Mathematics for Physicists

https://www.github.com /Lauchmelder23/Mathematics
Alma Mater Lipsiensis

March 29, 2021

This work is licensed under a Creative Commons
“Attribution-ShareAlike 4.0 International” li- @ @ @

cense.


https://www.github.com/Lauchmelder23/Mathematics
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Contents

Fundamentals and Notation

1.1 Logic. . . . . . . . e
1.2 Sets and Functions . . . . . . . . . . ... ...
1.3 Numbers. . . . . . . . e

Real Analysis: Part I

2.1 Elementary Inequalities . . . . . .. ... ... ... .....
2.2 Sequences and Limits . . .. .. ... ... o o0
2.3 Convergence of Series . . . . . . .. ... ... ..

Linear Algebra

3.1 Vector Spaces . . . . . . . . ...
3.2 Matrices and Gaussian elimination . . . . .. ... ... ...
3.3 The Determinant . . . . . . . . . . ... ... ... ......
3.4 Scalar Product . .. ... ... ... ... ... .. ... .
3.5 Eigenvalue problems . . . . . ... ... o oL

Real Analysis: Part I1
4.1 Limits and Functions . . . . . . . . . . .. ... ... ...,
4.2 Differential Calculus . . . . . . . . . . ... ..

Topology in Metric spaces

5.1 Metric and Normed spaces . . . . . . . . . ... ... .....
5.2 Sequences, Series and Limits . . . . .. ... ... ... ...
5.3 Openand Closed Sets . . . ... ... ... ... .......
5.4 Continuity . . . . . . ..o
5.5 Convergence of Function sequences . . . . . . . .. ... ...

10

20
20
21
35

47
47
55
63
68
73



6 Multivariable Calculus 130
6.1 Partial and Total Differentiability . . . . . . ... ... .. .. 130
6.2 Higher Derivatives . . . . . . ... .. ... ... ... ... 137

6.3 Function Sequences and Differentiability . . . . . . .. .. .. 142



Chapter 1

Fundamentals and Notation

1.1 Logic

Definition 1.1 (Statements). A statement is a sentence (mathematically
or colloquially) which can be either true or false.

Ezxample 1.2. Statements are
e Tomorrow is Monday
e z > 1 where x is a natural number
e Green rabbits grow at full moon
No statements are
e What is a statement?
e x + 20y where x, y are natural numbers
e This sentence is false
Definition 1.3 (Connectives). When ®, ¥ are statements, then
(i) =@ (not ®)
(ii) A ¥ (P and V)

)
)
(ili) ® v ¥ (® or V)
(iv) & = U (if ® then )
)

(v) & <= U (@ if and only if (iff.) ¥)
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are also statements. We can represent connectives with truth tables

Q||| PAV [PVY |[® = T | D < U

t t t t
f
t
t

(i) V is inclusive

- ot e

t
t
f
f

s s

t f f
t t f
f t t
Remark 1.4.

(i) = U, P <= U, & <= U are NOT the same
(ili) & = U is always true if @ is false (ex falso quodlibet)

Definition 1.5 (Hierarchy of logical operators). — is stronger than A and
V, which are stronger than — and <= .

Ezample 1.6.
“PAY = (—@)
PAY <= U = (DA )<:>\If
PV U = VATV X ((=D)V (-V)) = ((-V)A D)

We avoid writing statements like ® AWV ©. A statement that is always true
is called a tautology. Some important equivalencies are
¢ equiv. =(—P))
® — VU equiv. ¥V — P
¢ <— Vequiv. (¢ = V)A(? = D)
& VU equiv. 7(=P A V)

Logical operators are commutative, associative and distributive.

Definition 1.7 (Quantifiers). Let ®(x) be a statement depending on z.
Then Vz ®(z) and Jz ®(z) are also statements. The interpretation of these
statements is

e Vo ®(z): "For all z, &(x) holds.”

e Jz ®(z): "There is (at least one) = s.t. ®(z) holds.”
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Remark 1.8.

(i) Yo « > 1 is true for natural numbers, but not for integers. We must
specify a domain.

(i) If the domain is infinite the truth value of Vo ®(x) cannot be algorith-
mically determined.

(iii) Vo ®(z) and Yy ®(y) are equivalent.
(iv) Same operators can be exchanged, different ones cannot.

(v) Va ®(z) is equivalent to =3Iz —~P(z).

1.2 Sets and Functions

Definition 1.9. A set is an imaginary ”container” for mathematical objects.
If A is a set we write

e x € A for "z is an element of A”
ez ¢ Afor x€ A
There are some specific types of sets
(i) @ is the empty set which contains no elements. Formally: JzVy y ¢ x
(ii) Finite sets: {1,3,7,20}

(iii) Let ®(x) be a statement and A a set. Then {z € A|®(z)} is the set
of all elements from A such that ®(z) holds.

There are relation operators between sets. Let A, B be sets
(i) A C B means " A is a subset of B”.
(i) A= B means ”A and B are the same”

Each element can appear only once in a set, and there is no specific ordering
to these elements. This means that {1,3,3,7} = {3,1,7}. There are also
operators between sets

(i) AU B is the union of A and B.

r€AUB < zc AVz€EB
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(ii) AN B is the intersection of A and B.
r€ANDB <= zc ANz €EB

This can be expanded to more than two sets (AU BUC). We can also
use the following notation. Let A be a set of sets. Then

e

CeA
is the union of all sets contained in A.

(iii) A\ B is the difference of A and B.

r€A\B < x€ ANz ¢ B

(iv) The power set of a set A is the set of all subsets of A. Example:
P({1,2}) = {2, {1},{2},{1,2}}

Theorem 1.10. Let A, B,C be sets. Then

A\(BUC)=(A\B)N(A\C)
\(BﬂC):(A\B)U(A\C)
U(BNC)=(AUB)N(AUC)
N(BUC)=(ANB)U(ANC)

Proof. Let A, B, C be sets.

r€AN(BUC) <= z€ ANzeBUC
< z€AN(zxeBVvzel)
< (x€e ANz eB)V(xeArzel) (1.1)
< rxe€ ANBVzxinANC
— ze€(ANB)U(ANC)

The other equations are left as an exercise to the reader. ]

Definition 1.11. Let A, B be sets. For x € A, y € B we call (z,y) the
ordered pair from «x,y. The Cartesian product is defined as

Ax B=A{(zr,y)|xr € ANy € B}
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Remark 1.12.

(i) (z,y) is NOT equivalent to {x,y}. The former is an ordered pair, the
latter a set. It is important to note that

(x,y) = (a,b) <= z=aAy=0>

(ii) This can be extended to triplets, quadruplets, ...
AxBxC={(z,y,2)|r€ ANye BANze C}
We use the notation A x A = A?

(iii) For R? (R are the real numbers) we can view (z,y) as coordinates of
a point in the plane.

Definition 1.13. Let A, B be sets. A mapping f from A to B assigns each
x € A exactly one element f(z) € B. A is called the domain and B the
codomain.

Figure 1.1: A mapping f: A —> B

As shown in figure 1.1, every element from A is assigned exactly one
element from B, but not every element from B must be assigned to an
element from A, and elements from B can be assigned more than one element
from A. The notation for such mappings is

f:A— B

A mapping that has numbers (N, R, - - - ) as the codomain is called a function.
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Example 1.14.
(i)
f:N— N
n+—2n+1

f:R—R

0 x rational
T —
1 =z irrational

(iii) Addition on N
f:NxN—N

Instead of f(x,y) we typically write x 4+ y for addition.
(iv) The identity mapping is defined as
id A A— A
T T
Remark 1.15 (Mappings as sets).

(i) A mapping f : A — B corresponds to a subset of F' = A x B, such
that

Vee AVy,z€ B (z,y) e FA(z,2) e F = y==z
Vee Adye B (z,y) € F

(ii) Simply writing "Let the function f(z) = 22...” is NOT mathematically
rigorous.

(iii)

f is a mapping from A to B <= f(x) is a value in B
(iv)
fyg: A — B are the same mapping <= Vx € A f(z) = g(x)

Definition 1.16. We call f: A - B
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A B
(a) Injective mapping. There is at (b) Surjective mapping. There is at
most one arrow per point in B least one arrow per point in B

Figure 1.2: Visualizations of injective and surjective mappings

e injective if Ve, 2 € A f(x) = f(Z) = =z =12
e surjective if Vy € B,dx € A f(x) =1y

e bijective if f is injective and surjective

Example 1.17.
(i)
f:N—N
n — n?
is not surjective (e.g. n? # 3), but injective.
(ii)
f:Z—N
n —s n’

is neither surjective nor injective.
(iii)
5 neven
n n+1
5= mnodd

is surjective but not injective.
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Definition 1.18 (Function compositing). Let A, B, C be sets, and let
f:A— B, g: B— C. Then the composition of f and g is the mapping

gof:A—~C
z— g(f(2))
Remark 1.19. Compositing is associative (why?), but not commutative. For
example let
fN—N g:N—N

n+— 2n n——n-+3
Then

fog(n)=2(n+3)=2n+6
gof(n)=2n+3

Theorem 1.20. Let f : A — B be a bijective mapping. Then there exists
a mapping f~1: B — A such that fo f~' =idg and f~'o f =ida. f~'is
called the inverse function of f.

Proof. Let y € B and f bijective. That means 3z € A such that f(z) = y.
Due to f being injective, this  must be unique, since if 3z € A s.t. f(Z) =
f(x) =y, then z = . We define f(z) =y and f~!(y) = z, therefore

Folf 7y =Fff"w)=fle)=y=idply) = fof'=idp (12)
and equivalently

FTlof(a) =ida(z) = f'of=ids (1.3)

O

1.3 Numbers

Definition 1.21. The real numbers are a set R with the following structure
(i) Addition
+:RxR—R
(ii) Multiplication
tRxR—R

Instead of 4+(x,y) and -(z,y) we write x + y and z - y.
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(iii) Order relations

< is a relation on R, i.e. x < y is a statement.
Definition 1.22 (Axioms of Addition).

A1l: Associativity

Va,b,ce R: (a+b)+c=a+ (b+c)

A2: Existence of a neutral element

HVeRVzeR: 2+0=2x

A3: Existence of an inverse element

VeeRI(—x)eR: z+(—x)=0

A4: Commutativity
Ve,yeR: z4+y=y+=x

Theorem 1.23. z,y € R

(i) The neutral element is unique
(ii) Vx € R the inverse is unique
(1)) —(—x) ==
(i) —(z+y) = (—=2) + (-y)

Proof.

(i) Assume a,b € R are both neutral elements, i.e.
VeeR:z+a=z=x+b (1.4)

This also implies that a +b=a and b+ a = b.
— b=bt+aatb=a (1.5)

Therefore a = b.
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(ii) Assume ¢,d € R are both inverse elements of z € R, i.e.
r+c=0=z+d (1.6)
c=0tc=o+d+c2rtctd=0+d=d (1.7)
Therefore ¢ = d.
(iii) Left as an exercise for the reader.
(iv)
z+y+ ((=2) + (=y)) =z +y + (=2) + (-y)
Ad (1.8)
=z+(-2)+y+(-y) =0

Therefore (—x)+ (—y) is the inverse element of (z+y), i.e. —(z+y) =
(=) + (—y).

O

Definition 1.24 (Axioms of Multiplication).

M1: Vz,y,z € R: (zy)z = x(y2)

M2: 1eRVzeR: zl==2

M3: Ve e R\ {0} Jz~teR: 2z '=1

M4: Vx,y e R: zy=yx
Definition 1.25 (Compatibility of Addition and Multiplication).

R1: Distributivity

Ve,y,z€R: z-(y+2)=(x-y)+ (z-2)

R2: 01
Theorem 1.26. z,y € R
(i) 2-0=0
(i) —(x-y) =z (-y) = (-2)-y
(iit) (=) - (—y) =z -y
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(iv) (—x)"' = —(z™") (only for x #0)
(v) zy=0 = 2=0Vy=0

Proof.
(i) z€eR
2 R1
z-0=2-(0+0)=2-04+2-0 (1.9)
24 0=2-0 (1.10)
(i) z,y e R

(iii) Left as an exercise for the reader.
(iv) z € R
r-(~(=0) ) L @ (o)) 2 (o) () T 1 ot (113)

M3 —(—x)_l — 1 1.2(@) (_x)—l _ _($—1) (1.14)

v) z,y € R and 0. Then 3y~ ! € R:
(V) 2,y y y

my:O:xyy*1@x~1%2m:0:0-y*1 (1.15)

Remark 1.27. A structure that fulfils all the previous axioms is called a field.
We introduce the following notation for z,y € R, y # 0

T
4

Definition 1.28 (Order relations).

