
ξ→0

φ(ξ) = f ′(g(x)) = φ(0) (4.39)

∀ξ ∈ J the following holds

f(g(x) + ξ)− f(g(x)) = φ(ξ) · ξ (4.40)

With this we can now show that

f(g(x+ h))− f(g(x))

h
=
f(g(x) + (g(x+ h)− g(x)))− f(g(x))

h

=
φ(g(x+ h)− g(x))(g(x+ h)− g(x))

h

= φ(g(x+ h)− g(x))︸ ︷︷ ︸
h→0−−−→0

· g(x+ h)− g(x)

h︸ ︷︷ ︸
h→0−−−→g′(x)

h→0−−−→ g′(x) · f ′(g(x))

(4.41)

Definition 4.38. Let I be an interval and f : I → R. x0 ∈ I is called a
global maximum if

f(x) ≤ f(x0) ∀x ∈ I
x0 ∈ I is called a local maximum if

∃ε > 0 : f(x) ≤ f(x0) ∀x ∈ (x0 − ε, x0 + ε)

An extremum is either maximum or minimum.
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Example 4.39. (i) Let f : [−1, 1]→ R, f(x) = x2.

� x0 = 0 is a local and global minimum

� x0 = ±1 is a local and global maximum

(ii) Consider

f : R −→ R

x 7−→ cosx+
x

2

f has infinitely many local extrema, but no global ones!

x

y

f(x)

(iii) Consider

f : R −→ R

x 7−→

{
1, x rational

0, x irrational

� x0 rational is a global maximum

� x0 irrational is a global minimum
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Theorem 4.40. Let I be an open interval, and f : IRR a function with a
local extremum at x0 ∈ I. Then

f differentiable in x0 =⇒ f ′(x0) = 0

Proof. Assume f ′(x0) 6= 0 (w.l.o.g. f ′(x0) > 0, otherwise consider −f).
Then

∃δ > 0 :

∣∣∣∣f(x0 + h)− f(x)

h
− f ′(x0)

∣∣∣∣ < f ′(x0) ∀h ∈ (−δ, δ) (4.42)

Especially

0 <
f(x0 + h)− f(x0)

h
∀h ∈ (−δ, δ) (4.43)

For h > 0 this means f(x0 + h) > f(x0). And for h < 0 this means that
f(x0 + h) < f(x0). Thus x0 is not an extremum.

Remark 4.41. Let f : I → R be differentiable. To find the extrema of f ,
calculate f ′ and find its roots. However, the roots are to be insepcted more
closely, as f ′(x0) = 0 is not a sufficient criterion (The function could have
inflection points or behave badly at the boundaries of I).

Theorem 4.42 (Mean value theorem). Let a, b ∈ R with a < b, and let
f, g : [a, b]→ R be differentiable. Then ∃ξ ∈ (a, b) such that

(f(b)− f(a))g′(ξ) = f ′(ξ)(g(b)− g(a))

a ξ b

f(a)

f(b)

g(x)

f(x)
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Proof. Consider all

h(x) = (f(b)− f(a))g(x)− f(x)(g(b)− f(a)) (4.44)

h is differentiable, which means h is continuous on [a, b]:

h(a) = f(b)g(a)− f(a)g(b) = h(b) (4.45)

We need to show that h′ has a root in [a, b]. If h is constant, this is trivial.
So we assume ∃x ∈ (a, b) such that h(x) > h(a). Since h is continuous on
(a, b) there exists a global maximum x0 ∈ [a, b] with x0 6= a and x0 6= b.
This implies that h′(x0) = 0. If h(x) < h(a) the same argument can be
made.

Remark 4.43. This theorem is often written as

f(b)− f(a)

g(b)− g(a)
=
f ′(ξ)

g′(ξ)

And if g(x) = x
f(b)− f(a)

b− a
= f ′(ξ)

Corollary 4.44. Let I be an open interval and f : I → R differentiable.
Then

(i) f ′(I) ⊂ [0,∞) ⇐⇒ monotonically increasing

(ii) f ′(I) ⊂ (0,∞) =⇒ strictly monotonically increasing

(iii) f ′(I) ⊂ (−∞, 0] ⇐⇒ monotonically decreasing

(iv) f ′(I) ⊂ (−∞, 0) =⇒ striuctly monotonically decreasing

Proof. We will only show the ” =⇒ ” direction for (i). Assume f isn’t
monotonically increasing, then ∃x, y ∈ I such that x < y but f(x) > f(y).
The mean value theorem thus states, ∃ξ ∈ (x, y) such that

f ′(ξ) =
f(y)− f(x)

y − x
< 0 (4.46)

All other statements are proven in the same fashion.

Example 4.45. f strictly monotonically increasing does NOT imply that
f ′(I) ⊂ (0,∞). Consider f(x) = x3.
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Corollary 4.46 (L’Hôpital’s rule). Let a, b, x0 ∈ R, with a < x0 < b and let
f, g : (a, b)→ R be a differentiable function. We require f(x0) = g(x0) = 0.
If g′(x) 6= 0 ∀x ∈ I \ {x0} and if

lim
x→x0

f ′(x)

g′(x)

exists, then

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)

Proof. Between two roots of g there must be at least one root of g′. I.e.
g(x) 6= 0 ∀x ∈ I \ {x0}. This means, that

∀x ∈ (a, x0) ∃ξx :
f(x)

g(x)
=
f(x)− f(x0)

g(x)− g(x0)
=
f ′(ξx)

g′(ξx)
=⇒ lim

x→x0

f ′(x)

g′(x)
(4.47)

Since ξx ∈ (x, x0)

ξx
x→x0−−−→ x0 (4.48)

For the limit from the left, this implies

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)
(4.49)

This argument can be made for the limit from the right as well.

Remark 4.47. (i) For the computation of the limit it is enough to consider
f and g on (x0 − δ, x0 + δ) with δ > 0.

(ii) L’Hôpital’s rule also works for one-sided limits

(iii) Let f, g : (a, b) \ {x0} → R be differentiable. Then it is enough to
require

lim
x→x0

f(x) = lim
x→x0

g(x) = 0

(iv) L’Hôpital’s rule doesn’t generally apply to complex valued functions.

(v) By substituring f̃(x) = f
(

1
x

)
and g̃(x) = g

(
1
x

)
we can also use

lim
x→∞

f̃(x)

g̃(x)
= lim

x→∞

f̃ ′(x)

g̃′(x)
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(vi) The inverse

L = lim
x→x0

f(x)

g(x)
=⇒ lim

x→0

f ′(x)

g′(x)
= L

is NOT true.

Example 4.48. Consider

lim
x→0

x2

1− cosx
=

“0

0

”

The functions here are

f(x) = x2 g(x) = 1− cosx

with the derivatives

f ′(x) = 2x g′(x) = sinx

However, the limit of the derivatives is still

lim
x→0

2x

sinx
=

“0

0

”

We can derive the functions again

f ′′(x) = 2 g′′(x) = cosx

And thus

lim
x→0

2

cosx
= 2 =⇒ lim

x→0

x2

1− cosx
= 2

Theorem 4.49 (Derivative of inverse functions). Let I be an open inverval,
and f : I → R differentiable with f ′(I) ⊂ (0,∞). Then f has a differentiable
inverse function f−1(x) : f(I)→ R and for y ∈ f(I) we have(

f−1
)′

(y) =
1

f ′ (f−1(y))

Proof. f is strictly monotonically increasing, thus f−1 exists and is contin-
uous. Let y ∈ f(I), x := f−1(y) and

ξ(h) = f−1(y + h)− f−1(y)︸ ︷︷ ︸
x

(4.50)

Then

x+ ξ(h) = f−1(y + h) =⇒ f(x+ ξ(h)) = y + h = f(x) + h (4.51)
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Which in turn implies

f(x+ ξ(h))− f(x) = h (4.52)

Now we have

f−1(y + h)− f−1(y)

h
=

ξ(h)

f(x+ ξ(h))− f(x)

=

(
f(x+ ξ(h))− f(x)

ξ(h)

)−1

h→0−−−→
(
f ′(x)

)−1
=

1

f ′(f−1(y))
> 0

(4.53)

Example 4.50. (i) Let n ∈ N and consider

f : (0,∞) −→ R
x 7−→ xn

The derivative is f ′(x) = nxn−1. The inverse function is

g(y) = n
√
y g′(y) =

1

f ′(g(y))
=

1

n
(
n
√
y
)n−1 =

1

n
· y( 1

n
−1)

(ii) The natural logarithm. Let f(x)0 expx and g(y) = ln y. Then

(ln y)′ =
1

exp(ln(y))
=

1

y

(iii) Let f(x) = x3. Then

f−1(y) =

{
3
√
y, y ≥ 0

− 3
√
y, y < 0

f−1 is not differentiable in y = 0.

Definition 4.51. Let I be an open interval. f : I → R is said to be
(n+ 1)-times differentiable if the n-th derivative of f (f (n)) is differentiable.

f is said to be infinitely differentiable (or smooth) if f is n times differ-
entiable for all n ∈ N.

f is said to be n times continuously differentiable if the n-th derivative
f (n) is continuous.
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Definition 4.52. Let I be an open interval, and f : I → R n times differ-
entiable in x ∈ I. Then

Tnf(y) =
n∑
k=0

f (k)(x)

k!
(y − x)k

is called the Taylor polynomial of n-th degree at x of f .

Theorem 4.53 (Taylor’s theorem). Let I be an open interval and f : I →
R an (n + 1)-times differentiable function. Let x ∈ I and h : I → R
differentiable. For every y ∈ I, there exists a ξ between x and y such that

(f(y)− Tnf(y)) · h′(ξ) =
f (n+1)(ξ)

n!
(y − ξ)n(h(y)− h(x))

Proof. Let

g : I −→ R

t 7−→
n∑
k=0

f (k)(t)

k!
(y − t)k

(4.54)

Apply the mean value theorem to g and h to get

g′(ξ)(h(y)− h(x)) = (g(y)− g(x))h′(ξ) = (f(y)− Tnf(y))h′(ξ) (4.55)

and thus

g′(t) =

n∑
k=0

(
f (k+1)(t)

k!
(y − t)k − f (k)(t)

k!
k(y − t)k−1

)
︸ ︷︷ ︸

Telescoping series

=
fn+1(t)

n!
(y − t)n

(4.56)

By inserting ξ we receive the desired equation.