O1: Reflexivity
VeeR: z<z

02: Transitivity

Ve,y,z€ R: z<yny<z = <z
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03: Anti-Symmetry
Ve,y e R: z<yANy<z = x=y
04: Totality

Ve,ye R: z<yVy<z

O5:
Ve,y,z€R: z<y = z+2<y+z

06:
Ve,ye R: 0<a2AN0<y = 0<zx y

We write x <y forx <yAz#vy
Theorem 1.29. z,y € R

(i) <y = —y< -z

(ii) ©<0Ny<0 = 0<uzxy
(iii) 0 < 1

(iv) 0 <z = 0< a1

(W Oo<z<y = y <zt
Proof.

(i)

= (1.16)

(ii) With y <0 % 0<—yandz <0 % 0 < —z follows from O6:

IA

0< (—z)(-y) ==y (1.17)
(iii) Assume 0 <1 is not true. From O4 we know that
1<0 2 g<11=1 (1.18)

(iv) Left as an exercise for the reader.
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(v)
0<ziro<yt 2B o<ty (1.19)

From z <y follows 0 <y —

28 <(y—z)z ty? i yrly Tt —zely b=t —yt (1.20)
R (1.21)
]

Remark 1.30. A structure that fulfils all the previous axioms is called an
ordered field.

Definition 1.31. Let A C R, x € R.
(i) z is called an upper bound of AifVy e A: y <z
(ii) x is called a maximum of A if x is an upper bound of A and z € A

(iii) « is called supremum of A is z is an upper bound of A and if for every
other upper bound y € R the statement x < y holds. In other words,
x is the smallest upper bound of A.

A is called bounded above if it has an upper bound. Analogously, there exists
a lower bound, a minimum and an infimum. We introduce the notation sup A
for the supremum and inf A for the infimum.

Definition 1.32. a,b € R, a < b. We define
o (a,b):={xeR|la<zAhz<b}
e [a,b ={xeRla<zAz<b}
o (a,00):={reR|a<z}

Ezample 1.33. (—o0, 1) is bounded above (1, 2, 1000, - - - are upper bounds),
but has no maximum. 1 is the supremum.

Definition 1.34 (Completeness of the real numbers). Every non-empty
subset of R with an upper bound has a supremum.

Definition 1.35. A set A C R is called inductive if 1 € A and

€A = zx+1cA
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Lemma 1.36. Let I be an index set, and let A; be inductive sets for every
i€ I. Then (;c; Ai is also inductive.

Proof. Since A; is inductive Vi € I, we know that 1 € A;. Therefore

1e()A (1.22)
iel
Now let & € (;c; Ai, this means that x € A; Vi€ I.
= ztled Viel = z+1e()A (1.23)
iel
0

Definition 1.37. The natural numbers are the smallest inductive subset of

R. Le.
ﬂ A=:N

A inductive

Theorem 1.38 (The principle of induction). Let ®(x) be a statement with
a free variable x. If ®(1) is true, and if ®(xr) = ®(x + 1), then ®(z)
holds for all x € N.

Proof. Define A = {z € R|®(z)}. According to the assumptions, A is
inductive and therefore N C A. This means that Vn € N: &(n). O

Corollary 1.39. m,n € N
(i) m+neN
(i) mn € N

(isi) 1 <n VneN

Proof. We will only proof (i). (ii) and (iii) are left as an exercise for the
reader. Let n € N. Define A = {m € N|m +n € N}. Then 1 € A, since N
is inductive. Now let m € A, therefore n +m € N.

= n+m+1eN (1.24)
< m+1lecA (1.25)
Hence A is inductive, so N C A. From A C N follows that N = A. O

Theorem 1.40. n € N. There are no natural numbers between n and n+1.
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Heuristic Proof. Show that x € NN (1,2) implies that N\ {z} is inductive.
Now show that if NN (n,n+1) = @ and z € NN (n+1,n+ 2) then N\ {z}
is inductive. O

Theorem 1.41 (Archimedian property).
VeeRIneN: z<n
Proof. If x < 1 there is nothing to prove, so let > 1. Define the set
A={neN|n <z} (1.26)

A is bounded above by definition. There exists the supremum s = sup A.
By definition, s — 1 is not an upper bound of 4, i.e. Ame A: s—1<m.
Therefore s < m + 1.

meACN = m+1eN (1.27)

Since s is an upper bound of A, this implies that m + 1 ¢ A, so therefore
m-—+1>ux. O

Corollary 1.42. Every non-empty subset of N has a minimum, and every
non-empty subset of N that is bounded above has a mazrimum.

Proof. Let A C N. Propose that A has no minimum. Define the set
A:={neN|¥meA: n<m} (1.28)

1 is a lower bound of A4, but according to the proposition A has no minimum,
so therefore 1 ¢ A. This implies that 1 € A.

neAd = n<mVmeA (1.29)

But since there exists no natural number between n and n + 1, this means
that n + 1 is also a lower bound of A, and therefore

n+l<mVmeAd — n+lecd (1.30)
So A is an inductive set, hence A = N. Therefore A = @. ]
Definition 1.43. We define the following new sets:

Z:={zxeR|zxeNyV(—z) €Ny}

Q:= {Zp,qGZAq#O}

Z. are called integers, and Q are called the rational numbers. Ny are the
natural numbers with the 0 (Ng = NN {0}).
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Remark 1.44.
r2,ye€l = rz+y,x-y,(—x) €L
1y€Q = z+y,z-y,(—z)€Qandz ' € Qif x #0
The second statement implies that Q is a field.
Corollary 1.45 (Density of the rationals). z,y € R, = <y. Then
IreQ: z<r<y

Proof. This proof relies on the Archimedian property.

1 1
dgeN: y<q<<:>q<y—:r> (1.31)

Let p € Z be the greatest integer that is smaller than y - q. The existence of
p is ensured by corollary Corollary 1.42. Then % <y and

1
p+12y-q:>y§g+*<£+(y—x) (1.32)
q (g q
p
= < =<y (1.33)
q
O

Definition 1.46 (Absolute values). We define the following function
|-+ R —[0,00)
x ,x >0
x—
{—x ,x <0

Theorem 1.47.
z,y ER = |zy| = |z||y]

Proof. Left as an exercise for the reader. O
Definition 1.48 (Complex numbers). Complex numbers are defined as the
set C = R2. Addition and multiplication are defined as mappings CxC — C.
Let (2,y), (.7) € C.

(z,9) + (2,9) = (x + 2,y + 9)
C is a field. Let z = (z,y) € C. We define
R(z) = Re(z) =z the real part

) =Im(z) =y the imaginary part
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Remark 1.49.

(i) We will not prove that C fulfils the field axioms here, this can be
left as an exercise to the reader. However, we will note the following
statements

e Additive neutral element: (0,0)

Additive inverse of (x,y): (—z, —y)

e Multiplicative neutral element: (1,0)
e Multiplicative inverse of (x,y) # (0,0): (%_Hﬂ’ —%erz)
(ii) Numbers with y = 0 are called real.

(iii) The imaginary unit is defined as i = (0,1)

0,1) - (z,9) = (=y, )

Especially
#=(0,1)> = (-1,0) = —(1,0) = —1

We also introduce the following notation
(z,y) = (z,0) +i-(y,0) =z + iy

Theorem 1.50 (Fundamental theorem of algebra). Every non-constant,
complex polynomial has a complex root. Le. form € N, ag, - ,ap, € C,
oy # 0 there is some x € C such that

n
g ' = ap 4+ a1z + aer? + -+ apz™ =0
i=0

Proof. Not here. O



Chapter 2

Real Analysis: Part 1

2.1 Elementary Inequalities

Example 2.1.
ez cR — 22>0
e 22 —2zy+1y’=(x—9y)?>0 Vo,ycR
o 2% +y* > 2y
Theorem 2.2 (Absolute inequalities). Let x € R, ¢ € [0,00). Then
(1) —lz] <z < |z
(i1) |z| < ¢ <= —c<z<c
(iii) || > ¢ <= < —cVec<cx
() |z =0 <= =0
Theorem 2.3 (Triangle inequality). Let z,y € R. Then
[z +y| < 2|+ |yl
Proof. From Theorem 2.2 follows z < |z| and y < |y|.
= 4y <[z + |yl (2.1)
However, from the same theorem follows —|z| < z and —|y| < y.

= —|z[—|yl=2+y (2.2)
= |z +y| < |z + |y

20
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Corollary 2.4. n €N, x1,--- ,x, € R. Then

n n
D @i < i
i=1 i=1

Proof. Proof by induction. Let n = 1:

|z1] < |1 (2.4)

This statement is trivially true. Now assume the corollary holds for n € N.
Then

n+1 n n
S ai| =D mit | <D an| + 2]
i=1 i=1 i=1
n
< il + |2nal (2.5)
=1
n+1

= |l
i=1
O
Theorem 2.5 (Bernoulli inequality). Let x € [-1,00) and n € N. Then
(1+z)">1+nx
Proof. Proof by induction. Let n = 1:
l+z>1+4+1-x (2.6)
This is trivial. Now assume the theorem holds for n € N. Then
1+2)" =0 +2)"1+2z)>1+nz)(1+2)

=14 (n+ 1z + na? (2.7)
>1+(n+ 1z

O]

2.2 Sequences and Limits

Definition 2.6. Let M be a set (usually M is R or C). A sequence in M
is a mapping from N to M. The notation is (zy,)neny C M or (z,) C M. x,
is called element of the sequence at n.
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Example 2.7. Some real sequences are

® Tp = 22:1 k
e 1, = "smallest prime factor of n”  (%,2,3,2,5,2,7,2,3,2,---)

Definition 2.8 (Convergence). Let (z,) C R be a sequence, and x € R.
Then

() converges to x <= Ve >03IN €N: |z, —z[<e Vn>N

A complex sequence (z,) C C converges to z € C if the real and imaginary
parts of (z,) converge to the real and imaginary parts of z. x (or z) is called
the limit of the sequence. Common notation:

n—oo 3 —
Ty — T Ty —— T T}LH;oxn—x

If a sequence converges to 0 it is called a null sequence.
Ezample 2.9.

(i) = € R, z, = = (constant sequence). This sequence converges to z. To
show this, let ¢ > 0. Then for N = 1:

|z, —z| =z —2z|=0<e¢
(ii) x, = % is a null sequence. Let € > 0. By the Archimedean property:
1
dJNeN: -<N

Then for n > N:

(iii) The sequence

does not converge.

Remark 2.10. A property holds for almost every (a.e.) n € N if it doesn’t
hold for only finitely many n. (e.g. n < 10 is true for a.e. n € N)
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Theorem 2.11. A sequence (x,) C R (or C) has at most one limit.

Proof. Propose that z, % are different limits of (x,). Without loss of gener-

ality (w.l.o.g.) we can write z < Z. Now define € = (& — 2) > 0.

Ty —> x <= dNp: a:ne(x—e,a:+e):<x—e,x—;$> (2.8)

Ty — T <= dNy: xne(i—e,i+e):<x;x,x+e) (2.9)

Since these intervals are disjoint, the proposition led to a contradiction. [J

Theorem 2.12. Let (x,) C R (or C) be sequence with limit x € R. Then
formeN

lim zp4m =2
n—oo

Proof. Left as an exercise for the reader. O

Definition 2.13. The sequence (z,,) C R is bounded above if {z,, |n € N}
is bounded above. A number K € R is an upper bound if Vn e N: z, < K.

Theorem 2.14. Every convergent sequence is bounded.

Proof. Let (z,,) C R converge to x € R. For e = 1 we trivially know that

ANeNVR>N: |z, —z[<e=1 (2.10)
Let
K = max{z1,x9, - ,oN, || + 1} (2.11)
Then
|z, < K VneN (2.12)

This is trivial for n < N. For n > N we can use the triangle inequality:
n| = [(2n — ) + 2] < |z — 2| + |2 <[z +1 (2.13)
O

Theorem 2.15. If (z,) C R bounded and (y,) C R null sequence, then
(n) - (yn) is also a null sequence.
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Proof. 1f (x,,) is bounded, this means that 3K € (0, c0) such that
|z, < K VneN (2.14)
Since (yp,) is a null sequence we know that
Ve>03dN e NVn>N: |y, <e (2.15)

Now let € > 0, then 3N € N such that

€

> N : n 2.16

Vn > lyn] < 3¢ (2.16)

@0 -yl = [eallyal < K= =€ (2.17)

Therefore (z,,)(y,) is a null sequence. O

Theorem 2.16 (Squeeze theorem). Let (xy,), (yn), (2n) C R be sequences
such that

for a.e. n € N, and let ,, = x, z, — x. Then

lim y, ==z
n—0o0

Proof. Let € > 0. Then 3Ny, No, N3 € N such that

Vn> Ny z, <yp <z (2.18)
Vn>Ny: |z, —x|<e€ (2.19)
Vn > Ng: |z, —x|<e€ (2.20)

Choose N = max{Ny, Na, N3}. Then
Vn>N: —e<zp—c<yp,—cx<z,—x<e€ (2.21)
Therefore |y, — x| < € O

Ezample 2.17. Yn € N: n < n? (why?).

1 1 . 1
— 0< =< - = lim — =0
nZ2 —n n—oo n2

Theorem 2.18. Let (x,,), (yn) C R and x, — x, yp — y. Then x < y.

Proof. Left as an exercise for the reader. O
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Remark 2.19. If x, < y, Vn € N, then x = y can still be true.
Lemma 2.20. Let (z,) € R and = € R.

(xn) — & <= (|xn — z|) is null sequence

Especially:
(xr) null sequence <= |x,| null sequence

Proof.
||zn, — x| — 0| = |2y, — 2 (2.22)

O]

Theorem 2.21. Let (z,), () C R (or C) with x,, = =, yp =y (x,y € R).
Then all of the following are true:

(1)

Jig on o =24y = Ly an + Jim un

(i)

lim zpy, =2y = lim x, - lim y,
n—oo n—oo n—oo

(iii) If y # 0:
. Xy T lim,,—voo T,
lim —=-=_—"—""—
n—=00 Yn Yy limy, 00 Yn

Proof.
(i) Let € > 0. Then 3N, Ny € N such that

Yn> Nl —a] < % (2.23)
Vn>Ny: |y, —y| < % (2.24)
Now choose N = max{Ny, No}. Then Vn > N:
T +yn — (@ +y)| = [(@n — 2) + (yn — y)]
< |zn — 2 + |yn — ¥l (2.25)
2 72" €

= Tp+yYn — 2ty (2.26)
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(ii)
0 < |Tnyn — Y| = [(Tnyn — T0y) + (Tpy — zy)|

< |zn(yn — )| + (20 — 2)y (2.27)
= |@n||yn — y| + |20 — 2||ly] — 0

Therefore |z,y, — zy| is a null sequence and

iii) Now we need to show that if 0 then L+ —
y #

m % We know that
ly| > 0. So 3N € N such that

|y

Vn>N: |y, —y| < o (2.29)
This implies that
Yn>N: 0< |22/| < |yn| (2.30)

From this we now know that i is defined and bounded

1 1 2
=< = (2.31)
Yn| |ynl = 1yl
So finally
1 1 1 1 1 1
S )= wl] o e
Yn Yy Yn ) Yn )
And therefore
Yp —> Y = Yn — 1
Yy
Thin 2151 _ Y01 4 o null sequence (2.33)
Yy
Lem. 2.20 1 1
— _— — —
Yn Yy
O

Corollary 2.22. Letk € N, ag, -+ ,ax,bo,- -+ ,br € R and by, # 0. Then

iy 0T+ aomn? + -+ ap_inf N+ apnt  ag
11m —
n—00 by + byn + bon2 + -+ bp_nk—1 + bpnk by
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Proof. Multiply the numerator and the denominator with —¢
n
G4+ B+l g
n_nkl 7 n T, (2.34)
0

b b be—1

Ezample 2.23. Let x € (—1,1). Then lim, o 2™ =0

Proof. For x = 0 this is trivial. For x # 0 it follows that || € (0,1) and

ﬁ € (1,00). Choose s = ﬁ — 1 > 0 and apply the Bernoulli inequality

(Theorem 2.5).

(I+s)">14n-s (2.35)
1 " 1 1 1 -0
0< |z|" = - < A R
1+s (1+s)" " 14n-s 14n-s
The squeeze theorem now tells us that |2 = |z|* — 0 and therefore 2™ —
0. O

Definition 2.24. A sequence (z,,) C R is called monotonic increasing (de-
creasing) if x, 41 > xy (Tpy1 < @) Yn € N.

Theorem 2.25 (Monotone convergence theorem). Let (z,) C R be a mono-
tonic increasing (or decreasing) sequence that is bounded above (or below).
Then (x,,) converges.

Proof. Let (z,,) be monotonic increasing and bounded above. Define
x =sup{x,|n € N} (2.37)
A

Now let € > 0, then = — € is not an upper bound of A, this means AN € N
such that zy > x — e. The monotony of (x,) implies that

Vn>N: z, >z —¢ (2.38)
So therefore
rT—e<Tp<TH+e = |z, —x|<e€ (2.39)
O
Remark 2.26.
(z5,) is monotonic increasing <= Tntl >1 VneN
Tn
(z5,) is monotonic decreasing <= Tntl <1 VneN

Tn
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Example 2.27. Consider the following sequence

1’1:1
1 a
:L'nJrl:i <$n+>a ac [0,00)
n

Notice that 0 < z,, Vn € N. For n € N one can show that

1 a? 1 a?
xi+1:4<az%—l—2a+$2> :4<xi—2a+362>+a

n n

2
1 a
:<xn—> +a>a
4 Ty

So x?L > a VYn > 2, and therefore x% < x,. Finally

1 a 1
$n+1=2<wn—|—xn) §§($n+$n)=£€n Vn > 2

This proves that (z,) is monotonic decreasing and bounded below.

Theorem 2.28 (Square root). This theorem doubles as the definition of the
square root. Let a € [0,00). Then 3z € [0,00) such that x* = a. Such an
is called the square Toot of a, and is notated as r = +/a.

Proof. First we want to prove the uniqueness of such an x. Assume that

2? = y? = a with 2,y € [0,00). Then 0 = 22 — y? = (z — y)(z + ¥).

= r+y=0 = z=y=0 (2.40)

Now to prove the existence, review the previous example.
xn — x for some z € [0, 00) (2.42)
By using the recursive definition we can write
2y Tpp1 =22 4+a — 22 +a (2.43)

— 2’ =240 = 2°=a (2.44)
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Remark 2.29. Analogously 3lz € [0,00) Va € [0,00) such that 2" = a.

(Notation: {/a or = = a%). We will also introduce the power rules for
rational exponents. Let z,y € R, u,v € Q.

(:E . y)'LL — xuyu ‘,B'U, . :L,'U — xu—l—v (x’ll,)’l) — :E’U"U
Theorem 2.30. Let z,y € R, n € N. Then
0<z<y = Vo< Yy
Let n,m e N, n<m, x € (1,00), y € (0,1). Then
Vo> N Vy < Xy
Proof. Left as an exercise for the reader. O
Theorem 2.31. Let a € (0,00). Then
lim {/n=1 lim {/a=1
n—oo n—oo
Proof. Let € > 0. Then
N noey (2.45)
(n+¢e)n
This means that n
AINeNVn>N: ——<1 (2.46)
(n+€)"

Therefore
n<(l+e = l-e<1<Yn<lde <= |[VYn-1]<e (247

This proves the first statement. The second statement is trivially true for
a=1,s0let a > 1. Then dn € N such that a < n:

= 1< Va< Yn——1 (2.48)
Squegre p/g 12 (2.49)

Now let a < 1. Then é <1

n—00 n—oo ,/1 1

Definition 2.32. Let z € C, z,y € R such that z = z + iy.

|2| == V2z = Va2 + y2
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Theorem 2.33. Let u,v € C. Then

1 1
|- v = |ul|v] ul T Tl lu+v| < |ul + |v]
Proof.
luv| = Vuv - uv = Vi - v0 = Vui - Voo = |ul|v] (2.51)
1 1 1 1

For the final statement, remember that complex numbers can be represented
as z = x + 1y, and then

So therefore
lu+of* = (u+v)- (@ +7)
= uu + vu + uv + vo

= \u|2 + 2Re(uv) + MZ

< |uf* + 2|av| + |v|? (2.55)
= [ul? + 2lulfv] + |v]?
= (|ul + |v])?

]

Lemma 2.34. Let (z,) C C, z € C.
(zn) —— 2z <= (|zn — z|) null sequence

Proof. Let x, = Re(z,) and y, = Im(z,). Then x = Re(z) and y = Im(2).
First we prove the ” <=7 direction. Let (|2, — z|) be a null sequence.

0 <l|zn|—|z| =|Re(zn — 2)| < |2n — 2| —— 0 (2.56)

Analogously, this holds for y, and y. We know that (|z, — z|) is a null
sequence if x,, —— x (same for y, and y), therefore

= zp —— 2 (2.57)
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To prove the ” =7 direction we use the triangle inequality:

0<|zn — 2| = |(zn — ) +i(yn — )|

< lan — 2+ |ilyn —y)| — 0 (2.58)
N———
[yn—yl
By the squeeze theorem, |z, — z| is a null sequence. ]

Remark 2.35. Lemma 2.34 allows us to generalize Theorem 2.21 and Corol-
lary 2.22 for complex sequences.

Definition 2.36 (Cauchy sequence). A sequence (z,,) C R (or C) is called
Cauchy sequence if

Ve>03INeNVn,m>N: |z, —x,| <e

Theorem 2.37 (Cauchy convergence test). A sequence (z,) C R (or C)
converges if and only if it is a Cauchy sequence.

Proof. Firstly, let (x,) converge to z, and let € > 0. Then

€

AN eNVn> N : \xn—x|<2 (2.59)
So therefore Vn,m > N:
[Ty — | = |2n — 2+ 2 — 2| <|zp — |+ |z — 20| <€ (2.60)

This proves the ” = 7 direction of the theorem. To prove the inverse let
() be a Cauchy sequence. That means

ANeNVn,m>N: |z, —zn| <1 (2.61)
= |ZTp| = |Zp —2N t2N| < |Tp —TN|+|T
0| = on — 2N + o8| < |20 — 25|+ |2N] (2.62)
<l|lzn|+1 Vn>N
We will now introduce the two auxiliary sequences
Yn = sup{zy |k > n} zp = inf{zy |k > n} (2.63)

(yn) and (z,) are bounded, and for n < n

{zg |k >n} D{zr|k>n} (2.64)
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= yp = sup{zglk > n} <sup{ailk > n} =ys (2.65)

— (z,,) monotonic decreasing and therefore converging toy  (2.66)
Analogously, this holds true for (z,) as well. Trivially,
Zn < Tn < Yn (2.67)

If y = z, then (x,) converges according to the squeeze theorem. Assume
z <y. Choose € > 5% > 0. If N is big enough, then

sup{zy |k > N} =yn >y —e (2.68)
inf{zxy |k >N} =2y <z+e (2.69)

So for every N € N, we know that
Jdk>N: xp>y— 2 (2.70)
A>N: 2 <z+2€ (2.71)
For these elements the following holds

Yy—z
2

(2.72)

|z — 21| > €=

This is a contradiction to our assumption that (x,) is a Cauchy sequence,
so y = z and therefore (z,,) converges. O

Remark 2.38.
(i) @, = (—1)™. For this sequence the following holds
VneN: |z, —zp1| =2
So this sequence isn’t a Cauchy sequence-
(ii) It is NOT enough to show that |z, — x,11| tends to 0! Example:

(zn) = /n

B _ Y tltvn
VRt l= V= (Vad -V S

At
vn+1+yn
]- nA)OOO

T Vntl+vn

However (y/n) doesn’t converge.
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(ili) We introduce the following

Limes superior limsup 2, = lim sup{zy |k > n}
n—00 n—=oo
Limes inferior liminf z, = lim inf{zy |k > n}

limsup,,_,, zn, > liminf,, . x, always holds, and if (x,) converges
then
n—oo . . .
T, —— ¢ <= limsupz, = liminfz,
n—00 n—oo
Definition 2.39. A sequence (z,) C R is said to be properly divergent to
oo if
Vk € (0,00) AN ENYR>N: z, >k
We notate this as
lim x, = o0
n—o0

Theorem 2.40. Let (z,) C R be a sequence that diverges properly to oo.

Then 1
lim — =0
n—0o Ty,

Conversely, if (yn) C (0,00) is a null sequence, then

1
lim — = o0
n—0 Yp

Proof. Let € > 0. By condition
1 1
AN eNVn>N: |z, > - (<:>||<e> (2.73)
€ ZTn

Therefore ﬁ is a null sequence. The second part of the proof is left as an
exercise for the reader. O

Remark 2.41 (Rules for computing). In this remark we will introduce some
basic "rules” for working with infinities. These rules are exclusive to this
topic, and are in no way universal! This should become obvious with our
first two rules:

1 1

:I:oo:0 6200
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Obviously, division by 0 is still a taboo, however it works in this case since
we are working with limits, and not with absolutes. Let a € R, b € (0, 00),
€ (1,00), d € (0,1). The remaining rules are:

a + 00 = 00 a—00=—00
00 + 00 = 00 —00 — 00 = —00
b-0o =00 b (—00) = —00
00+ 00 = 00 00+ (—00) = —00
¢ = o0 c =0
d* =0 d> =00

There are no general rules for the following:
00 — 00 > 0-00
00

1OO

Theorem 2.42. Let (z,,) C R be a sequence converging to x, and let (k,) C
N be a sequence such that
lim k, = o0

n—oo
Then
lim xx, ==
n—oo
Proof. Let € > 0. Then
ANeNVR>N: |z, —x|<e (2.74)
Furthermore ) )
INeNVR>N: k,>N (2.75)
Therefore B
Vn>N: |z, —z|<e (2.76)

Ezxample 2.43. Consider the following sequence
S n%" 4 2n"
nT 3 _opgn
This can be rewritten as
n? +2n"  (n")?%+2(n")

n3n —npn (nn)?) _ (nn)

Introduce the subsequence k, = n™:

k242K o onIm 4 oopn
lm ——F=0 = lim —/— =0
k—oo k3 —k n—oo N3 — pht
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2.3 Convergence of Series

Definition 2.44. Let (z,,) C R (or C). Then the series

o0

D

k=1
is the sequence of partial sums (s,):

n
o=
k=1

If the series converges, then Y77 denotes the limit.