Remark 4.54. (i) This is useful for when h′(ξ) 6= 0

(ii) The choice of h can yield different errors

Rn+1(y, x) := f(y)− Tnf(y)

(iii) The Langrange error bound is for h(t) = (y − t)n+1:

Rn+1(y, x) =
f (n+1)(ξ)

(n+ 1)!
(y − x)n+1
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(iv) This theorem makes no statement about Taylor series.

Corollary 4.55. Let (a, b) ⊂ R and f : (a, b) → R a n-times continuously
differentuable function with

0 = f ′(x) = f ′′(x) = · · · = f (n−1)(x)

and f (n) 6= 0. If n is odd, then there is no local extremum in x. If n is even
then

f (n)(x) > 0 =⇒ x is a local maximum

f (n)(x) < 0 =⇒ x is a local minimum

Proof. W.l.o.g. f (n) > 0. We will use the Taylor series with Lagrange
error bound. According to prerequisites, f (n) is continuous, i.e. ∃ε > 0
such that f (n)(ξ) > 0 on (x − ε, x + ε). The Taylor formula tells us, that
∀y ∈ (x− ε, x+ ε) ∃ξy ∈ (x− ε, x+ ε) such that

f(y)− Tn−1(f(y)) = f(y)− f(x) =
f (n)(ξy)

n!
(y − x)n (4.57)

For n odd, f(y)− f(x) assumes positive and negative values in every neigh-
bourhood of x. If n is even then f(y) − f(x) cannot be negative, thus x is
a local minimum.



Chapter 5

Topology in Metric spaces

5.1 Metric and Normed spaces

Definition 5.1 (Metric space). A metric space (X, d) is an ordered pair
consisting of a set X and a mapping

d : X ×X −→ [0,∞]

called metric. This mapping must fulfil the following conditions ∀x, y, z ∈ X:

� d(x, y) ≥ 0 (Positivity)

� d(x, y) = 0 ⇐⇒ x = y (Definedness)

� d(x, y) = d(y, x) (Symmetry)

� d(x, y) ≤ d(x, z) + d(z, y) (Triangle inequality)

Example 5.2. (i) Let M be a set. Then

d(x, y) =

{
1, x 6= y

0, else

is called the discrete metric.

(ii) Let X be the set of edges of a graph.

d(x, y) := Minimum amount of edges that have

to be passed to get from x to y

102
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1

2

3

x

y

(iii) Let X be the surface of a sphere.

d(x, y) := ”Bee line”

(iv) Let X be the set of points of the European street network.

d(x, y) := Shortest route along this network

(v) Let (X, dX), (Y, dY ) be metric spaces. Then

dX×Y ((x1, y1), (x2, y2)) := dX(x1, x2) + dY (y1, y2)

defines a metric on X × Y .

Definition 5.3 (Normed space). (V, ‖·‖) is said to be a normed space if V
is a vector space and

‖·‖ : V −→ [0,∞)

is a mapping (called norm) with the following properties

� ‖x‖ ≥ 0 (Positivity)

� ‖x‖ = 0 ⇐⇒ x = 0 (Definedness)

� ‖λx‖ = |λ|‖x‖

� ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (Triangle inequality)

To every norm belongs a unique induced metric

d(x, y) = ‖x− y‖
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Example 5.4 (Rn with Euclidian norm).

‖·‖ : Rn −→ [0,∞)

(x1, x2, · · · , xn) 7−→
√
x2

1 + x2
2 + · · ·+ x2

n

Then (Rn, ‖·‖) is a normed space.

Example 5.5. (i) (x1, x2, · · · , xn) 7→ |x1|+ |x2|+ · · ·+ |xn| is also a norm
on Rn.

(ii) On
V = {f : [0, 1] −→ R | f continuous}

we can define the supremum norm

‖f‖∞ = sup {|f(x)| |x ∈ [0, 1]}

(iii) We can define sequence spaces as

`p =

{
(xn) ⊂ Cn

∣∣∣∣∣
∞∑
n=1

|xn|p <∞

}

with the norm

‖(xn)‖p :=

√√√√ ∞∑
n=1

|xn|2

A special space is `2, called Hilbert space

Remark 5.6. The Minkowski metric is not a metric in this sense.

Definition 5.7 (Balls and Boundedness). Let (X, d) be a metric space, and
x ∈ X, r > 0. We then define

Br(x) = {y ∈ X | d(x, y) < r} Open ball

Kr(x) = {y ∈ X | d(x, y) ≤ r} Closed ball

A subset M ⊂ X is called bounded if

∃x ∈ X, r > 0 : M ⊂ Br(x)
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5.2 Sequences, Series and Limits

Definition 5.8 (Sequences and Convergence). Let (X, d) be a metric space.
A sequence is a mapping N→ X. We write (xn)n∈N or (xn).

The sequence (xn) is said to be convergent to x ∈ X if

∀ε > 0 ∃N ∈ N ∀n ≥ N : d(xn, x) < ε

x is said to be the limit, and sequences that aren’t convergent are called
divergent.

Remark 5.9. On R the metric is the Euclidian metric | · |, therefore this new
definition of convergence is merely a generalization of the old one.

Theorem 5.10. Let (xn) be a sequence in the metric space (X, d) and x ∈
X. Then the following statements are equivalent:

(i) (xn) converges to x

(ii) ∀ε > 0 Bε(x) contains all but finitely many elements of the sequence
(almost every (a.e.) element)

(iii) (d(x, xn)) is a null sequence

Proof. (ii) is merely a reformulation of (i), and (ii) ⇐⇒ (iii) follows from

d(xn, x) = |d(xn, x)− 0| (5.1)

Theorem 5.11. Let
(
x(n)

)
= (x

(n)
1 , x

(n)
2 , · · · , x(n)

d ) ⊂ Rd and

x = (x1, · · · , xd) ∈ Rd(
x(n)

)
is said to converge to x if and only if x

(n)
i converges to xi for all i in

{1, · · · , d}

Proof. For y = (y1, · · · , yd) ∈ Rd we have

‖yi‖ < ‖y‖ ∀i ∈ {1, · · · , d} (5.2)

If
(
x(n)

)
converges to x, then∣∣∣x(n)

i − xi
∣∣∣ ≤ ∥∥∥x(n) − x

∥∥∥ −−−→ 0 (5.3)
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If (x
(n)
i ) converges to xi ∀i ∈ {1, · · · d}, then

∀ε > 0 ∃N ∈ N ∀n > N :
∣∣∣x(n)
i − xi

∣∣∣ < ε√
d
∀i ∈ {1, · · · d} (5.4)

Thus∥∥∥x(n) − x
∥∥∥ =

√
(x

(n)
1 − x1)2 + (x

(n)
2 − x2)2 + · · ·+ (x

(n)
d − xd)2

≤
√
ε2

d
+
ε2

d
+ · · ·+ ε

2

= ε

(5.5)

So
(
x(n)

)
converges to x.

Theorem 5.12. Every convergent sequence has exactly one limit and is
bounded.

Proof. Assume that x, y are limits of (xn) with x 6= y. Then d(x, y) > 0.
There exists N1, N2 ∈ N, such that

d(xn, x) <
d(x, y)

2
∀n ≥ N1 (5.6a)

d(xn, x) <
d(x, y)

2
∀n ≥ N2 (5.6b)

From this follows that

d(x, y) ≤ d(x, xn) + d(xn, y) < d(x, y) ∀max {N1, N2} (5.7)

which is a contradiction, thus sequences can have only one limit.
Now if (xn) converges to x, then

∃N ∈ N ∀n ≥ N : d(xn, x) < 1 (5.8)

Then
d(xn, x) ≤ max {d(x1, x), d(x2, x), · · · , d(xN−1, x), 1} (5.9)

Theorem 5.13. Let (V, ‖·‖) be a normed space over K. Let (xn) , (yn) ⊂ V
be sequences with limits x, y ∈ V and (λn) ⊂ K a sequence with limit λ ∈ K.
Then

xn + yn −→ x+ y λnxn −→ λx
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Proof. Left as an exercise for the reader.

Definition 5.14 (Cauchy sequences and completeness). A sequence (xn) in
a metric space (X, d) is called Cauchy sequence if

∀ε > 0 ∃N ∈ N : d(xn, xm) < ε ∀m,n ≥ N

A metric space is complete if every Cauchy sequence converges. A complete
normed space is called Banach space.

Example 5.15.

(R, |·|) and (C, |·|) are complete

(Q, |·|) is not complete

Theorem 5.16. Every convering series is a Cauchy sequence

Proof. Let (xn) −−−→ x. This means that

∀ε > 0 εN ∈ N : d(xn, x) <
ε

2
∀n ≥ N (5.10)

Then
d(xn, xm) ≤ d(xn, x) + d(x, xm) < ε ∀m,n ≥ N (5.11)

Theorem 5.17. Rn with the Euclidian norm is complete.

Proof. Let
(
x(n)

)
⊂ Rn be a Cauchy sequence. We know that

∀y ∈ Rn : |yi| ≤ ‖y‖ ∀i ∈ {1, · · · , n} (5.12)

We also know that (x
(n)
i ) are Cauchy sequences because∣∣∣(x(n)

i − x
m
i )
∣∣∣ ≤ ∥∥∥x(n) − x(m)

∥∥∥ ∀i ∈ {1, . . . , n} (5.13)

Thus x
(n)
i −−−→ xi and therefore

(
x(n)

)
−−−→ x.

Definition 5.18 (Series and (absolute) convergence). Let (V, ‖·‖) be a
normed space and (xn) ⊂ V . The series

∞∑
k=1

xk
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is the sequence of partial sums

sn =

n∑
k=1

xk

If the series converges then
∑∞

k=1 xk also denotes the limit. The series is
said to absolutely convergent if

∞∑
k=1

‖xk‖ <∞

Theorem 5.19. In Banach spaces every absolutely convergent series is con-
vergent.

Proof. Let (V, ‖·‖), (xn) ⊂ V and require
∑∞

n=1(V, ‖·‖)xn < ∞. We need
to show that sn =

∑n
k=1 xk is a Cauchy sequence. Let ε > 0 and tn =∑n

k=1 ‖xk‖. (tn) is convergent in R, and thus a Cauchy sequence. I.e.