Theorem 2.45. Let (x,) CR (or C). Then

o0
an converges = (x,,) null sequence

n=1
Proof. Let s, = > >°; xp. This is a Cauchy series. Let € > 0. Then
AN eNVn>N: |spt1 — Sn| = |Tnt1| <€ (2.77)
O
Ezample 2.46 (Geometric series). Let x € R (or C). Then
(o.9]
Dt
k=1

converges if |z| < 1. (Why?)

Ezample 2.47 (Harmonic series). This is a good example of why the inverse
of Theorem 2.45 does not hold. Consider

Tp = —
n

This is a null sequence, but Y32 ; + does not converge. (Why?)

Lemma 2.48. Let (x,) C R (or C). Then

[ee) [e.e]
an converges <= E Ty converges for some N € N
k=1 k=N
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Proof. Left as an exercise for the reader. O

Theorem 2.49 (Alternating series test). Let (xy,) C [0,00) be a monotonic
decreasing null sequence. Then

> (—1)Fay,

k=1

converges, and
N

STk = Y (- DFag| < ey
k=1 k

=1

Proof. Let s, = Zzzl(—l)kxn, and define the sub sequences a, = sop,
bn, = Son+1- Then

Upt1 = S2n — (Tant+1 — Tont2) < Sop = apn (2.78)
>0

Hence, (a,) is monotonic decreasing. By the same argument, (b,,) is mono-
tonic decreasing. Let m,n € N such that m < n. Then

by < by = ap — Topg1 < ap < apy (279)

Therefore (ay,), (by) are bounded. By Theorem 2.25, these sequence converge

(an) =25 a (bp) =25 b (2.80)
Furthermore
bp — Gp = —ZTopi] —0 = a=b (2.81)

From eq. (2.79) we know that

by <b=a<ap (2.82)

So therefore
|son —al =an —a < ap — by = Tyl (2.83)
|52n+1 - a’ =b—byp < amy1 — by = T2 (284)
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Ezample 2.50 (Alternating harmonic series).

1 1 1 1 1 1 1 1
:<1_2>_4+<3_6>_8+<5_10>_12
1 1 1 1. 1 1
"2 176 8 w0 12"

:1<1_1+1 111 )
2 2 3 4 5 6

1

_53

But s € [%, 1], this is an example on why rearranging infinite sums can lead
to weird results.

Remark 2.51.

(i) The convergence behaviour does not change if we rearrange finitely
many terms.

(ii) Associativity holds without restrictions

o o
Zwk = Z(l‘zk + Tok-1)
k=1 k=1
(iii) Let I be a set, and define
I —R
7 — a;

Consider the sum

S

i€l
If I is finite, there are no problems. However if [ is infinite then the
solution of that sum can depend on the order of summation!

Definition 2.52. Let (z,,) C R (or C). The series > ;- xj, is said to con-
verge absolutely if > "7, |zx| converges.
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Remark 2.53. Let (z,) C [0,00). Then the sequence
n
=D
k=1

is monotonic increasing. If (s,) is bounded it converges, if it is unbounded
it diverges properly. The notation for absolute convergence is

oo
Z |z| < 00
k=1

Lemma 2.54. Let Y 2 x) be a series. Then the following are all equivalent
(1)
o0
Z:L‘k converges absolutely
k=1
(i)
(> in

kel

ICN ﬁm’te} s bounded

(iii)
Ve > 03I CN finite VJ C N finite: Y |ag| < e
keJ\I

Proof. To prove the equivalence of all of these statements, we will show that
(i) = (ii) = (iii) = (i). This is sufficient. First we prove (i) =
(ii). Let

[e.e]

> Jan| =k € [0,00) (2.85)

n=1

Let I C N be a finite set, and let N = max . Then

N o)
D Lzl <D fnl % > lzal (2.86)
n=1 n=1

nel
Monotony of the partial sums

Now to prove (ii) = (iii), set

w3

kel

ICN ﬁnite} (2.87)
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Let € > 0. Then by definition of sup

31 CN finite: Y |ax] >k —¢ (2.88)
kel

Let J C N finite. Then

k—e<d fagl < ) |kl <K (2.89)
kel keluJ
Hence
Dlrkl= D lal =) lwkl <e (2.90)
keJ\I keluJ kel

Finally we show that (iii) = (i). Choose I C N finite such that

VJ CN finite: > |ayl <1 (2.91)
keJ\I

Then VJ C N finite

Dol < D7 Jakl ) lawl <D Janl +1 (2.92)

keJ keJ\I kel kel

Therefore Y, |zx| is bounded and monotonic increasing, and hence it is
converging. So Y o |zx| < co. O

Theorem 2.55. FEvery absolutely convergent series converges and the limit
does not depend on the order of summation.

Proof. Let Y .2, x be absolutely convergent and let € > 0. Choose I C
N finite such that
VICN: ) ol <e (2.93)
kel

Choose N = max I. Define the series

n
Sn=» a4 (2.94)
k=1
Then for n <m < N
n
lsn—sml < D Jul <) ] <e (2.95)
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Hence s, is a Cauchy sequence, so it converges. Let ¢ : N — N be a bi-
jective mapping. According to Lemma 2.54 the series > ;- T(n) CONVETZES
absolutely. Let € > 0. According to the same Lemma

€

5 (2.96)

I C N finite V.J C N finite: > [ay| <
keJ\I

Choose N € N such that
Then for n > N

Dom =Y wm|=| D m— > m
k=1 k=1

ke{l,-- ,N]\I ke{p(1),+,¢(n)I\I (2.98)

E: h%‘+— E: \xk\<e

ke{l,- ,NJ\I ke{a(1),+,¢(n)\I

IN

Therefore

lim_ (Z T — Z%(k)) =0 (2.99)
k=1 k=1

O
Theorem 2.56. Let Y .-,z be a converging series. Then
[e.e] o0
D a7 fak
k=1 k=1
Proof. Left as an exercise for the reader. O

Theorem 2.57 (Direct comparison test). Let Y o, xp be a series. If a
converging series Y,y exists with |xi| < yg for all sufficiently large
k, then Y ;2 x) converges absolutely. If a series > oz, diverges with
0 <z <z, for all sufficiently large k, then Y 2= xy diverges.

Proof.

n n n oo
Z || < Zyk = Zxk bounded “23> Z |zl < oo (2.100)
k=1 k=1 k=1 k=1

n n oo
sz < ka = Zxk unbounded (2.101)
k=1 k=1 k=1

O]
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Corollary 2.58 (Ratio test). Let (z,,) be a sequence. If 3g € (0,1) such
that

Tn+1
Tn

<q

for a.e. n € N, then Y 32, x), converges absolutely. If

Tn+1
Tn

>1

then the series diverges.

Proof. Let ¢ € (0,1) and choose N € N such that

vn>N: | <y (2.102)
T
Then
lenal < alewl, fonal < gzl < land, - (2.103)
This means that
o) N 00
Dolael <D lml+ Y Vo] < oo (2.104)

Hence, > 72, zj, converges absolutely. Now choose N € N such that

Vn>N: |Zfi s (2.105)
Ty,
However this means that
|Tpt1] > |zn| YR > N (2.106)

So (xy) is monotonic increasing and therefore not a null sequence. Hence
> pe x diverges. O

Corollary 2.59 (Root test). Let (zy,) be a sequence. If 3¢ € (0,1) such

that
Vizal < q

for a.e. n €N, then Y2, x), converges absolutely. If

Vien| >1

for alln € N then Y 72 | x), diverges.
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Proof. Left as an exercise for the reader. O

Remark 2.60. The previous tests can be summed up by the formulas

. ':UTL+1 . n

| o | <7 a3l Vlem| <1
. xn-i—]. : n

HILH;O . > 1 nlglgo Vien| > 1

for convergence and divergence respectively. If any of these limits is equal
to 1 then the test is inconclusive.

Example 2.61. Let z € C. Then

k

exp(z) := Z %

k=0
converges. To prove this, apply the ratio test:

2[Rz
(k+1)z)F  k+1

The function exp : C — C is called the exponential function.

Remark 2.62 (Binomial coefficient). The binomial coefficient is defined as

()= (i30) = () v

and represents the number of ways one can choose k objects from a set of n

objects. Some rules are
<:> =0 ifk>n

(1)

(i)

(iii)
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(iv)
Ve,ye C: (z+y)" Z()k”k

k=1

Theorem 2.63.

Vu,v € C: exp(u+v) =exp(u) - exp(v)

Proof.
exp(u) - exp(v) = (Z l;;) : <Z Z:) = Z Z Z::,:ll
n=0 m=0 n=0m=0 "

Remark 2.64. We define Euler’s number as
e :=exp(1)

We will also take note of the following rules Va € C,n € N

exp(0) = exp(z) exp(—z) =1 = exp(—z) = )

exp(nz) =exp(r +x+x+ -+ x) = exp(x)
1 T
exp(z)n = exp(;)

Alternatively we can write
z

exp(z) =e
Theorem 2.65. Let x,y € R.

(i)

r <y = exp(z) < exp(y)

43
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(i)
exp(z) >0 Vz eR
(iii)
exp(z) >1+z VxeR
(i)
nd
lim =0 VdeN
n—oo exp(n)
Proof.
(i) Left as an exercise for the reader.
(ii) For x > 0 this is trivial. For z <0
(@)= —— >0 (2.108)
exp(x) = o .
(iii) For x > 0 this is trivial. For z <0
ok
x
> o (2.109)
k=0
is an alternating series, and therefore the statement follows from The-
orem 2.49.
(iv) Let d € N. Then Vn € N
0< ™ N (2.110)
exp(n) arl %’f '
O

Definition 2.66. Define
sin,cos : R — R
as

sin(z) := Im(exp(iz))
cos(z) := Re(exp(iz))
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Remark 2.67.

(i) Euler’s formula
exp(ix) = cos(z) + isin(x)

(ii) V2 € C: exp(z) = exp(2)

|exp(iz)|* = exp(iz) - exp(iz) = exp(iz) - exp(—iz) = 1

Also:
1 = cos?(z) + sin’(z)

On the symmetry of cos and sin:

cos(—x) + isin(—x) = exp(—ix) = exp(ix) = cos(z) — isin(x)

(iii) From

— (iz)
exp(iz) = ) k‘ ((*=1,i'=i,i’=—-1,i=—i,i*=1,--)
k=0 )

follow the following series
k 2k+1 0 (—1)k$2k
sin(x Z 2k+1 cos(x):zi(%:)!
k=0 k=0
(iv) For x € R
exp(i2z) = cos(2x) + i sin(2z)
= (cos(z) + isin(z))?

= cos?(z) — sin?(z) + 2i sin(z) cos(z)

By comparing the real and imaginary parts we get the following iden-
tities

cos(2x) = cos?(z) — sin?(x)
sin(2z) = 2sin(x) cos(x)

(v) Later we will show that cos as exactly one root in the interval [0, 2].
We define 7 as the number in the interval [0, 4] such that cos(%) = 0.

— sin(g) S

cos and sin are 27-periodic.
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Theorem 2.68. Vz € C

Z n
lim (1+7) — lim
n

n—oo

Proof. Without proof.
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Chapter 3

Linear Algebra

3.1 Vector Spaces

We introduce the new field K which will stand for any field. It can be either
R, C or any other set that fulfils the field axioms.

Definition 3.1. A vector space is a set V with the operations

Addition Scalar Multiplication
+: VXV —V KXV —V
(z,y) —z+y (o, y) — ax

We require the following conditions for these operations
(i) 0eVVeeV: z4+0=x

(i) Ve e VI(—z)eV: z4+(—2)=0

(iii) Ve,y e V: z+y=y+zx

(iv) Vo,y,z€V: (z+y)+z=2+ (y+2)

(v) Vo eKVz,yeV: alz+y)=ar+ay
(vi) Va, e KV e V: (a+f)r=azr+ fz
(vil) Yo, B e KVz e V1 (af)z = a(fz)
(vili) Ve e V: 1l-z=x

Elements from V are called vectors, elements from K are called scalars.