∃N ∈ N : |tn − t| < ε ∀m,n ≥ N (5.14)

For n > m > N :

‖sn − sm‖ =

∥∥∥∥∥
n∑

k=m+1

xk

∥∥∥∥∥ ≤
n∑

k=m+1

‖xk‖ = tn − tm = |tn − tm| < ε (5.15)

Theorem 5.20. Let (V, ‖·‖) be a Banach space,
∑∞

k=1 xk absolutely conver-
gent and let σ : N→ N be a bijective mapping. Then

∞∑
k=1

xk =
∞∑
k=1

xσ(k)

Proof. Analogous to Theorem 2.55

5.3 Open and Closed Sets

Definition 5.21 (Inner points and Boundary points). Let (X, d) be a metric
space, A ⊂ X and x ∈ X.

(i) x is said to be an inner point of A, if

∃ε > 0 : Bε(x) ⊂ A
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(ii) x is said to be a boundary point of A if

∀ε > 0 : Bε(x) ∩A 6= ∅︸ ︷︷ ︸
Bε(x) contains
points from A

∧Bε(x) ∩ (X \A) 6= ∅︸ ︷︷ ︸
Bε(x) contains points

from outside of A

(iii) The set
{x ∈ X |x is inner point of A}

is called the interior of A, and is denoted as Å.

(iv) The set
{x ∈ X |x is boundary point ofA}

is called the boundary of A, and is denoted as ∂A.

(v) A ∪ ∂A is said to be the closure of A, and is denoted as Ā.

X

A

x

Bε(x)

x

Example 5.22. Consider X = R2. Then

A = {(x, y) ∈ R | 0 ≤ y < 1}
Å =

{
(x, y) ∈ R2

∣∣ 0 ≤ y < 1
}

∂A =
{

(x, y) ∈ R2
∣∣ y = 1 ∨ y = 0

}
Ā =

{
(x, y) ∈ R2

∣∣ 0 ≤ y ≤ 1
}

Remark 5.23. (i) Å ⊂ A
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(ii) Boundary points of A can be elements of A or not.

(iii) A ⊂ Å ∪ ∂A, Å ∩ ∂A = ∅

(iv) ∂A = ∂X \A

Theorem 5.24. Let (X, d) be a metric space, A ⊂ X and x an interior
point or boundary point of A. Then

∃ (xn) ⊂ A : xn −−−→ x

Proof. If x ∈ A then this is trivial, so let x /∈ A. Then

∀n ∈ N ∃xn ∈
(
B 1
n

(x) ∩A 6= ∅
)

(5.16)

We need to show that (xn) converges to x.

∀ε > 0 εN ∈ N :
1

N
< ε (5.17)

For n ≥ N we have
1

n
≤ 1

N
< ε (5.18)

and thus

d(xn, x) <
1

n
< ε (5.19)

Definition 5.25 (Open and Closed sets). Let (X, d) be a metric space.
A ⊂ X is said to be

(i) open, if every point in A is an interior point

(ii) closed, if A contains all its boundary point

(iii) neighbourhood of x ∈ A, if x is an interiot point of A

Theorem 5.26. Let (X, d) be a metric space and A ⊂ X.

A open ⇐⇒ X \A closed
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Proof.

A open ⇐⇒ ∀x ∈ A : x ∈ Å (5.20a)

⇐⇒ ∀x ∈ A : x ∈ ∂A (5.20b)

⇐⇒ X \A contains all boundary point of A (5.20c)

⇐⇒ X \A contains all boundary points of X \A (5.20d)

⇐⇒ X \A closed (5.20e)

Remark 5.27. That doesn’t mean A has to be either open and closed.

Example 5.28. Let (X, d) be a metric space, x ∈ X and r > 0. Then

Br(x) = {y ∈ X | d(x, y) < r} is open

Kr(x) = {y ∈ X | d(x, y) < r} is closed

Remark 5.29. Consider the special case a, b ∈ R with a < b

(a, b) = B b−a
2

(
a+ b

2

)
open

[a, b] = K b−a
2

(
a+ b

2

)
closed

Theorem 5.30. Let (X, d) be a metric space and A ⊂ X.

A closed ⇐⇒ ∀ (xn) ⊂ A convergent : lim
n→∞

xn ∈ A

Proof. Assume A is closed. Let (xn) ⊂ A be convergent to x. then

∀ε > 0 ∃N ∈ N : xn ∈ Bε(x) ∀n ≥ N (5.21)

This means that every ε-ball around x contains at least one point from A.
I.e. x is always a point (or a boundary point) of A. From A closed follows
x ∈ A.

Now assume x ∈ ∂A. Then

∃ (xn) ⊂ A : (xn) −−−→ x (5.22)

According to the prerequisites, x ∈ A.

Theorem 5.31. Let (X, d) be a metric space, and τ the set of all open
subsets. Then
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(i) ∅ ∈ τ , X ∈ τ

(ii) The union of any number of sets from τ is an open set⋃
t∈τ

t ∈ τ

(iii) The intersection of finitely many sets from τ is an open set⋂
t∈τ

t ∈ τ

Proof. Left as an exercise for the reader.

Remark 5.32. (i) τ is said to be the topology induced by d

(ii) � ∅, X are also closed

� The intersection of any number of closed sets is closed

� The union of finitely many closed sets is closed

(iii) Infinitely many intersections of open sets are not open in general.

Theorem 5.33. Let (X, d) be a metric space and A ⊂ X. Then

Å open =⇒ ∂A, Ā closed

Proof. Let Å be open and x ∈ Å ⊂ A. This means

∃ε > 0 : Bε(x) ⊂ A (5.23)

We have to show that Bε(x) ⊂ Å. Let y ∈ Bε(x). Since Bε(x) is open

∃δ > 0 : Bδ(y) ⊂ Bε(x) ⊂ A (5.24)

This means that y ∈ Bε(x) is interior point A. I.e. ⊂ (x) ⊂ Å, and thus x
is interior point of Å.

Let B = X \A. Then ∂A = ∂B

X = A ∪B = Å ∪ ∂A ∪ B̊ ∪ ∂B = Å ∪ ∂A ∪ B̊ (5.25)

Then

A and B are disjoint =⇒ Å, B̊ disjoint (5.26a)

=⇒ ∂A disjoint to Å, B̊ (5.26b)
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This results in
∂A = X \ (Å ∪ B̊︸ ︷︷ ︸

open

) =⇒ ∂A closed (5.27)

and
Ā = A ∪ ∂A = Å ∪ ∂A = X \ B̊ closed (5.28)

Theorem 5.34. Let (X, d) be a metric space and A ⊂ X⋃
O open
O⊂A

O = Å and
⋂

C closed
A⊂C

C = Ā

Proof. Let Å is open and Å ⊂ A

=⇒
⋃

O⊂A open

⊃ Å (5.29)

Now let O ⊂ A be open and x ∈ O, i.e.

∃ε > 0 : Bε(x) ⊂ O ⊂ A =⇒ x ∈ Å (5.30)

This implies that O ⊂ Å. Since this holds for all open O ⊂ A, this statement
is proven. The other statement follows from the complement.

Theorem 5.35. Let (X, d) be a complete space and A ⊂ X be closed. Then
(A, dA) is complete.

Proof. Left as an exercise for the reader.

Remark 5.36. Topological terms (open, closed, continuous, compact) don’t
just depend on A, but also on X.

Definition 5.37. Let (X, d) be a metric space and x ∈ X.

(i) x is said to be an isolated point if ∃ε > 0 such that Bε(x) = {x}.

(ii) x is said to be a limit point if it’s not an isolated point.

Definition 5.38 (Punctured neighbourhood, Punctured ball). U̇ ⊂ X is
said to be a punctured neighbourhood, if there is a neighbourhood U of x
with U̇ = U \ {x}

A punctured ball is Ḃε(x) = Bε \ {x}.
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Definition 5.39 (Limit of mappings). Let (X, dX), (Y, dY ) and x a limit
point of X. Let U̇ be a punctured neighbourhood of x and f : U̇ → Y .
Then f converges to y ∈ Y in x (y is said to be the limit of f in x), if

∀ε > 0 ∃δ > 0 : f(x̃) ∈ Bε(y) [d(f(x̃), y) < ε]

if x̃ ∈ Ḃε(x) [d(x̃, x) < δ]

Example 5.40. Let f, g : R2 \ {0} → R.

f(x) := ‖x‖2 g(x) :=
1

‖x‖

Then limx→0 f(x) = 0, because for ε > 0 and δ =
√
ε we have

d(x̃, 0) = ‖x̃− 0‖ = x̃ < δ =⇒ d(f(x̃), 0) =
∣∣∣‖x̃‖2 − 0

∣∣∣ = ‖x̃‖2 < ε = δ2

Theorem 5.41.

f converges to y ∈ Y in x ⇐⇒ ∀ (xn) ⊂ X : f(xn)
xn→x−−−→ y

Proof. Let (xn) ⊂ X with xn −−−→ x. Let ε > 0, then

∃δ > 0 : f(x̃) ∈ Bε(y) if x̃ ∈ Bδ(x) (5.31)

Furthermore
∃N ∈ N : xn ∈ Bδ(x) ∀n ≥ N (5.32)

Then
f(xn) ∈ Bε(y) ∀n ≥ N (5.33)

To prove the other direction, assume f doesn’t converge to y in y. This
means

∃ε > 0 : ∃x̃ ∈ Bδ(x) but f(x̃) /∈ Bε(y) ∀δ > 0 (5.34)

Therefore
∀n ∈ N : ∃xn ∈ B 1

n
(x) (5.35)

We know that xn −−−→ x since d(xn, x) < 1
n , but f(xn) doesn’t converge to

y since d(f(xn), y) ≥ ε.

Corollary 5.42. Let (X, d) be a metric space, x ∈ X a limit point and U̇
a punctured neighbourhood of x. Let f, g : U̇ → K with

lim
x̃→x

f(x̃) = y1 lim
x̃→x

g(x̃) = y2
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Then

lim
x̃→x

(f + g)(x̃) = y1 + y2 lim
x̃→x

(f · g)(x̃) = y1 · y2

lim
x̃→x

(
f

g

)
(x̃) =

y1

y2

Heuristic Proof. Draw parallels back to number sequences

5.4 Continuity

X Y
f

x y

Bδ(x) Bε(y)

Definition 5.43. Let (X, dX), (Y, dY ) be metric spaces. f : x → y is said
to be continuous in x ∈ X if

∀ε > 0 ∃δ > 0 : x̃ ∈ Bδ(x) =⇒ f(x̃) ∈ Bε(f(x))

f is said to be continuous is it is continuous in every point.

Example 5.44. (i) Let (X, d) be a metric space.

id : X −→ X

x 7−→ x

is continuous (choose δ = ε).

(ii) The function

f : R2 −→ R2

(x, y) 7−→ (x,−y)

is continuous. For (x̃, ỹ), (x, y) ∈ R2 we have

‖f(x̃, ỹ)− f(x, y)‖2 = ‖(x̃− x, y − ỹ)‖2 = (x̃− x)2 + (y − ỹ)2

= ‖(x̃, ỹ)− (x, y)‖2
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(iii) Consider

f : R2 −→ R

(x, y) 7−→

{
0, x · y = 0

1, x · y 6= 0

f is non continuous in (0, 0).

Remark 5.45. (i)

f continuous in x ⇐⇒ ∀ε > 0 ∃δ > 0 : f(Bδ(x)) ⊂ Bε(f(x))

(ii) Continuity is a local property, this means if x ∈ X, U a neighbourhood
of x and f, g functions with f |U = g|U , then

f continuous ⇐⇒ g continuous

Theorem 5.46. Let x0 ∈ X, g : X → Y and f : Y → Z. If g is continuous
in x0 and f is continuous in g(x0), then f ◦ g is continuous in x0.

X Y Z
g f

x0 g(x0) f(g(x0))

Proof. Since f, g are continuous we know that

∀ε > 0 ∃δ > 0 : y ∈ Bδ(g(x0)) =⇒ f(y) ∈ Bε(f(g(x0))) (5.36a)

∀δ > 0 ∃ρ > 0 : x ∈ Bρ(x0) =⇒ g(x) ∈ Bδ(g(x0)) (5.36b)

Then ∀x ∈ Bρ(x0) we have

(f ◦ g)(x0) = f(g(x0)) ∈ Bε(f(g(x0))) (5.37)
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Definition 5.47 (Lipschitz continuity). A function f : X → Y is said to
be Lipschitz continuous if

∃L > 0 : dY (f(x), f(y)) ≤ L ·DX(x, y)

L is called Lipschitz constant. If L = 1, f is called contraction.

Example 5.48. Let f, g : [0, 1]→ R.

f(x) = x2 g(x) =
√
x

f is Lipschitz continuous, g is not.

Theorem 5.49. Every Lipschitz continuous function is continuous.

Proof. Let f : X → Y be Lipschitz continuous, with Lipschitz constant L.
Let ε > 0, then for x ∈ B ε

L
(x0)

d(f(x), f(x0)) ≤ L · d(x, x0) < ε (5.38)

Thus, f is continuous in x0, and since we chose an arbitrary x0, f is contin-
uous everywhere.

Example 5.50. (i) Consider

πi : Kn −→ K
(x1, x2, · · · , xn) 7−→ xi

Then
|πi(x)− πi(y)| = |xi − yi| ≤ ‖x− y‖

So πi is a contraction.

(ii) Let (X, d), (X ×X, dX×X) be metric spaces. Then

d : X ×X −→ R
(x, y) 7−→ d(x, y)

is a contraction. Let x1, x2, y1, y2 ∈ X and apply the triangle inequal-
ity

d(x1, y1) ≤ d(x1, x2) + d(x2, y1) ≤ d(x1, x2) + d(y2, y1) + d(x2, y2)

This implies

|d(x1, y1)− d(x2, y2)| ≤ d(x1, x2) + d(y1, y2)

= dX×X((x1, x2), (y1, y2))

which means the metric is continuous.
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(iii) Analogously, this works for ‖·‖.

Theorem 5.51. Let f : X → Y .

f is continuous in x ∈ X ⇐⇒ x is an isolated point in X
or limx̃→x f(x̃)=f(x)

Proof. Let f be continuous in x ∈ X. If x is an isolated point there is
nothing to show, so let x be a limit point. Then

∀ε > 0 ∃δ > 0 : f(x̃) ∈ Bε(f(x)) ∀x̃ ∈ Bδ(x) (5.39)

Now let x be an isolated point, i.e. ∃δ > 0 such that Bδ(x) = {x}. Then

f(Bdelta(x)) = {f(x)} ⊂ Bε(f(x)) ∀ε > 0 (5.40)

If x is a limit point and limx̃→x f(x̃) = f(x), then let ε > 0

∃δ > 0 : f(Ḃδ(x)) ⊂ Bε(f(x)) (5.41)

This then implies
f(Bδ) ⊂ Bε(f(x)) (5.42)

Corollary 5.52.

f : X → Y continuous in x ∈ X ⇐⇒ ∀ (xn) ⊂ X : f(xn)
xn→x−−−→ f(x)

This means, for continuous f we have

lim
n→∞

f(xn) = f( lim
n→∞

xn)

Corollary 5.53. Let f1, · · · , fn : Rm → <. Then define

f : Rm −→ Rn

x 7−→ (f1(x), f2(x), · · · , fn(x))

f is continuous if and only if f1, · · · , fn are continuous.

Corollary 5.54. Let f, g : X → R be continuous in x ∈ X. Then

f + g f · g

are continuous in x, and if g(x) 6= 0 then

f

g

is also continuous in x.
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Example 5.55. Let η = (η1, · · · , ηn) ∈ Nn0 and x ∈ Kn. Define

xη = xη11 · x
η2
2 · x

η3
3 · · · · · x

ηn
n

η is called multi index. We set

|η| := η1 + η2 + η3 + · · ·+ ηn

Let cη ∈ K ∀η with |η| ≤ N N ∈ N. Then we call

f : Kn −→ K

x 7−→
∑
|η|≤N

cη · xη

a polynomial with n variables. Such polynomials are continuous. Example:

(x1, x2) 7−→ x2
1 + x2

2 + x9
1 + x17

2

Remark 5.56. In the context of polynomials (and power series) we define

00 = 1

Reminder: If f : X → Y and U ⊂ Y then f−1(U) is said to be the preimage
of U under f . It’s the set of all points of X that get mapped to U .

f−1(U) = {x ∈ X | f(x) ∈ U}

Theorem 5.57. Let f : X → Y

(i)

f is continuous in x ⇐⇒ f−1(U) is a neighbourhood of
x ∀Uneighbourhood of f(x)

(ii)
f is continuous ⇐⇒ f−1(O) is open ∀O ⊂ Y open

(iii)
f is continuous ⇐⇒ f−1(C) is closed ∀C ⊂ Y closed

Proof. We will prove (i). Let U be a neighbourhood of f(x), i.e.

∃ε > 0 : Bε(f(x)) ⊂ U (5.43)

Since f is continuous

∃δ > 0 : f(Bδ(x)) ⊂ Bε(f(x)) (5.44)



5.4. CONTINUITY 120

which in turn means

Bδ(x) ⊂ f−1(Bε(f(x))) ⊂ f−1(U) (5.45)

so f−1(U) is a neighbourhood of f(x). Now let ε > 0. Since Bε(f(x)) is a
neighbourhood of f(x), f−1(Bε(f(x))) is a neighbourhood of x. This means

∃δ > 0 : Bδ(x) ⊂ f−1(Bε(f(x))) (5.46)

Thus f(Bδ(x)) ⊂ Bε(f(x)) which means f is continuous in x.
(ii) and (iii) are left to the reader.

Definition 5.58 (Subsequences and (sequential) compactness). Let (X, d)
be a metric space, and (xn) ⊂ X, (nk) ⊂ N are strictly monotonically
increasing. Then (xnk) is said to be a subsequence of (xn).

A subset A ⊂ X is said to be (sequentially) compact, if every sequence
(xn) ⊂ A has a subsequence convergent in A.

Remark 5.59. If (xn) converges to x ∈ X, then every subsequence of (xn)
converges to x. However, consider

(xn) = (−1)n

This sequence doesn’t converge, but the subsequences (x2n) and (x2n+1)
converge to (different) values.

Example 5.60. Let X = R, then (0, 1) and N are not compact. Because

(xn =
1

n
) ⊂ (0, 1) (xn = n) ⊂ N

have no convering subsequences.

Theorem 5.61.

A ⊂ Rn is compact ⇐⇒ A closed and bounded

Proof. Assume A is not closed, i.e. for x ∈ ∂A \A

∃ (xn) ⊂ A with xn −−−→ x (5.47)

Every subequence of (xn) converges to x, but x 6= A. From this follows that
A is not compact. Assume A is not bounded, i.e. A \ Bn(0) 6= ∅ ∀n ∈ N.
Now choose (xn) ⊂ A such that ‖(xn)‖ ≥ n. (xn) cannot have a convergent
subsequence, because on the one hand for (xnk) convergent to x we have
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‖xnk‖ → ‖x‖, but on the other hand ‖xnk‖ ≥ nk −→ ∞. This proves the
” =⇒ ” direction, to prove the inverse, consider the case n = 1: Let A ⊂ R
be bounded and closed. Then

∃K > 0 : A ⊂ I1 = [−K,K] (5.48)

Let (xn) ⊂ A be a sequence. We recursively define more intervals. Let
Ik = [a, b) such that xn ∈ Ik for infinitely many n ∈ N. Half the interval:

Ik+1 =

[
a,
b− a

2

)
or Ik+1 =

[
b− a

2
, b

)
(5.49a)

such that xn ∈ Ik+1 for infinitely many n ∈ N. By doing this we are creating
a sequence of nested intervals of length K ·2−k+2. Now set n1 = 1, and then
recursively define

nk+1 > max {n1, · · · , nk} and xnk+1
∈ Ik+1 (5.50)

We now need to show that (xnk) is convergent. Apply the Cauchy criterion:
For l > k we know that xnk and xnl ∈ Ik, i.e.

|xnk − xnl | ≤ K · 2
−k+2 k→∞−−−→ 0 (5.51)

This means, xnk is a Cauchy sequence, so it converges to x ∈ R. Since A is
closed, we have x ∈ A.