47
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Remark 3.2. We now have two different addition operations that are denoted
the same way:

(i) +: VxV =V
(i) +: KxK—K

Analogously there are two neutral elements and two multiplication opera-
tions.

Example 3.3.
(i) K is already a vector space

(i) V = K2 In the case that K = R this vector space is the two-
dimensional Euclidean space. The neutral element is (0,0), and the
inverse is (x1, x2) = (—x1, —x2). This can be extended to K".

(iii) K-valued sequences:

V= {(X”)neN‘XeK Vn € N}

(iv) Let M be a set. Then the set of all K-valued functions on M is a
vector space
V=A{f|f:M—K}

Definition 3.4. Let V be a vector space, let x,z1,--- ,x, € V and let
MCV.
(i) x is said to be a linear combination of z1,- -,z if Jag, -+ ,a, € K
such that

n
Tr = E AT}
k=1

(ii) The set of all linear combinations of elements from M is called the
span, or the linear hull of M

n
span M := {Z QT

k=1

neN, ar, - ,a, €K, x1,~~,xn€V}

(ili)) M (or the elements of M) are said to be linearly independent if
Vai, - ,a, €K, 1, - ,x, €V
n
Zakazkzo — a1=ag=---=a, =0
k=1
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(iv) M is said to be a generator (of V) if

span M =V

(v) M issaid to be a basis of V' if it is a generator and linearly independent.

(vi) V is said to be finite-dimensional if there is a finite generator.

Ezample 3.5.

(i)

(i)

For V = R? consider the vectors x = (1,0), y = (1,1). These vectors
are linearly independent, since

ar + pfy =a(1,0)+ 4(1,1) =(0,0) = a+F=0AF=0
So therefore a = 8 = 0. We can show that span{z,y} = R? because
(a,8) = (a =Bz + Py
So {z,y} is a generator, hence R? is finite-dimensional.

For V = R3 consider z = (1,-1,2), y = (2,—1,0), 2 = (4,-3,3).
These vectors are linearly dependent because

224y —z = (0,0,0)

Let V ={f|f:R — R}. Consider the vectors

fn:R—R
z— "

The fo, fi,-*, fn, -+ are linearly independent, because

implies ag = a1 = --- = a,, = 0. The span of the fi is the set of all
polynomials of (< n)-th degree. The function z + (z — 1)? is a linear
combination of fy, -, fs:

(x—13=a23—322+3z -1
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Remark 3.6. Let V be a vector space, y € V a linear combination of
Y1, ,Yn, and each of those a linear combination of x1,--- ,x,. Le.

n
daq, -, a, € K y:Zakyk
k=1

and
n
i €K yp =Y Bram
=1
Then
n n n n n
B ST N ST T o (zam,l) .
k=1 k=1 I=1 1=1 \k=1
€K
So therefore
span(span(M)) = span(M)
Theorem 3.7. Let V be a finite-dimensional vector space, and let 1, ,Tp €
V. Then the following are equivalent
(i) x1,--- ,p s a basis.
(ii) x1,--- ,xy is a minimal generator (Minimal means that no subset is a
generator).
(i4i) x1,--- ,xy is a maximal linearly independent system (Mazximal means
that x1,- -+, Tn,y s not linearly independent).
(iv) Yz € V there exists a unique ai,--- ,a, € K
n
xr = Z Ty
k=1
Proof. First we prove ”(i) == (ii)”. Let z1,---,x, be a basis of V.
By definition z1,---,x, is a generator. Assume that zo,---,x, is still a

generator, then

n
Jag, - o € K $1:Zakxk (3.1)
k=1
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However this contradicts the linear independence of the basis. Next, to prove
7(ii) = (iii)” let x1,--- ,x, be a minimal generator. Let aq,--- ,a, € K
such that

n
0= Z QLT (3.2)
k=1

Assume that one coefficient is # 0 (w.l.o.g. ay = 0). Then

=
T1,- -+, Ty is a generator, i.e. forx € V
n n a
k
B, B €K =D Bap=) (ﬂk— al) Tk (3.4)
k=1 k=2
But this implies that xo,---,x, is a generator. That contradicts the as-
sumption that xq,--- ,x, was minimal.
— a1=ag=---=qa, =0 (3.5)
Now let y € V. Then
n
I, m €K Y= ek (3.6)
k=1
So x1, -+ ,Zn,y is linearly dependent, and therefore x4, - , x, is maximal.
To prove ”(iii) = (iv)” let z1,--- , 2y be a maximal linearly independent
system. If y € V| then
n
Jag, o, B EK: Zakxk—i—ﬁy:O (3.7)
k=1
Assume 8 = 0, then consequently
Z1,- -,y linearly independent — oy =ag ==, =0 (3.8)

This is a contradiction, so therefore 8 # 0:

Y= Z —?Ik (3.9)
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The uniqueness of these coefficients are left as an exercise for the reader.
Finally, to finish the proof we need to show ”(iv) = (i)”. By definition

V =span{xi, - ,zn} (3.10)
Hence, {z1, -+ ,z,} is a generator. In case
n
0="> oy (3.11)
k=1
holds, then a; = - -+ = «,, = 0 follows from the uniqueness. ]

Corollary 3.8. Ewvery finite-dimensional vector space has a basis.

Proof. By condition, there is a generator xz1,--- ,z,. Either this generator
is minimal (then it would be a basis), or we remove elements until it is
minimal. O
Lemma 3.9. Let V be a vector space and x1,--- ,x; € V a linearly inde-

pendent set of elements. Let y € V', then
xi,-+ Tk, Yy linearly independent <= y ¢ span{xi, -, Ty}

Proof. Toprove” <" assumey # span{xy,--- ,x}. Therefore z1,- -, zk,y
must be linearly independent. To see this, consider

O:Zakxk—FBy o1, 0, € K (3.12)
k=1

Then S = 0, otherwise we could solve the above for y, and that would
contradict our assumption. The argument works in the other direction as
well. O

Theorem 3.10 (Steinitz exchange lemma). Let V' be a finite-dimensional
vector space. If x1, -+ , Xy, 1S a generator and y1, -+ ,Yn a linear indepen-
dent set of vectors, then n < m. In case x1, -+ , Ty and Y1, ,yn are both
bases, then n = m.

Heuristic Proof. Let K € {0,--- ,min{m,n} — 1} and let

Tl s TKYYK+1, " s Yn (313)

be linearly independent. Assume that

TK+1, " ,Tm € Span{xlv"' y Lk YK 425" 7yn} (314)
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Then
Y1 € span{z, -, oy} Cspan{zi, -, Tx,Yk+2, " sYm}  (3.15)
This contradicts with the linear independence of z1, -+ ,Zx, Y42, Yn-
Furthermore,
dx, € Vi m ¢ span{xi, - ,Tr,Yk+2," " s Yn} (3.16)
W.log. z:1=xgy1. By Lemma 3.9, 1, ,2x+1,YK+2, - Yn is linearly

independent. We can now sequentially replace y; with z; without losing the
linear independence. Assume n > m, then this process leads to a linear

independent system 1, -+, Zm,Ym+1, " ,Yn. DBut since x1,--- ,xy is a
generator, ¥m,+1 is a linear combination of x1, -+ ,xy,. If z1,--- 2z, and
Y1, ,Yn are both bases, then we cannot change the roles and therefore
m =n. O

Definition 3.11. The amount of elements in a basis is said to be the di-
mension of V', and is denoted as dim V' .

Example 3.12.
(i) Let V =R" (or C™). Define

€L = (0707 707%>07"' 70)
k-th position

Then ey, --- , e, is a basis, in fact, it is the standard basis of R™ (C").

(ii) Let V be the vector space of polynomials

n
neN, ay, - ,a, €R, f(x):Zak:Uk Vr e R

VZ{f:R—)R
k=1

This space has the basis

{xr—>x”\n€No}

Corollary 3.13. In an n-dimensional vector space, every generator has
at least n elements, and every linearly independent system has at most n
elements.

}
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Proof. Let M C span{z1,---,x,}. Then

V =span M C spanxy,- - ,Zn (3.17)

Hence, 1, -+, x, is a generator. On the other hand, assume
Jy € M \ span{xy, - ,z,} (3.18)
Then x1,- -+, Zn,y is linearly independent (Lemma 3.9), and we can sequen-
tially add elements from M until x1, -+, Zn, Ynt1,** »Yntm IS & genera-
tor. [

Definition 3.14 (Vector subspace). Let V be a vector space. A non-empty
set W C V is called a vector subspace if

Ve,ye WVaeK: x4+ayeW
Ezample 3.15. Consider
W ={(x,x) eR*|x eR}

This is a subspace, because

(6 x) +aln,n) = (x +an, x +an)

However,

A={(xn eR|X*+n* =1}
is not a subspace, because (1,0),(0,1) € 4, but (1,1) ¢ A.
Remark 3.16.

(i) Every subspace W C V contains the 0 and the inverse elements.
(ii) Let W C V be a subspace. Then
n
Ve, -,z €W, ag, - ,a, €K Zakxk eWw
k=1
Furthermore, M C W = span M C W.
(ili) M C V is a subspace if and only of span M = M.
(iv) Let I be an index set, and W; C V subspaces. Then
(1w
i€l

is also a subspace
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(v) The previous doesn’t hold for unions.

(vi) Let M C V:
span M = ﬂ w
W DM subspace of V

3.2 DMatrices and Gaussian elimination

Definition 3.17. Let a;; € K, with i € {1,--- ,n}, j € {1,--- ,m}. Then

air a2 - aim
az1 az2 - aoam
anl QAn2 - OGpm

is called an n x m-matrix. (n,m) is said to be the dimension of the matrix.
An alternative notation is

A= (CLZ‘]‘) e Knxm

K™*™ is the space of all n x m-matrices. The following operations are defined
for A, B € K™ C e K™%l

(i) Addition

ain +bir o arm + b
A+ B = : :
an1 + bnl crc Gpm Tt bnm
(ii) Scalar multiplication
aall - Qaim
a-A=
aap] cc Qlpm
(iii) Matrix multiplication
a1i1€11 +ai2c21 + -+ A1mCm1 - Q11€C1 + A12C2 + ¢+ A1mCmi
AC = : :
Ap1Cl1 + @p2C21 + - + ApmCm1  **°  GpiCi + Ap2Co + + - + ApumCmil

or in shorthand notation

(AC)Z] = Zaikckj
k=1
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(iv) Transposition
The transposed matrix A7 € K™*" is created by writing the rows of
A as the columns of AT (and vice versa).

(v) Conjugate transposition
A = (@)T
Remark 3.18.
(i) K™ (for n,m € N) is a vector space.
(ii) A- B is only defined if A has as many columns as B has rows.
(iii) K™ and KX" can be trivially identified with K".
(iv) Let A, B,C, D, E matrices of fitting dimensions and « € K. Then
(A+ B)C = AC + BC
AB+C)=AB+ AC
A(CE) = (AC)E
a(AC) = (aA)C = A(aC)

(A+B)T = AT + BT (A+B)=A+B
(aA)" = a(A)" (ad) = AA
(AC)T =T . AT (AC) =CA
Proof of associativity. Let A € K»*™ C € K™*! E € K*P. Further-

more letie{l,"‘ ,n},j€{17"' 7P}-

l l m
(AC)E);; = > (AC)yEy; = Z (Z az-,;c,;k) - ek
=1 \k=1

(3.19)
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— A(CE) = A(CE) (3.20)
O

(v) Matrix multiplication is NOT commutative. First off, AB and BA are
only well defined when A € K"*™ and B € K™*". Example:

0 1\ /0 0y (1 0 2 0 0y /0 1y (0 O
0 0/\1 0/ \0 O 1 0/)\0 0/ \0 1
(vi) Let n,m € N. There exists exactly one neutral additive element in

K™*™ " which is the zero matrix. Multiplication with the zero matrix
yields a zero matrix.

(vii) We define

1, i=j
5ii —
“ {0 else

The respective matrix I = (;;) € K"*™ is called the identity matrix.

(viii) A # 0 and B # 0 can still result in AB = 0:

0 1\° [0 0
0 0/ \0 O
Ezample 3.19 (Linear equation system). Consider the following linear equa-

tion system

1121 + a12x2 + -+ - + A1 Ty = b1

a21x1 + agnrs + - + a2mTm = bo
an1T1 + ap222 + -+ + ApmTm = by
This can be rewritten using matrices

air o Gim x1 by
A= : : T

I
(=
I
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Which results in
Az =B, AeK™" zeK™! beK™!

Such an equation system is called homogeneous if b = 0.

Theorem 3.20. Let A € K"™*™ b € K". The solution set of the homoge-
neous equation system Ax = 0, (that means {x € K™ | Az =0} C K™) is
a linear subspace. If x and T are solutions of the inhomogeneous system
Ax = b, then x — I solves the corresponding homogeneous problem.

Proof. A-0 = 0 shows that Ax = 0 has a solution. Let z,y be solutions, i.e.
Az =0 and Ay = 0. Then Va € K:

Az + ay) = Az + A(ay) = Az +a( Ay ) =0 (3.21)
0 X
0

= z+ay € {zr e K" | Az = 0} (3.22)

Next, let x, & be solutions of Az = b, i.e.

Ar=b, Az =10 (3.23)

Then
Al —2)=Az—Az=b—-0=0 (3.24)
Therefore, x — & is the solution of the homogeneous equation system O

Remark 3.21 (Finding all solutions). First find a basis ej, - - - , e of
{z e K" | Az = 0}

Next find some zg € K™ such that Axg = b. Then every solution of Ax = b
can be written as

r=2x9+ are1+ -+ ageg

Ezxample 3.22. Let

1200 1 1 3
0010 0 9 2
A=10 001 -1 b=13 =11
0000 0 4 0
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Then Ax = b has no solution, since the fourth row would state 0 = 4.
However, Ax = ¢ has the particular solution

8
Il
RN =)

If we consider the homogeneous problem Ay = 0, we can come up with the
solution

—2 -1

1 0
y=10 ly2+] 0 |ys

0 1

0 1

and in turn find the set of solutions

{y € K°| Ay = 0} = span {(-2,1,0,0,0)",(-1,0,0,1,1)"}

{z eK®| Az =c} ={(3,0,2,1,0)" + a(-2,1,0,0,0)" + 3(~1,0,0,1,1)"}
Definition 3.23 (Row Echelon Form). A zero row is a row in a matrix
containing only zeros. The first element of a row that isn’t zero is called the

pivot.
A matrix in row echelon form must meet the following conditions

(i) Every zero row is at the bottom

(ii) The pivot of a row is always strictly to the right of the pivot of the
row above it

A matrix in reduced row echelon form must additionally meet the fol-
lowing conditions

(i) All pivots are 1

(ii) The pivot is the only non-zero element of its column

Remark 3.24. Let A € K™™ and b € K". If A is in reduced row echelon
form, then Az = b can be solved through trivial rearranging.

Definition 3.25 (Matrix row operations). Let A be a matrix. Then the
following are row operations
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(i) Swapping of rows i and j
(ii) Addition of row i to row j
(iii) Multiplication of a row by A # 0
(iv) Addition of row ¢ multiplied by lambda to row j

Theorem 3.26 (Gaussian Elimination). Every matriz can be converted into
reduced row echelon form in finitely many row operations.

Heuristic Proof. If A is a zero matrix the proof is trivial. But if it isn’t:
e Find the first column containing a non-zero element.
— Swap rows such that this element is in the first row

e Multiply every other row with multiples of the first row, such that all
other entries in that column disappear.

e Repeat, but ignore the first row this time

At the end of this the matrix will be in reduced row echelon form. O

Definition 3.27. A € K"*™ is called invertible if there exists a multiplica-
tive inverse. l.e.

dABeK"™": AB=BA=1
We denote the multiplicative inverse as A~!

Remark 3.28. We have seen matrices A # 0 such that A> = 0. Such a
matrix is not invertible.

Theorem 3.29. Let A, B,C € K"*", B invertible and A = BC. Then
A invertible <= C invertible

Especially, the product of invertible matrices is invertible.

Proof. Without proof. O

Remark 3.30. Matrix multiplication with A from the left doesn’t ”mix” the
columns of matrix B

Theorem 3.31. Let A be a matriz, and let A be the result of row operations
applied to A. Then .
dT invertible: A=TA

We say: The left multiplication with T applies the row operations.
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Heuristic proof. You can find invertible matrices 11, - - - , T}, that each apply
one row operation. Then we can see that
A=T,Th1---T1 A (3.25)
—_——
T

Since T is the product of invertible matrices, it must itself be invertible. [

Corollary 3.32. Let A € K"*™ b e K", T € K"*™. Then Ax = b and
TAx = Tb have the same solution sets.

Proof. If Ax = b it is trivial that

Ar=b = TAx=Tb (3.26)

If TAx = Tb, then
Az =T 'TAz =T"'Tb=0b (3.27)
O

Lemma 3.33. Let A € field™ "™ be in row echelon form. Then
A invertible <= The last row is not a zero row

and
A invertible <= All diagonal entries are non-zero

Proof. Let A be invertible with a zero-row as its last row. Then
(0,---,0,1)- A= (0,---,0,0) (3.28)

Multiplying with A~! from the right would result in a contradiction. There-
fore the last row of A can’t be a zero row.

Now let the diagonal entries of A be non-zero. This means we can use
row operations to transform A into the identity matrix, i.e.

37T invertible: TA=1 — A=T"1 (3.29)
O
Corollary 3.34. Let A € K"*™. Then
A invertible <= Fwvery row echelon form has non-zero diagonal entries
and

A invertible <= The reduced row echelon form is the identity matriz
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Proof. Every row echelon form of A has the form T'A with T an invertible
matrix. Especially, 45 invertible such that SA is in reduced row echelon

form. Then
T A invertible <= A invertible (3.30)

O

Remark 3.35. Let A € K™ be invertible, B € K"*™. Qur goal is to
compute A~!B. First, write (A| B). Now apply row operations until we
reach the form (7| B). Let S be the matrix realising these operations, i.e.
SA =1. Then B=SB = A-'B. If B = I this can be used to compute
AL

Ezample 3.36. Let

o

Il
S O =
O = =
— = =

Rewrite this as

1 1 111 0 0
01 1/0 1 0
0 0 110 0 1
Turn this into
1 1 0|1 0 -1
01 0j0 1 -1
00 1|0 0 1
And finally
10 0|1 =1 O
01 00 1 -1
00 1/0 0 1
The right part of the above matrix is A~
Definition 3.37. Let A € K®*™ and let zq,-- - , 2z, € KI*™ be the rows of
A. The row space of A is defined as
span{z1,- -, zn}

The dimension of the row space is the row rank of the matrix. Analogously
this works for the column space and the column rank. Later we will be able
to show that row rank and column rank are always equal. They’re therefore
simply called rank of the matrix.

Theorem 3.38. The row operations don’t effect the row space.
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Proof. 1t is obvious that multiplication with A and swapping of rows don’t
change the row space. Furthermore it is clear that every linear combination
of z1 + 29,29, , 2z, is also a linear combination of 21, 29, - , 2z,, and vice
versa. [

Theorem 3.39. Let A be in row echelon form. Then the non-zero rows of
the matriz are a basis of the row space of the matriz.

Proof. Let z1,---, 2z, € KI*™ be the non-zero rows of A. They create the

space span{z1,- - ,2zn}, since zy, - - z, are only zero rows. Analogously,
a121 + ooz + -+ agz =0 (3.31)

Let j be the index of the column of the pivot of z;. Then zs,--- , 2z have

zero entries in the j-th column. Therefore

a1 Zij = 0= a1 =0 (3.32)
~—
#0
By inductivity, this holds for every row. O

Remark 3.40. (i) To compute the rank of A, bring A into row echelon
form and count the non-zero rows.

(ii) Let vy, -+, vy € K. To find a basis for
span {vy, -+ Uy }

write v1,--- , vy, as rows of a matrix and bring it into row echelon
form.

3.3 The Determinant

In this section we always define A € K"*" and z1,--- , z, the row vectors of
A. We declare the mapping

det : K"™*" — K

and define
det(A) := det(z1, 22,...,2n)

Definition 3.41. There exists exactly one mapping det such that
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(i) It is linear in the first row, i.e.
det(z1 + A1, 22, -+, 2p) = det(z1, 22, -+, 2) + Adet(z1, 22, - - -
(ii) If A is obtained from A by swapping two rows
det(A) = —det (A)

(iii) det(I) = 1

This mapping is called the determinant, and we write

ailr -0 Qin
det A =
anpl1 -+ Qpp
Ezxample 3.42.
ail aiz| _
= a11G22 — 421012
a1 a2

a1l a2 ais
a1 Q22 G23| =a11a22aG33 + 12023031 + 413021032
az1 asz2 as3

— (31022013 — 032023011 — (33021012
Remark 3.43. (i) Every determinant is linear in every row

(ii) If two rows are equal then det(A) =0

(iii) If one row (w.l.o.g. z1) is a linear combination of the others, so

21 = oz + Q323+ -+ Qpzn, Qi 0, €K
then
det(z1, 22, , 2n) =ao det(z2, 22,23, -+ , 2) +
0
azdet(zs, 22,23, -, 2n) +
0
..+
o det(zn, 22, 23, -+ 5 2n)
0

=0
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(iv) Adding a multiple of a row to another doesn’t change the determinant

(v) Define
T;; swaps rows ¢ and j
M;(N) multiplies row ¢ with A # 0
Li;(N) adds A-times row j to row i
Then

det(T;;A) = — det(A)
det(L;;(N)A) = det(A)
det(M;(N\)A) = Adet(A)

Lemma 3.44. Let det be the determinent, and A, B € K"*™. Let A be in
row echelon form, then

det(AB) = Qa11-a22 - apn * det(B)

Proof. First consider the case of A not being invertible. This means that
the last row of A is a zero row, which in turn means that det(A) = 0. This
also means that the last row of AB is a zero row and therefore det(AB) = 0.
Now let A be invertible. This means that all the diagonal entries are
non-zero. It is possible to bring A into diagonal form without changing the
diagonal entries themselves. So, w.l.o.g. let A be in diagonal form:

A= My(ann) - - Ma(az) M (ai)] (3.33)
and thus
det(AB) = det(M,(apy) - -+ - My (ag2)Mi(a11)B) (3.34)
=Qpp - agy - ayp det(B)
O

Remark 3.45. For B = I this results in
det(A) = 111022 ** * Anp
Theorem 3.46. Let A, B € K"*™. Then

det AB =det A-det B
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Proof. Let i,j € {1,--- ,n} and A # 0. Then

det(Tj;AB) = — det(AB) (3.35a)
det(L;j(A)AB) = det(AB) (3.35b)
Bring A with Tj; and L;;(\) operations into row echelon form. Then
det(AB) = a11a22 - - - Gpy, - det(B) (3.36)
and therefore
det(AB) =det A-det B (3.37)
O

Corollary 3.47.
A € K™ invertible <= det A#0

Proof. Row operations don’t effect the invertibility or the determinant (ex-
cept for the sign) of a matrix. Therefore we can limit ourselves to matrices
in row echelon form (w.l.o.g.). Let A be in row echelon form, then
detA;é 0 < aj1a22---ann 75 0
< a11 #0,a20 # 0, ,app #0 (3.38)

<= A invertible since diagonal entries are non-zero

O
Theorem 3.48.
det A = det AT
Proof. First consider the explicit representation of row operations:
i %
1
i 0 1
j 1 0
1
J
1
i 1 A
Lij(\) = 1 (3.39b)
1
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Thus we can see
det(T35) = det(Tg) =-1 (3.40a)

det(L;j(\) = det(Li;(N)T) =1 (3.40D)
Let T be one of those matrices. Then

det((TA)") = det (AT - TT)

= det AT - det TT (3.41)
= det AT . det T
and
detTA=det A -detT (3.42)
And therefore
det((TA)T) = det(T4) < det AT =det 4 (3.43)

Now w.l.o.g. let A be in row echelon form. Let A be non-invertible, i.e.
the last row is a zero row. Thus det A = 0. This implies that AT has a
zero column. Row operations that bring A” into row echelon form (w.l.0.g.)
perserve this zero column. Therefore the resulting matrix must also have a
zero column, and thus det (AT) = 0.

Now assume A is invertible, and use row operations to bring A into a
diagonalised form (w.l.o.g.). For diagonalised matrices we know that

A=AT — det A =det AT (3.44)
O

Remark 3.49. Let A;; be the matrix you get by removing the i-th row and
the j-th column from A.

det A = Z(_l)H_J * Qg e det(Al])’ JE€ {17 e ’n}
i=1

Remark 3.50 (Leibniz formula). Let n € N, and let there be a bijective
mapping

o:{l,---,n} —{1,--- ,n}
o is a permutation. The set of all permutations is labeled \S,,, and it contains

n! elements. Then .

det A= sgn(o) [ [ @i

gESy i=1
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A permutation that swaps exactly two elements is called elementary per-
mutation. Every permutation can be written as a number of consecutively
executed elementary permutations.

sgn(o) = (~1)F

where ¢ is the permutation in question and k is the number of elementary
permutations it consists of.