Theorem 5.62. Continuous mappings map compact sets to compact sets.

Proof. Let f : X → Y be continuous and A ⊂ X compact. Let (xn) ⊂ f(A).
We need to show that (xn) has a convergent subsequence. We know that

∃ (yn) ⊂ A : xn = f(yn) (5.52)

Since A is compact, there must be subsequences (ynk) with ynk
k→∞−−−→ y ∈ A.

Because of the continuity of f , we have

f(ynk)︸ ︷︷ ︸
xnk

−−−→ f(y) ∈ f(A) (5.53)

Thus, f(A) is compact.
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Remark 5.63. Let f : Rn → Rn be a continuous mapping. f maps closed,
bounded sets to closed, bounded sets. In general, closed sets are NOT
mapped to closed sets, and bounded sets are NOT mapped to bounded sets.

Example: f : (0,∞)→ R, x 7→ x−1

f( (0, 1)︸ ︷︷ ︸
bounded

) = (1,∞)︸ ︷︷ ︸
unbounded

f([1,∞]︸ ︷︷ ︸
closed

) = (0, 1]︸ ︷︷ ︸
not closed

Corollary 5.64. Let A ⊂ Rn be compact and f : A→ R continuous. Then
f assumes its maximum on A. I.e.

∃x ∈ A : f(y) ≤ f(x) ∀y ∈ A

Proof. f(A) is compact, so it’s closed and bounded. We want to show
that compact subsets K of R have a maximum M := supK such that
xn −−−→M . Since K is closed we know that M ∈ K, so M is a maximum.
Especially, ∃z ∈ f(A) maximum and ∃x ∈ A with f(x) = z

Theorem 5.65. Let A ⊂ Rn, B ⊂ Rm be compact subsets and f : A→ B a
bijective, continuous mapping. Then f−1 is also continuous.

Proof. Define g := f−1. g is also bijective and maps B → A. Let C ⊂ A be
closed. Since A is bounded, C is also bounded. Thus, f(C) is also compact
(i.e. bounded and closed), and we have

f(C) = {f(x) ∈ B |x ∈ C}
= {f(g(y)) ∈ B | g(y) ∈ C}
= {y ∈ B | g(y) ∈ C} = g−1(C)

(5.54)

So g−1(C) is bounded, and since C was an arbitrary closed set, g is also
continuous.

5.5 Convergence of Function sequences

Definition 5.66 (Pointwise convergence). Let M be a set, fn : M →
K ∀n ∈ N and f : M → K. The sequence (fn) is said to be pointwise
convergent to f if

lim
n→∞

fn(x) = f(x) ∀x ∈M

Example 5.67. Consider

fn : [0, 1] −→ R

x 7−→

{
1− nx, x ∈ [0, 1

n ]

0, else
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0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f1

f2

f3f4

The fn are continuous for all n ∈ N and converge pointwise to

f : [0, 1] −→ R

x 7−→

{
1, x = 0

0, x 6= 0

f is not continuous.

Remark 5.68. Let M be a set. Then

B(M) = {fn : M −→ K | ∃K ∈ R : |f(x)| < K ∀x ∈M}

is a linear subspace of the space of all functions M → K. We can define the
supremum norm

‖·‖∞ : B(M) −→ R
f 7−→ sup

x∈M
{|f(x)|}

Proof. We will now proof that ‖·‖∞ is a norm. It is defined, because

‖f‖∞ = 0 =⇒ |f(x)| = 0 ∀x ∈M (5.55)

This implies
f(x) = 0 ∀x ∈M =⇒ f = 0 (5.56)

The triangle inequality is proven by first considering

|f(x)| ≤ ‖f‖∞ ∀f ∈ B(M) ∀x ∈M (5.57)
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Let f, g ∈ B(M), then

|f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ ‖f‖∞ + ‖g‖∞ ∀x ∈M (5.58)

Which implies

‖f + g‖∞ = sup
x∈M
|f(x) + g(x)| ≤ ‖f‖∞ + ‖g‖∞ (5.59)

Definition 5.69 (Uniform convergence). A sequence of bounded functions
(fn),

fn : M −→ K

is said to be uniformly convergent to f : M → K if its norm converges.

‖fn − f‖∞
n→∞−−−→ 0

Remark 5.70. Formally, pointwise convergence means

∀ε > 0 ∀x ∈M ∃N ∈ N ∀n ≥ N : |fn(x)− f(x)| < ε

and uniform convergence means

∀ε > 0 ∃N ∈ N ∀x ∈M ∀n ≥ N : |fn(x)− f(x)| < ε

Theorem 5.71. The function space B(M) is complete.

Proof. Let (fn) ⊂ B(M) be a Cauchy sequence in terms of ‖·‖∞. Firstly,
we have for some fixed x ∈M

|fn(x)− fm(x)| ≤ ‖fn − fm‖∞ (5.60)

Since (fn) is a Cauchy sequence, (fn(x)) is also a Cauchy sequence in K0.
Because K is complete, (fn(x)) converges, and we define

f(x) = lim
n→∞

fn(x) (5.61)

thus (fn) converges pointwise to f . Let ε > 0. Then

∃N ∈ N : ‖fn · fm‖∞ < ε ∀n,m ≥ N (5.62)

Then ∀x ∈M, ∀n,m ≥ N we have

|fn(x)− fm(x)| ≤ ‖fn − fm‖∞ < ε (5.63)
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We can find the limit for m→∞

|f(x)− fn(x)| ≤ ε (5.64)

and

‖f‖∞ = sup
x∈M
|f | ≤ sup

x∈M
|f(x)− fn(x)|+ sup

x∈M
|fn(x)| = ε+ ‖fn‖∞ (5.65)

Thus, f is bounded. Furthermore

‖f − fn‖∞ = sup
x∈M
|f(x)− fn(x)| ≤ ε (5.66)

which in turn implies
‖f − fn‖∞

n→∞−−−→ 0 (5.67)

Definition 5.72. Let (X, d) be a metric space, then Cb(X) is said to be the
space of all continuous bounded functions.

Remark 5.73. If X is compact (e.g. a bounded, closed subset of Rn) then
all continuous functions are bounded. We then write C(X) for Cb(X).

Theorem 5.74. Let (X, d) be a metric space. Cb(X) is closed in B(X). In
other words, every uniformly convergent sequence of continuous functions
converges to a continuous function.

Proof. Let (fn) ⊂ Cb(X) be a sequence that uniformly converges to f ∈
B(X). Let x ∈ X and ε > 0, then

∃N ∈ N : ‖f − fn‖∞y
ε

3
∀n ≥ N (5.68)

Choose a fixed n ≥ N . Since fn is continuous, this means that

∃δ > 0 : |fn(x)− fn(y)| < ε

3
∀y ∈ Bδ(x) (5.69)

Then we have for all such y

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|
≤ 2 · ‖f − fn‖∞ + fn(x)− fn(y) < ε

(5.70)

This proves the continuity of f in x. Since x ∈ X was chosen arbitrarily, f
is continuous everywhere.
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Definition 5.75. Let x0 ∈ K and (an) ⊂ K. Then

∞∑
n=1

an(x− x0)n

is called a power series around x0. The number

ρ := sup

{
|x− x0|

∣∣∣∣∣
∞∑
n=1

an(x− x0)n converges

}

is the convergence radius.

x0

ρ

x

Remark 5.76. All results so far (including proofs) can be extended to Rn-
valued functions, or functions with values in a Banach space in general.

Theorem 5.77. Let
∑∞

n=1 an(x− x0)n be a power series with convergence
radius ρ ∈ [0,∞)∪{∞}. If |x− x0| < ρ then the series converges absolutely,
for |x− x0| > ρ it diverges.

1

ρ
= lim sup

n→∞
n
√
|an|

Proof. W.l.o.g. choose x0 = 0: For |x| > ρ the series diverges by definition.
If |x| < ρ then there exists y ∈ K such that |x| < |y| ≤ ρ and

∑∞
n=1 any

n

convergent. Especially, (any
n) is a null sequence. This means ∃C > 0 such

that |anyn| ≤ C ∀n ∈ N

∞∑
n=1

|anxn| =
∞∑
n=1

|anyn|
∣∣∣∣xy
∣∣∣∣n ≤ C · ∞∑

n=1

∣∣∣∣xy
∣∣∣∣n <∞ (5.71)

This statement only holds for ρ > 0.
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Remark 5.78. (i) We have

ρ = sup

{
a ∈ [0,∞)

∣∣∣∣∣
∞∑
n=1

|an|an converges

}

(ii) If the following limit exists, then

ρ = lim
n→∞

|an|
|an+1|

Example 5.79. The series
∞∑
n=1

xn

is convergent on (−1, 1), so ρ = 1. The limit function is

x 7−→ 1

1− x

Theorem 5.80. Let
∑∞

n=1 an(x− x0)n be a power series with convergence
radius ρ > 0. Let 0 < a < ρ. Then this power series converges uniformly on
Ka(x0). Especially

f : Bρ(x0) −→ R

x 7−→
∞∑
n=1

an(xn − x0)n

Proof. W.l.o.g. choose x0 = 0. Let 0 < a < ρ. We know that
∑∞

n=1 anx
n

converges on Ka(0).

ρ

a
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Define

fn : Ka(0) −→ K
x 7−→ xn ∀n ∈ N

(5.72)

We can see that

‖f‖∞ = sup
x∈Ka(0)

|fn| = sup
x∈Ka(0)

= an (5.73)

and thus
∞∑
n=1

anfn =⇒
∞∑
n=1

‖anfn‖∞ =

∞∑
n=1

|an|n <∞ (5.74)

because a < ρ. The series
∑∞

n=1 anfn is absolutely convergent in C(Ka(0)).
Since C(Ka(0)) is complete,

∑∞
n=1 anfn is convergent because the partial

sums
∑N

n=1 anfn are continuous ∀N ∈ N. Therefore f is also continuous on
Ka(0). Let x ∈ Bρ(0). Then there exists some a > 0 such that |x| < a < ρ.
Thus, f is continuous on Ka(0). Since Ka(0) contains a neighbourhood of
x, and continuity is a local property, f is also continuous in x. Because
x ∈ Bρ(0) was chosen arbitrarily, f is continuous.