3.4 Scalar Product

In this section V' will always denote a vector space and K a field (either R
or C).

Definition 3.51. A scalar product is a mapping
(,):VxV-—K
that fulfils the following conditions: Vv, ve, w1, ws € V, A €K

Linearity (

Conjugated symmetry (
Positivity (v1,v1) >0

Definedness (

(

Conjugated linearity

The mapping

Il : V —K

v/ {(v,v)

Ezxample 3.52. On R" the following is a scalar product
n
(@122, wn)T, (2, yn)T) =D Tkn
k=1

The norm is then equivalent to the Pythagorean theorem

loll = Vo, 0) = /a? + a3+ -+ a2
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Analogously for C"
n
<(’LL1, Uy + v+ aun)Ta (/Ulv V2,0 7U7L)T> = Zuikvk
k=1

Remark 3.53. e The length of v € V' is ||v]|

e The distance between elements v,w € V is ||[v — w||

e The angle ¢ between v,w € V is cos¢ = %
Theorem 3.54. Let v,w € V. Then
Cauchy-Schwarz-Inequality [{(v, w)| < JJvl|||w]|
Triangle Inequality lv+w| < |v|| + [Jw]]

Proof. For A € K we know that
0 < (v—2Aw,v—AIw) =(v—IAw,v) — X\v—\w, w)
= (v,v) — Mw,v) — AMv,w) + I\ (w,w)

[A]2
Let A = m Then
TN 2
T ) e S 2L BN oL T
ol ol ol

BN (I W (U7 (4
loll* AWl AP
[w, o)

2
= [lvll” - 2
[l

Through the monotony of the square root this implies that

‘ 2

[(w, )] < [Jvfl[Jw]
To prove the triangle inequality, consider
v+ w|* = (v +w,v+w)

= (0,0) +(v, w) + (w,v) + w, w)
—— —— N —
[[o]|? (v,w) f[w]?

< [|v]* +2 - Re(v, w) + w]®

2 2
< ol + 2folllwll + f[wl
= ([loll + [wl])?

69
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(3.46)

(3.47)

(3.48)
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Using the same argument as above, this implies

lo+wl| < o]l + [lw] (3.49)

Definition 3.55. v, w € V are called orthogonal if
(v,w) =0

The elements vy, --- ,vy, € V are called an orthogonal set if they are non-
zero and they are pairwise orthogonal. I.e.

Vi,j S {1,'-- ,m} . <1}¢,’Uj> =0

If ||vi|]| = 1, then the v; are called an orthonormal set. If their span is V'
they are an orthonormal basis.

Theorem 3.56. If vy,--- ,v, are an orthonormal set, they are linearly in-
dependent.
Proof. Let ay,--- ,ay € K, such that
0=oajv] + agvs + -+ + anvn, (3.50)
Then
0= <Ui7 0) = <Ui7 a1V + vy + - - anvn>
= a1 (i, v1) + @2(vi, v2) + -+ - + an(vi, vp) (3.51)
= a;(v;,v;) i€ {l,---,n}

Since v; is not a zero vector, (v;, v;) # 0, and thus o; = 0. Since 7 is arbitrary,
the v; are linearly independent. O

Ezample 3.57. (i) The canonical basis in R" is an orthonormal basis re-
garding the canonical scalar product.

(ii) Let ¢ € R. Then
v1 = (cos ¢, sin )T vy = (—sin g, cos ¢)"

are an orthonormal basis for R2
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Theorem 3.58. Let v, - ,v, be an orthonormal basis of V. Then for
veV:
n
v = Z(vi, V)v;
i=1
Proof. Since vy, -+ ,v, is a basis,
n
Jag,- - ,a, €K v:Zaivi (3.52)
i=1

And therefore, for j € {1,--- ,n}

n

(vj,v) = Zai@j,vi) = o (vj,v5) (3.53)
i—1 S——
llojlI*=1

O

Theorem 3.59. Let A € K™*" and (-,-) the canonical scalar product on
K™. Then
(v, Aw) = (Afv, w)

Proof. First consider
(Aw)l = Z Aijwi (3.54&) (AHw)j = Z Aj@"()i (3.54b)
j=1 =1

Now we can compute

(v, Aw) = ZH:UZ(AU))Z- = z": 7; ” Ajjw; | = zn:zn:Alew]
i=1 i=1 j=1 i=1 j=1
(RS (S s
7j=1 \:=1 7j=1 \=1
= Z(AH”)J wj
j=1
= (A, w)
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Definition 3.60. A matrix A € R™*" is called orthogonal if
ATA=AAT =1

or

AT — A1
The set of all orthogonal matrices
O(n) := {AERan|ATA:I}
is called the orthogonal group.
SO(n) = {A:Rnxn‘ATA:I/\detA: 1} c O(n)
is called the special orthogonal group.6

Ezample 3.61. Let ¢ € [0, 27|, then
A— cos¢p —sing
~ \sing cos¢
is orthogonal.

Remark 3.62. (i) Let A, B € K"*" then
AB=1 — BA=1
(ii)
1 =det] =det ATA =det AT - det A = det?4

(iii) The i-j-component of AT A is equal to the canonical scalar product of
the i-th row of AT and the j-th column of A. Since the rows of AT
are the columns of A, we can conclude that

A orthogonal <= (r;,rj) = 0;;

where the r; are the columns of A. In this case, the r; are an orthonor-
mal basis on R™. This works analogously for the rows.

(iv) Let A be orthogonal, and z,y € R"
(Az, Ay) = (AT Az, y) = (z,y)
12|l = /(Az, Az) = /(z,2) = |lz]|

A perserves scalar products, lengths, distances and angles. These kinds
of operations are called mirroring and rotation.
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(v) Let A, B € O(n)
(AB)' . (AB) = BTATAB=BTIB=1

This implies (AB) € O(n). It also implies I € O(n). Now consider
A € O(n). Then

(A_l)TA_lz(AT)T'AT:AAT:I

This implies A™1 € O(T). Such a structure (a set with a multiplication
operation, neutral element and multiplicative inverse) is called a group.

Ezample 3.63. O(n), SO(n), R\ {0}, C\ {0}, Gi(n) (set of invertible ma-
trices) and S, are all groups.

Definition 3.64. A matrix U € C™*" is called unitary if
vt =1=0U0"

We also introduce
{UECnxn’UHU:I}

the unitary group, and
{UeCnxn|UTU=1InNdetU =1}

the special unitary group.

3.5 Eigenvalue problems

Definition 3.65. Let A € K"*™. Then A € K is called an eigenvalue of A,
if
FeK", v£0: Av=) v

Such a vector v is called eigenvector. We call
{ve K" | Av = \v} =: E)
eigenspace belonging to A.

Ezample 3.66. Let

b
Il
o o
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Then
1 2 1
A- [0l =]0]=2-10
0 0 0
1 1 1
A-|-1])=|-1]=1-|-1
0 0 0
1 1 1
A =|0]=1-10
1 1 1
The eigenspaces are
1
Es=<k-{0 kE€R
0
1 1 1 1
Fi=<¢k-|-1]+p-10] |k, peR ) =span —-11,10
0 1 0 1

Remark 3.67. The eigenspace to an eigenvalue A is a linear subspace.
Remark 3.68. We want to find A € K, v € K" such that

Av=Xv <= (A—-X)v=0
K
e nxn

If (A—AI) is invertible, then v = 0. So the interesting case is when (A — A1)
not invertible.

(A — AI) not invertible <= det(A — \I) =0

This determinant is called the characteristic polynomial. This polynomial
has degree n, and the eigenvalues are the roots of that polynomial. So let A
be an eigenvalue of A, then

(A= XHv=0

is a linear equation system for the components of v.

Example 3.69. Let
_ 0 1 2%2
A= <_1 0> eC
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The characteristic polynomial is

-2 1

det(A — \I) = ‘_1 I\

' =N+1
Its roots are

AL =1 Ay = —1i

To find the eigenvector belonging to A1, we declare v; = (z,y) € C? and
solve the linear equation system

(A—)\ll)vl =0 —iz+1y =20
—lz—iwy =0

It has the solutions x = —¢ and y = 1, so

a=(3)
== (1)

It is to be noted that the eigenvectors aren’t unique (multiples of eigenvectors
are also eigenvectors).

Doing the same for vy yields

Ezample 3.70. Let D be a diagonal matrix, with the diagonal entries A;.
Then

AL — A
A2 — A
det(D — \I) =
An — A

The roots (eigenvalues) are A1, A2, -, Ay, and the eigenvectors are De; =
/\iei.

Definition 3.71. A € K™*" is called diagonalizable if there exists a basis
of K™ that consists of eigenvectors.

Theorem 3.72. A matriz A € K"*" is diagonalizable, if and only if there
exists a diagonal matriz D and a invertible matrix T such that

D=T'AT
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Proof. Let eq, ez, - ,e, be the canonical basis of K". Define TDT~! = A,
and let Ay, -, A\, be the diagonal entries of D. Then we know that
De; = Njej, Vie{l,---n} (3.56)
Since T is invertible, the T'eq, - - - T'e,, form a basis.
A(Te;) = T(T ' AT)e; = TDe; = Thie; = \i(Te;) (3.57)

Therefore T'e; is an eigenvector of A to the eigenvalue A;. Now let vy, -+, v,
be a basis of K" and

Av; = >\i'Ui7 A1, ,)\n e K" (3.58)
Write write vy, - , v, as the columns of a matrix, therefore
T = (v1,v2,- -+ ,Up) (3.59a)
A1
D= : (3.59Db)
An
So Te; = v;, and thus

This means that (AT —TD)e; =0, Vi € {1,--- ,n}.
— AT =TD (3.61)
T is invertible (left as an exercise for the reader), and thus

— T 'AT =D (3.62)

Ezample 3.73. (i) Let

=(4)

The eigenvalues and eigenvectors are
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() =) () ==0)

Therefore

which has the inverse

Finally,

1/4i 1\(1 1 1/(2i 0 i 0
—1 _ = — —
AT =5 <—i 1> (z —i> 2 <0 —2i> (0 —i)

This is a diagonal matrix, therefore A is diagonalizable.

b o)

is not diagonalizable since its only eigenvector is (1,0)%.

(ii) The matrix

Remark 3.74. For diagonal matrices the following is true
k

A2 Ak

A1

A3 PY
If T='AT = D (where D is a diagonal matrix), then

DF = (T7'ATY =T YAT - T AT - ... = T AFT

k times

— AF =TDpkFr1

Theorem 3.75. Let A € R™™ be a symmetric matriz, i.e. A= AT. (Or
if A€ C™" q self-adjoint matrizv A = A ). Then A has an orthonormal
basis consisting of eigenvectors and is diagonalizable.
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Proof. Let A € C be an eigenvalue of A € K"*" with eigenvector v € K"
and A = A, Then

Mo, v) = (v, W) = (v, Av) = (Av,v) = (Av,v) = (A, v) = Av,v) (3.63)

Therefore B
(A=X) (v,v) =0 (3.64)
——
0
= A-AN)=0= A=) = McR (3.65)

Now let A, p € R be eigenvalues to the eigenvectors v, w, and require A # p.
Then

plv,w) = (v, Aw) = (Av, w) = Mv,w) = A\v,w) (3.66)
And thus
(p—A)(v,w)=0 = v Lw (3.67)
F =0

O]



Chapter 4

Real Analysis: Part II

4.1 Limits and Functions

In this chapter we will introduce the notation
Be(z) = (x — €,z +¢)

Definition 4.1. Let D C R and = € R. z is called a boundary point of D
if
Ve>0: DNB(x)#0

The set of all boundary points of D is called closure and is denoted as D.

Ezample 4.2. (i) x € D is always a boundary point of D, because
x € DN Be(x)

(ii) Boundary points don’t have to be elements of D. If D = (0, 1), then
0 and 1 are boundary points, because

€ (0,1) N Be(0) = (—€,€) Ve>0

N

(iii) Let D = Q. Every = € R is a boundary point, because Ve > 0, B¢(x)
contains at least one rational number. I.e. Q = R.