Remark 5.81. exp, sin, cos are continuous.

Example 5.82. The statements above can be extended to Banach space-
valued power series (e.g. matrix-valued functions). The norm on Rn×n is

‖A‖ = sup {‖Ax‖ | ∀x ∈ B1(0)}

Define

exp(A) :=
∞∑

0=1

An

n!

This converges ∀A ∈ Rn×n, because

∞∑
n=1

∥∥∥∥Ann!

∥∥∥∥ =

∞∑
n=1

1

n!
‖An‖ ≤

∞∑
n=1

1

n!
‖A‖n

= exp(‖A‖) <∞

Thus,
∑∞

n=1
An

n! converges absolutely. Now consider the function

R −→ Rn×n

t 7−→ exp(At)
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This is a matrix-valued power series

exp(At) =
∞∑
n=1

(At)n

n!
=
∞∑
n=1

An

n!
tn

with a convergence radius of ρ = ∞. In this case exp(A+B) doesn’t nec-
essarily have to equal exp(A) · exp(B).



Chapter 6

Multivariable Calculus

6.1 Partial and Total Differentiability

Definition 6.1. Let U ⊂ Rn be open, x ∈ (x1, · · · , xn) ∈ U and define the
function f : U → Rm. The mapping f is said to be partially differentiable
in x in terms of xi if

t 7−→ f(x1, · · · , xi−1, t, xi+1, · · · , xn)

is differentiable in xi, i.e.

∂if(x) = lim
h→0

f(x1, · · · , xi−1, xi + h, xi+1, · · · , xn)− f(x1, · · · , xn)

h

exists. ∂if(x) is said to be the partial derivative of f in x in terms of xi.
Another notation is

∂f

∂xi

This mapping is said to be partially differentiable in x if it is partially
differentiable in terms of xi ∀i ∈ {1, · · · , n}.

Example 6.2. Consider

f : R2 −→ R

(x, y) 7−→

{
1, x = 0 ∨ y = 0

0, else

f is partially differentiable in (0, 0), but not continuous.

130
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Theorem 6.3. Let U ⊂ R be open, x ∈ U and f : U → K.

f is differentiable in x

⇐⇒
∃a ∈ K, φ : U → K : f(y) = f(x) + a(y − x) + φ(y) ∀y ∈ U

and

lim
y→x

φ(x)

|y − x|
= 0

Proof. We will first prove the ”⇐= ” direction. So let a, φ be as demanded
in the theorem. Then

f(y)− f(x)

y − x
= a+

φ(y)

|y − x|
· |y − x|
y − x

y→x−−−→ a (6.1)

which means f is differentiable in x and f ′(x) = a. Now let f be differen-
tiable, and set

φ(y) = f(y)− f(x)− f ′(x)(y − x) (6.2)

Which is equivalent to the equation in the theorem, with a = f ′(x). Then

lim
y→x

φ(x)

|y − x|
=

(
f(y)− f(x)

y − x
− f ′(x)

)
· y − x
|y − x|

= 0 (6.3)

Definition 6.4. Let U ⊂ Rn, x ∈ U and f : U → Rm. f is said to be
(totally) differentiable in x if a matrix A ∈ Rm×n and a mapping φ : U → Rm
exist, such that

f(y) = f(x) +A(y − x) + φ(x) ∀y ∈ U

and

lim
y→x

φ(y)

‖y − x‖
= 0

f is said to be (totally) differentiable if it is (totally) differentiable in every
point x ∈ U .

Theorem 6.5. Let U ⊂ Rn be open, x ∈ U and f : U → Rm with

f = (f1, · · · , fm), f1, · · · , fm : U −→ R

If f is totally differentiable in x, then it is partially differentiable as well,
and the matrix A is given by

aji = ∂ifj(x)
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Proof. Let A, φ be as demanded above. Let e1, · · · , en be the canonical basis
for Rn. We insert y = x+ hei and receive

f(x+ hei) = f(x) + h ·Aei + φ(x+ hei) (6.4)

By rearranging this yields

f(x+ hei)− f(x)

h
= Aei +

φ(x+ hei)

|h|
· |h|
h

h→0−−−→ Aei (6.5)

Thus, f is partially differentiable in x in terms of xi with ∂if(x) = Aei.

Definition 6.6. The matrix (∂ifj(x))ij is called the Jacobian matrix of f
in x. We write Df(x). If f is totally differentiable, then Df(x) is said to
be the (total) derivative of f in x.

For m = 1 (so f : Rn → R), the Jacobian matrix has one column, and
we call it gradient

Df(x) =: ∇f(x)

Note: I will adhere to the physical notation of the gradient, using the Nabla
operator ∇.

Example 6.7. Let A ∈ Rm×n and define

fA : Rn −→ Rm

x 7−→ Ax

Then we have

fA(y) = Ay = Ax+A(y − x) = fA(x)− fA(y − x)

Thus, fA is differentiable (φ = 0) and the derivative is

DfA(x) = A ∀x ∈ Rn

For another example, let

f : (0,∞)× (0, 2π) −→ R2

(r, φ) 7−→ (r cosφ, r sinφ)

Then f is partially differentiable.

Df(r, φ) =

(
cosφ −r sinφ
sinφ r cosφ

)
So f is also totally differentiable (We’ll get back to this later).
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Remark 6.8. (i) Let U ⊂ Rn be open and f : U → Rm differentiable, then
the derivative Df is a function U → Rm×n

(ii) Total differentiability is also called local linear approximation. Linear-
ity is the property

A(x+ λy) = Ax+ λAy ∀x, y ∈ Rn λ ∈ R

(iii) For arbitrary vector spaces V,W , a mapping V → W is said to be
linear if

A(x+ λy) = Ax+ λAy ∀x, y ∈ Rn λ ∈ R

So we can analogously define differentiability for mappings f : V →W
between arbitrary normed vector spaces.

(iv) f is totally differentiable in x if and only if the Jacobian matrix exists
and

lim
x→y

f(y)− f(x)−Df(x)(y − x)

‖y − x‖
= 0

(v) Let f = (f1, · · · , fm) with f1, · · · , fm : U → R.

f totally differentiable ⇐⇒ fi totally differentiable ∀i ∈ {1, · · · , n}

The Jacobian matrix Dfi(x) is the i-th row of Df(x).

(vi) Total differentiability implies continuity.

(vii) Partial and total differentiability are local properties.

(viii) The mapping h 7→ Df(x) · h is linear.

(ix) The derivative x 7→ Df(x) is not linear in general.

Theorem 6.9 (Chain rule). Let U ⊂ Rn be open, V ⊂ Rm open, x ∈ U ,
g : U → V differentiable in x, and f : V → Rk differentiable in g(x). Then
f ◦ g is differentiable and

D(f ◦ g) = Df(g(x)) ·Dg(x)

Proof. Differentiability of g in x means

∃φg : U −→ Rm : g(y)− g(x) = Dg(x)(y − x) + φg(y) (6.6)
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Differentiability of f in g(x) means

∃φf : V → Rk :: lim
z→g(x)

φf (z)‖z − g(x)‖−1 = 0 (6.7)

and
f(z) = f(g(x)) +Df (g(x))(z − g(x)) + φf (z) (6.8)

Now set z = g(y), then

f(g(y))︸ ︷︷ ︸
(f◦g)(y)

= f(g(x))︸ ︷︷ ︸
(f◦g)(x)

+Df (g(x)) ·Dg(x)(y − x)

+ (Df (g(x))φg(y) + φf (g(y)))

(6.9)

And we finally need to show

Df (g(x))φg(y) + φf (g(y))

‖y − x‖
y→x−−−→ 0 (6.10)

We know that

Df(g(x))
φg(y)

‖y − x‖
−−−→ 0 (6.11)

because
z 7−→ Df(g(x))z linear and thus continuous (6.12)

We define a new mapping

ψ : U −→ R

z 7−→

{
φf (z)− ‖z − g(x)‖−1, z 6= g(x)

0, z = g(x)

(6.13)

ψ is continuous in g(x). Then ∀y ∈ U we have

φf (g(y))

‖y − x‖
= ψ(g(y))︸ ︷︷ ︸

y→x−−−→0

·‖g(y)− g(x)‖
‖y − x‖

(6.14)

and

‖g(y)− g(x)‖
‖y − x‖

=

∥∥∥∥Dg(x)
y − x
‖y − x‖

+
φg(y)

‖y − x‖

∥∥∥∥
≤
∥∥∥∥Dg(x)

y − x
‖y − x‖

∥∥∥∥︸ ︷︷ ︸
≤‖Dg(x)‖

+

∥∥∥∥ φg(y)

‖y − x‖

∥∥∥∥︸ ︷︷ ︸
y→x−−−→0

(6.15)
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thus ψ is bounded.

=⇒ ψ(g(y)) · ‖g(y)− g(x)‖
‖y − x‖

−−−→ 0 (6.16)

Theorem 6.10. Let U ⊂ Rn and f : U −→ Rm. If ∀x ∈ U the partial
derivatives ∂if(x) exist and are continuous ∀i ∈ {1, · · · , n}. then f is totally
differentiable.

Proof. Without proof.

Definition 6.11. Let U ⊂ Rn be open. f : U → Rm is said to be contin-
uously differentiable if all partial derivatives exist and are continuous. The
vector space of all such functions is denoted as C1(U,Rm), or in the special
case m = 1 as C1(U).

Example 6.12. 1. Coming back to a previous example, we consider

Df(r, φ) =

(
cosφ −r sinφ
sinφ cosφ

)
Thus, f is continuously differentiable, and therefore totally differen-
tiable.

2. Let N ∈ N and cη ∈ K for every multiindex η ∈ Nn0 with |η| ≤ N .
Then the polynomial

P : Rn −→ K

x 7−→
∑
η

|η|≤N

cηx
η

is continuously differentiable, and therefore totally differentiable.

∂ix
η = ∂i (xη11 , x

η2
2 , · · · , x

ηn
n )

= ηix
η1
1 · · ·x

ηi−1

i−1 x
ηi−1

i x
ηi+1

i+1 · · ·x
ηn
n

This is another polynomial, and therefore continuous.

We introduce the following new notation, for x, y ∈ Rn:

Sx,y := {x+ t(y − x) | t ∈ (0, 1)}
Sx,y := {x+ t(y − x) | t ∈ [0, 1]}

They denote the connecting line between x and y.



6.1. PARTIAL AND TOTAL DIFFERENTIABILITY 136

x

y

Sx,y

Theorem 6.13 (Intermediate value theorem for R-valued functions). Let
U ⊂ Rn be open, x, y ∈ U and Sx,y ⊂ U . Now let f : U → R differentiable
on Sx,y and continuous in x, y. Then

∃ξ ∈ Sx,y : f(y)− f(x) = Df(ξ)(y − x)

Proof. Consider

g : [0, 1] −→ R
t 7−→ f(x+ t(y − x))

(6.17)

Apply the one dimensional intermediate value theorem. Due to the chain
rule, g fulfils the prerequisites. ∃θ ∈ (0, 1) such that

f(y)− f(x) = g(1)− g(0) = g(θ) = Df(x+ θ(y − x))(y − x) (6.18)

For ξ = x+ θ(y − x) follows the initial statement.

Theorem 6.14 (Intermediate value theorem). Let U ⊂ Rn be open, Sx,y ⊂
U and f : U → Rm differentiable on Sx,y and continuous in x, y. Then

∃ξ ∈ Sx,y : ‖f(y)− f(x)‖ ≤ ‖Df(ξ)(y − x)‖

Proof. For a ∈ Rm, consider the (real) helper function

aT f(x) = 〈a, f(x)〉 (6.19)

According to the previous theorem

∃ξ ∈ Bε : aT f(y)− aT f(x) = aTDf(ξ)(y − x) (6.20)

In this implication the chain rule has been applied. We can rewrite this
using the scalar product

‖f(y)− f(x)‖2 = |〈f(y)− f(x), Df(ξ)(y − x)〉|
≤ ‖f(y)− f(x)‖‖Df(ξ)(y − x)‖

(6.21)
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Corollary 6.15. Let U ⊂ Rn be open and f : U → Rm a differentiable
function.

Df = 0 on U =⇒ ∃V ⊂ U : f constant on V

Proof. Let x ∈ U , choose ε > 0 such that Bε(x) ⊂ U . Then

∀y ∈ Bε(x) ∃ξ ∈ Sx,y : ‖f(y)− f(x)‖ ≤ ‖Df(ξ)(y − x)‖ = 0 (6.22)

This implies

‖f(y)− f(x)‖ = 0 =⇒ f(y) = f(x) ∀y ∈ Bε(x) (6.23)

Remark 6.16. Functions with vanishing derivatives must be constant. Con-
sider

f : (−2,−1) ∪ (1, 2) −→

x 7−→

{
−1, x < 0

1, x > 0

Local constancy implies constancy on connected sets.

6.2 Higher Derivatives

Definition 6.17. Let U ⊂ Rn and let f be (the only) partial derivative of
order 0. Now define recursively

(i) f is said to be (k+1)-times partially differentiable if all partial deriva-
tives of order k are partially differentiable.

(ii) The partial derivatives of order (k + 1) are the functions ∂ig i ∈
{1, · · · , n} where g is the partial derivative of order k of f .

The k-th partial derivative in terms of i of f is denoted as

∂ki f

f is said to be k-times continuously differentiable if all partial derivatives
of order k are continuous. Ck(U,Rm) is the vector space of all k-times
continuously differentiable functions.
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f is said to be infinitely differentiable (or smooth) is it is k-times differ-
entiable ∀k ∈ N, and the vector space of all infinitely differentiable functions
is denoted as C∞(U,Rm).

For total differentiability we have

f : Rn −→ Rm Df : Rm −→ Rm×n

Remark 6.18. Let f : Rn → Rm be sufficiently often differentiable. Consider
for u ∈ Rn

x 7−→ Df(x)u = lim
k→0

f(x+ hu)− f(x)

h︸ ︷︷ ︸
Directional derivative along u

Now consider for fixed x

D2f(x) : Rn × Rn −→ Rm

(u, v) 7−→ D(Df(·)u)(x)v

D2f(x) is linear in v and u, and

D2f(x)(u1 + λu2, v) = D(Df(·)(u1 + λu2))(x)v

= D(Df(·)u1 + λDf(·)u2)(x)v

= D(Df(·)u1)(x)v + λD(Df(·)u2)(x)v

= D2f(x)(u1, v) + λD2f(x)(u2, v)

D2f(x) is a bi-linear mapping.

Definition 6.19. Let U ⊂ Rn and f : U → Rm. Define recursively for
k ≥ 1:

(i) f is said to be (k + 1) times (totally) differentiable on U , if the term
Dk(·)(u1, · · · , uk) is differentiable on U∀u1, · · · , uk ∈ Rn.

(ii) The (k + 1)-th derivative of f in x ∈ U is the multi-linear mapping

Dk+1f(x) : (Rn)k+1 −→ Rm

(u1, · · · , uk, v) 7−→ D(Dkf(·)(u1, · · · , uk))(x)v

Remark 6.20. Let f1, · · · , fm : U → R, then the function

f : U −→ Rm

x 7−→ (f1(x), · · · , fm(x))
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is k-times totally differentiable if and only if the f1, · · · , fn are totally dif-
ferentiable.

(Dkf(x)(u1, · · · , Uk))j = Dkfj(x)(u1, · · · , uk)

Remark 6.21. Dkf(x) really is multi-linear (linear in every point) ∀k ∈ N.
Other multi-linear mappings are

(i) The scalar product on Rn

Rn × Rn −→ R

(ii) The determinant
Rn×n −→ R

Remark 6.22. A matrix A ∈ Rm×n is uniquely determined by its effect on
the canonical basis e1, · · · , en. This means if v ∈ R, then ∃α1, · · · , an ∈ R
that are uniquely determined such that

v = α1, e1 + · · ·+ αnen

Then
Av = α1Ae1 + · · ·+ αnAen

Aei is the i-th column of A. An analogous statement for multi-linear map-
pings would be, that

A : Rn×k −→ Rm

is uniquely determined if A(ei1 , ei2 , · · · , eik) known ∀i1, · · · , ik ∈ {1, · · · , n}.

Theorem 6.23. Let U ⊂ Rn be open, f : U → Rm k-times differentiable in
x and let e1, · · · , en be the canonical basis of Rn. Then

Dkf(x)(ei1 , · · · , eik) = ∂ik · · · ∂i1f(x)

∀ii, · · · , ik ∈ {1, · · · , n}.

Proof. For k = 1 this is already proven. So we can use proof by induction;
assume the statement holds for a k, i.e. ∀i1, · · · , ik ∈ {1, · · · , k}

Dkf(x)(ei1 , · · · , eik) = ∂ik · · · ∂i1f(x)

Then for i1, · · · , ik, ik+1 ∈ {1, · · · , n}

Dk+1f(x)(ei1,··· ,eik ) = D(Dkf(· · · )(ei1 , · · · , eik))(x) · eik+1

= D(∂ik , · · · ∂i1f(·))(x)eik+1

= ∂ik+1
∂ik · · · ∂i1f(x)

(6.24)

The order in which partial derivatives are applied is important!
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Example 6.24. Consider

f : R2 −→ R
(x1, x2) 7−→ x2

1 cos(x2)

Then we can calculate

D2f(x)(u, v) u = u1e1 + u2e2, v = v1e1 + v2e2

As follows

D2f(x)(u, v) = u1v1D
2f(x)(e1, e1) + u1v2D

2f(x)(e1, e2)

+ u2v1D
2f(x)(e2, e1) + u2v2D

2f(x)(e2, e2)

= u1v1 · 2 · cos(x2)− 2x1 sin(x2)u1v2

− 2x1 sin(x2)v1u2 − x2
1 cos(x2)u2v2

Theorem 6.25. Let U ⊂ Rn be open, and f : U → Rm k-times continuously
differentiable. Then f is k-times totally differentiable.

Proof. This is already proveb for k = 1. So we can use induction over
k; assume the statement is correct for k ∈ N. Let u1, · · · , uk ∈ Rn, then
Dkf(·)(u1, · · · , uk) is a linear combination of the partial derivative of f
of order k, and is thus continuously differentiable once more. Therefore
D2f(·)(u1, · · · , uk) is totally differentiable, and thus f is (k+1)-times totally
differentiable.

Theorem 6.26 (Theorem of Schwarz). Let U ⊂ Rn be open, and also
f ∈ C2(U,Rm). Then

∀x ∈ U ∀u, v ∈ Rn : D2f(x)(u, v) = D2f(x)(v, u)

and

∀x ∈ U ∀i1, i2 ∈ {1, · · · , n} : ∂i1∂i2f(x) = ∂i2partiali1f(x)

Proof. Let m = 1, x ∈ U , ε > 0 such that Bε(x) ⊂ U . If u = 0 or v = 0
then both sides of the equation vanish, so let u, v ∈ Rn \ {0} and

0 < t < c :=
ε

2 ·max {‖u‖, ‖v‖}
(6.25)

Define the helper function

g1 : [0, t] −→ R
s 7−→ f(x+ tv + su)− f(x+ su)

(6.26)
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And apply the one dimensional intermediate value theorem. ∃ξ ∈ (0, t) such
that

g1(t)− g1(0) = g′1(ξ) · t = (Df(x+ tv + ξu)u−Df(x+ ξu)u) · t (6.27)

Analogously, define and apply the intermediate value theorem to

g2 : [0, t] −→ R
s 7−→ Df(x+ sv + ξu)u

(6.28)

and get η ∈ (0, t)

g2(t)− g2(0) = g′2(η)t = D(Df(·)u)(x+ ηv + ξu)uvt

= D2f(x+ ηv + ξu)(u, v)t
(6.29)

using these results, we can get ξ, η ∈ (0, t) for all t ∈ (0, c) such that

f(x+tv + tu)− f(x+ tv)− f(x+ tu) + f(x)

= g1(t)− g1(0) = (Df(x+ tv + ξu)u−Df(x+ ξu)u)t

= (g2(t)− g2(0))t = D2f(x+ ηv + ξu)(u, v)t2
(6.30)

So we can write

lim
t→0

f(x+ tv + tu)− f(x+ tv)− f(x+ tu) + f(x)

t2

= lim
t→0

D2f (x+ ηv + ξu)︸ ︷︷ ︸
−−−→x

(u, v)

= D2f(x)(u, v)

(6.31)

The left side is symmetric in terms of swapping u and v, so the right side
must be as well.

Note, that

D2f(x)(ei1 , ei2) = ∂i2∂i1f(x) = ∂i1∂i2f(x) = D2f(x)(ei2 , ei1)

Remark 6.27. Via induction:

(i) Dkf(x)(u1, · · · , uk) is independent from the order of the ui, if Dkf is
continuous.

(ii) The limit of the second derivaative is useful in the numerical discussion
of differential equations.
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Theorem 6.28 (Taylor’s Theorem). Let U ⊂ Rn be open, f : U → R be
(l+1)-times differentiable and h ∈ Rn such that x+th ∈ U ∀t ∈ [0, 1]. Then
∃θ ∈ [0, 1] such that

f(x+ h) =
l∑

k=1

1

k!
Dkf(x)(h, · · · , h) +

1

(l + 1)!
Dl+1f(x+ θh)(h, · · · , h)

Heuristic Proof. Apply the one dimensional Taylor theorem with Lagrange
error bound onto a helper function

g : [0, 1] −→ R
t 7−→ f(x+ th)

(6.32)

Remark 6.29. (i) Consider h =
∑n

i=1 hiei. Then

D2f(x)(h, h) =

n∑
i,j=1

hihjD
2f(x)(ei, ej) =

n∑
i,j=1

∂i∂jf(x)hihj

(ii) Analogously to one dimension, we can formulate criteria for local ex-
trema:

Df(x) = 0, · · · , Dl−1f(x) = 0 and Dlf(x) 6= 0

� x is a local minimum if l is even and Dlf(x) is positive.

� x is a local maximum if l is even and Dlf(x) is negative.

� x is no local extremum of l is odd or if Dlf(x) is undefined.

Definedness is complicated to determine for l > 2.

6.3 Function Sequences and Differentiability

Example 6.30. Consider (fn):

fn : R −→ C

x 7−→ 1

n
einx
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Then

‖fn‖∞ =
1

n
−−−→ 0

⇐⇒
(fn) converges uniformly to the zero function

But
f ′n(x) = ieinx = i(eix)n

converges (pointwise even) only for x = 2kπ, k ∈ Z.

Remark 6.31. Let f : X → V where V is a normed vector space. Define

‖f‖∞ = sup {‖f(x)‖ |x ∈ X}

the supermum norm. Also define

� B(X,V ) the space of bounded functions from X → V

� CB(X,V ) the space of continuous, bounded functions from X → V

Theorem 6.32. Let U ⊂ Rn be open and fn : U → Rm continuously
differentiable ∀n ∈ N. If (fn) and (Dfn) converge uniformly to f : U → Rm
and g : U → Rm×m, then f is differentiable and Df = g.

Proof. First consider m = 1. We use the operator norm on Rm×m. First, let
Dfn be continuous ∀n and thus g is continuous. Choose x ∈ U and ε > 0,
then

∃δ > 0 : ‖g(y)− g(x)‖ < ε

3
if ‖y − x‖ < δ (6.33)

Furthermore
∃N ∈ N : ‖Dfn − g‖∞ <

ε

3
∀n > N (6.34)

Let y ∈ Bδ(x). Then according to the intermediate value theorem,

∀n ∈ N ∃ξn ∈ Sx,y = {x+ t(y − x) | t ∈ [0, 1]} (6.35)

such that
fn(y)− fn(x) = Dfn(ξn)(y − x) (6.36)



6.3. FUNCTION SEQUENCES AND DIFFERENTIABILITY 144

We have ξm ∈ Bδ(x). Then

1

‖y − x‖
|fn(y)− fn(x)−Dfn(x)(y − x)|

=
1

‖y − x‖
|(Dfn(ξn)−Dfn(x))(y − x)|︸ ︷︷ ︸

‖Dfn(ξn)‖−Dfn(x)‖y−x‖

≤‖Dfn(ξn)−Dfn(x)‖
≤‖Dfn(ξn)− g(ξn)‖+ ‖g(ξn)− g(x)‖+ ‖g(x)−Dfn(x)‖
≤‖Dfn − g‖∞ + ‖g(ξn)− g(x)‖+ ‖g −Dfn‖∞
=2‖Dfn − g‖∞ + ‖g(ξn)− g(x)‖ < ε

(6.37)

For n→∞ we have

1

‖y − x‖
|f(y)− f(x)− g(x)(y − x)| < ε ∀y ∈ Bδ(x) (6.38)

Since ε > 0 is arbitrary, we get

lim
y→x

1

‖y − x‖
|f(y)− f(x)− g(x)(y − x)| = 0 (6.39)

This means that f is differentiable in x with Df(x) = g(x).

Remark 6.33. On C1
B(U,Rm) (the space of continuous, differentiable and

bounded functions with bounded derivative) we can define a norm:

‖f‖C1
:= ‖f‖∞ + ‖Df‖∞

Then the above theorem is equivalent to the statement that C1
B(U,Rm) with

‖f‖C1
is complete.

Theorem 6.34. Let f(x) =
∑∞

n=0 anx
n be a power series with positive

convergence radius ρ. Then f is differentiable on Bρ(0) and

f ′(x) =

∞∑
n=0

nanx
n−1

Proof. We need to inspect the convergence radius R of

∞∑
n=0

nanx
n−1 =

1

x

∞∑
n=0

nanx
n (6.40)
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( n
√
n) converges to 1, so ∃ε > 0 such that for sufficiently big n we have

(1− ε) n
√
an ≤

√
nan ≤ (1 + ε)n

√
an (6.41)

and thus

1− ε
ρ

= (1− ε) · lim sup
n→∞

n
√
|an| ≤ lim sup

n→∞
n
√
|nan| =

1

R
≤ 1 + ε

ρ
(6.42)

So

=⇒ 1− ε
ρ
≤ 1

R
≤ 1 + ε

ρ
(6.43)

Since this holds for every ε, this implies ρ = R. Now for x ∈ Bρ(0) set

g(x) :=

∞∑
k=1

nanx
n−1 (6.44)

Let x ∈ Bρ(0) be fixed and choose a > 0 such that |x| < a < ρ. This means
that

fN (x) :=

N∑
n=0

anx
n and gN (x) :=

N∑
n=0

anx
n−1

converge uniformly on Ba(0) to f and g. Obviously, f ′N = gN , so f is
differentiable and f ′ = g. Since differentiabiility is a local property, the
desired statement follows ∀x ∈ Bρ(0).

Corollary 6.35. Let f(x) =
∑∞

n=0 anx
n be a power series with convergence

radius ρ > 0. Then f ∈ C∞(Br(0)), and

ak = f (k)(0) · (−1k!)

Furthermore, the series representation (if it exists) is unique.

Proof. The infinite Differentiability follows inductively from the previous
theorem. Also inductively we have

f (k)(x) =

∞∑
n=0

n(n− 1) · · · (n− k + 1)anx
n−k (6.45)

Choose x = 0 and receive

f (k)(0) = n(n− 1) · · · (n− k + 1)an (6.46)
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Example 6.36 (Derivative of the exponential function).

(ex)′ =

∞∑
n=0

(
xn

n!

)′
=

∞∑
n=1

nxn−1

n!
=

∞∑
n=1

xn−1

(n− 1)!
=

∞∑
n=0

xn

n!
= ex

Remark 6.37 (Taylor Series). We can define the Taylor series for f : K→ K

∞∑
n=0

f (n)(0)

n!
xn = f(x)

� In general, this doesn’t hold true for all x, not even for f ∈ C∞.

� The convergence radius could be 0

� There are examples of convergent Taylor series that don’t converge to
the initial function, e.g.

f : x 7→

{
exp

(
− 1
x

)
, x > 0

0, else

f is infinitely continuously differentiable in 0, but the Taylor series
would converge to 0.

Definition 6.38. Let aη ∈ K (Multiindex notation) be coefficients ∀η ∈ Nd0.
Then ∑

η∈Nd0

aηx
η

is said to be a (formal) power series with d variables.
A function f : U → K with U neighbourhood around 0 is said to be

analytic in 0, if and only if

∃ε > 0, aη ∈ K : f(x) =
∑
η∈Nd0

aηx
η ∀x ∈ Bε(0)

Remark 6.39. (i) The convergence of the series to S(x) can be defined as
follows: ∀ε > 0 ∃A ⊂ Nd0 finite such that ∀B ⊃ A finite we have∣∣∣∣∣∣

∑
η∈B

aηx
η − S(x)

∣∣∣∣∣∣ < ε
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(ii) If the series converges in (y1, · · · , yn), then it also absolutely converges
in the open cuboid{

x ∈ Rd
∣∣∣ |xi| < |yi| ∀i ∈ {1, · · · , d}}

which means ∑
η∈Nd0

|aη|(|x1|, · · · , |xd|)η <∞

(iii) If the power series converges on a neighbourhood U around 0, then it
is infinitely differentiable and

aη =
∂ηf(0)

η!

with

∂η := ∂η11 ∂η22 · · · ∂
ηd
d η! := η1!η2! · · · ηd!

(iv) The formula above is only rarely useful to calculate the Taylor se-
ries. By inverting it we can calculate the derivative of a known series
representation. E.g.

f(x) = xex
2

= x ·
∞∑
k=0

(x2)k

k!
=

∞∑
=1

k = 0∞
x2k+1

k!
∀x ∈ K

f (k)(0) = 0 is k is even, and it is something else if k is odd.

(v) Cω(U) is the space of all analytic functions.

C(U) ⊃ C1(U) ⊃ C2(U) ⊃ · · · ⊃ Ck(U) ⊃ · · · ⊃ C∞(U) ⊃ Cω(U)

(vi) The analytic functions are closed among sums, products and concati-
nations. A power series is analytic within its converges radius.

Example 6.40. Consider the power series

∞∑
n=0

(xy)n =
∑
η∈N2

0

(xy)η · aη

with

aη = 1 if η1 = η2

aη = 0 else
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This series converges on
{(x, y) | |xy| < 1}

to 1
1−xy .

0-4 -2 2 4

-4

-2

2

4

So the convergence area must not necessarily be a sphere. The limit
function is also defined outside of the convergence area.
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