Remark 4.3. If x is a boundary point, then
Ve>03JyeD: |z—y|l<e
If  is not a boundary point, then

Je>0VyeD: |r—yl>e

79
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Theorem 4.4.
x € R is a boundary point of D C R <= 3 (x,) C D such that x, — x

Proof. Let x be a boundary point of D. Then

1 1
VnGNEIa:nGDﬁ(:L‘—,:L‘+> (4.1)
n n

The resulting sequence (x,) is in D, and
|z —xp| < (4.2)

holds. Therefore, x,, converges to x. Now let (z,) C D, with x,, — x. This

means
Ve>03INeN: |z—zn|<e (4.3)

Then
N € DN Be(x) (4.4)
Since € is arbitrary, x is a boundary point of D. O

Definition 4.5. Let D C R and f: D — R. Let 2¢ be a boundary point of
D. We say that f converges to y € R for x — z¢ and write

lim f(z) =y

T—I0

if
Ve>030>0: |[z—xo|<d = |f(z)— f(y)] <e

Remark 4.6. This definition only makes sense for boundary points zy of D.
The most imoprtant case is

D = (xo—a,zo+a)\{zo}
Ezample 4.7. (i) Let a € R

f*R—R
T — ax

Consider a # 0: Let € > 0. We want that

|F(z) — 0] = |al|z] < e
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Choose § = ﬁ Then we have

€

2] =z =0 <0 = |f(z) = 0] = lal|z| < |ald = |al €

lal
Therefore
lim f(z) =0
z—0
(ii) Consider
f:R—R
1, x>0
x —
-1, <0

f doesn’t converge for x — 0. Assume y € R is the limit of = at 0.
This means that there is a § > 0 such that

|f(x)—y| <1lif|z|=]z—-0]<d
Then, for any x € (0,0) we have

2=|f(x) = f(=0)[ < |[f(@) —yl+ |y — f(—=)| <2

<1 <1

which is a contradiction.

Theorem 4.8. Let f : D — R, x¢ a boundary point of D and y € R. Then

lim f(z) =y < V(x,) C D with x,, — x¢ : ILm f(zn) = x0

Tr—TQ

Proof. Assume that lim,_,,, f(z) and that there is (z,) C D converging to
z. Let € > 0, then

30>0: |z—29|<d = |f(z)—y|<e (4.5)
Since x,, — g, we know that
AN eNVn>N: |z, —x0 <9 (4.6)
For such n, the epsilon criterion |f(z,) — y| < € also holds, and thus

flan) ==y (4.7)
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Now to prove the ” <=7 direction, assume that lim,_,,, f(z) # v, i.e.
Je>0V¥0>03xeD: |z—ao| <IN|f(x)—y|>¢€ (4.8)
Choose Vx € N one x,, such that
1
|zy, — x0| < - but |f(z,) —y| > € (4.9)
Then x,, — xg, but |f(z,) —y| > e Vn €N, so
lim f(z0) # (4.10)
n—oo
This indirectly proves ” <= ". O

Ezample 4.9. Consider D =R C {0}, we want to prove
1

lim =1
z—01—x
So let (x,,) C D with z,, — 0. Then
1 n—o0o
—1
1—=x,
= lim =1
z—01—2x

However, the limit lim,_,; doesn’t exist. Let z,, = %4— 1 with x,, — 1. Then

1 n—o00
— T .= NnN—— —
1—(;+1)

This doesn’t converge, thus there is no limit.

Corollary 4.10. Let f,g: D — R, zg a boundary point and y,z € R such
that

Jim f(z) =y Jim g(z) = 2
Then,
Am (f(@) +g(@)) =y +2
Jim (f(z) - g(x) =y -z
If z # 0, then
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Proof. Here we will only prove the last statement. Let lim,_,,, = 2z # 0.
Then
30 > 0 Va € Bs(zo) : |g(z) — 2| < |7| (4.11)

g doesn’t have any roots on Bs(x). Let (x,) C DN Bs(xp) converge to zp.
According to prerequisites, we have

nh_)n(f)lo flzn) =y (4.12a) nh_}ngo g(xn) =2#0 (4.12b)
Thus
T ) R N A CO (4.13)
n=o g(zy) 2 e=wo g(x) 2

O

Corollary 4.11 (Squeeze Theorem). Let f,g,h: D — R and x a boundary
point of D. If fory e R

lim f(z) =y = lim h(z)

z—wo T—x0
and
f(z) < g(x) < h(x) Vo€ Be(xg)
then
Jim g(z) =y

Ezample 4.12. Consider exp(z). We already know that
1+x <exp(z) VxeR

This also implies that

1
1 -2z <exp(—z) = oxp(a) Ve e R

So
1

1—z

1+z <exp(z) <

The limits of these terms are

1
lim(l14+2z)=1 lim< >:1
z—0 z=0\1—=x

And using the squeeze theorem this results in

lim exp(0) =1

z—0
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Definition 4.13. Let f: D — R and zy a boundary point of D. We say f
diverges to infinity for x — xg and write

g, (@) = oo

if
VK € (0,00) 30 >0: |z —209|<d = f(z)>K

Definition 4.14. Let D C R be unbounded above. We say f converges for
x — 00 to y € R and write

Jlim f(z) =y
if
Ve > 03K € (0,00) Vo > K: |[f(x)—y|<e

Remark 4.15. Let f: D — C and zp a boundary point of D. Then

lim f(zx)=yeC

= lim Re(f(x)) = Re(y) A lim T((x)) = Tm(y)
= lm [f(x) ~y =0

Definition 4.16. Let D C K, f : D — K and 29 € D. f is called
continuous in zg if

Ve>030>0: |z—x0|<d = |f(z)— f(zo)| <€

If f is continuous in every point of D, we call f continuous.
f is called Lipschitz continuous if

L is called Lipschitz constant
Remark 4.17. Let f: D - K

f is continuous in g € D <= lim f(z) = f(=0)
T—T0

Ezample 4.18. We want to show that

f:R— R

.’IJ'—)iL'z
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is continuous. To do that, let g € R, € > 0. We want

!
|f (@) = f(xo)| = |2° — 25| = |& — wo||z + x| <€
So we choose
€
d=min<l,—— > >0
{ 2|$0\+1}
Then for every x with |z — zg| <

| (2) = f(xo)| = |& — ol|lz + wo| < 0(|2] + [xo]) < d(|zo| + 6 + |zol)

S(S(Q‘:L’o’—i—l) < 1(2‘%0‘4—1):6

€
2’3?0’ +
Theorem 4.19. Every Lipschitz continuous function is continuous

Proof. Let f : D — K be a Lipschitz continuous function with Lipschitz
constant L > 0. Le.

v,y € D: [f(z) = f(y)l < Lz -y (4.14)
Let 2o € R and € > 0. Choose § = ¢. Then |z — x| < J implies
|F(2) = f(w0)| < Llz — ol SL-6=¢ (4.15)
O
Ezample 4.20. (i) Consider the constant function z — ¢, ¢ € K.
[f(@) = [yl =le—c[=0<T1-[z -y
(ii) Consider the linear function x — cx, ¢ € K.
[f (@) = f(y)l = lex — eyl = |el|z -y
These two functions are Lipschitz continuous, and therefore continuous.
(iii) Consider xz — Re(x). Then
|Re(z) — Re(y)| = |Re(z — y)| < |z —y|

Analogously this works for Im(z). Both of those are Lipschitz contin-
uous.
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(iv) Lipschitz continuity depends on D. E.g.

F:00,1] —R

e
is Lipschitz continuous:
[f(@) = fy)l =z —yllz+y[ <2 |z -y
However,

g:R— R

xn—>x2

is NOT Lipschitz continuous, because

1) —
ol + 1)~ g0 _ | e,
(n+1)—n

Remark 4.21. Let f: D — K.

f is continuous in xg € D
<~
V(zn) C D with z, — z9: lim f(z,) = f(x0)
n—oo

If f, g are continuous in zg, then f 4+ g and f - g are also continuous in x,
and if g(xg) # 0 then f/g is also continuous in xy. Notably, polynomials
are continuous. A rational function (the quotient of two polynomials) is
continuous in all points that are not roots of the denominator.

Theorem 4.22. Let D C K, and let

f: D — K continuous in xy € D (4.16a)
g: f(D) — K continuous in f(xq) (4.16b)

Then g o f s also continuous in xg.

Proof. Let € > 0. Since g is continuous in f(xg),

301> 0: |y — flzo)l <& = |g(y) — g(f(20))| <e (4.17)

Since f is continuous in xg,

ddo > 0 : ’.1‘ — l‘o‘ < by = ‘f(ZC) — f($0)| <& (4.18)
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For such z the following holds
(g o f)(@) = (g ° f)(wo)l = lg(f(x)) = g(f(z0))| < e

which implies that g o f is continuous in zg.

Example 4.23. Consider the following mappings

[:R—R, z+— ||

l—y
R— R\ {-1}, yr— ——
9 ARG SN il oy
1— |z|

1+ |z|

h:R— R, z+—

87

(4.19)

O

It is clear that h = gof. Since f, g are continuous, h must also be continuous.

Ezample 4.24. The functions exp, sin and cos are continuous. We know that

-1
i PR —1
h—0 h
From this follows that

lim exp(k) = exp(0) =0
h—0

Thus, exp is continuous in 0. Let zg € R, then
Jim exp(e) = lim exp(zo + A) = lim exp(zo) exp(h)
= exp(zo) — lim exp(h) = exp{xo}
h—0

Now, consider the function x — exp(iz). For o € R

|exp(i(xo + h)) —exp(ihg)| = | exp(izo)|| exp(ih) — 1|
— S——

exp(izo)exp(ih) 1
0o 4. B 00 (Zh)k
<112 ! =12 k!
k=0 k=1
| (ih)*
<2 |5
k=1
0o 00
|h|F h|
DR L G I

b
Il
—
B
Il
o
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For h — 0, the absolute function converges |h| — 0, and therefore
lim hO| exp(i(zo + h)) — exp(iz)| =0
due to the squeeze theorem. lL.e., x — exp(ix) is also continuous. Thus
cosx = Re(exp(ix)) sinx = Im(exp(ix))
are also continuous due to the concatination of continuous functions.
Lemma 4.25. Let a,b € R with a < b, and let
fila, 0] — R
be a continuous function. Furthermore, let y € R. Now if the set
{z €la,b]] f(x) =y}
1s non-empty, it has a smallest element.

Proof. Let M be non-empty. Set 2o = inf {M}. Then it is to be shown that
xg € M, or that f(zg) > y. There exists a sequence (x,) C M such that
T, — xg9. Because of the continuity of f,

Flao) = £(lim ) = lim f(zn) > y (4.20)
holds, thus xq € M. ]

Theorem 4.26 (Extreme value theorem). Let a,b € R with a < b, and let
f:a,b] = R continuous. Then the function f attains a mazimum, i.e.

Jxg € [a,b] Yz € [a,b] :  f(x) < f(zo)
Proof. First we show that f is bounded. Assume f is unbounded above, i.e.
{z €[a,b]| f(z) >n}=M,, neN (4.21)

According to the last lemma, every M, has a smallest element x,. The
sequence (Zp)nen is monotonically increasing (M,+1 C M,,) and bounded
above by b. Thus, x, converges to some xy € [a,b]. Now consider the
sequence (f(zy))nen. By definition
lim f(x,) > lim n =00 (4.22)
n—oo

n—o0
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And since f is continuous, lim, s f(z,) = f(xo) must hold. This contra-
dicts the assumption, so f is bounded.
Now set

y =sup{f(z)|z € [a,b]} (4.23)

In case f is equal to y everywhere, there is nothing to show. So assume
that there are values for which f # y. According to the definition of the
supremum, the sets

n

{x € [a, ) ‘ F@) >y — 1} (4.24)

are non-empty for all n € N, and thus they have a smallest element x,. The
sequence (&, )nen is monotonically increasing and bounded, i.e. it converges
to o € [a,b]. Therefore

y > f(xo) = hm f(zy) > lim y — 1_ Yy (4.25)

n—00 n

From this follows

f(zo) =y = f(x0) upper bound of {f(z)|z € [a,b]} (4.26)
0

Theorem 4.27 (Intermediate value theorem). Let a,b € R with a < b, and
f:a,b] = R a continuous function with f(a) < f(b).

Yy e (f((l),f(b)) = 3$0 € (a7b> : f(l'o) =Y
Proof. Without proof. O

Ezample 4.28. cos has in [0, 2] exactly one root. Consider the definition

oo
COST = E

k=0

k2k

We know that cos0 = 1. Furthermore we can show that
22 22 94
—1= 1—5 §cos(2)<1———|—ﬁ<0

2nd partial sum 3rd partial sum
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The intermediate value theorem tells us that there exists a root in [0, 2].
Now we need to show that cos is strictly monotonically decreasing on [0, 2].

Choose z € [0,2]. Then
3
. z
z2<sinz<z— ?

The addition theorem tells us that
cos(x) — cos(y) = —2sin (T) sin (T) <0

for z,y € (0,2] and = > y. Thus cos is strictly monotonically decreasing on
[0,2].

Corollary 4.29. Let I be an interval and f : I — R continuous. Then f(I)
is also an interval.

Proof. Left as an exercise for the reader. O

Theorem 4.30. Let I be an interval, f: I — R continuous. If f is strictly
monotonically increasing, then the inverse function f~' : f(I) — I exists
and is continuous.

Heuristic Proof. f(I) is an interval, and f is injective. This is because if
f(x) = f(z), then z = Z or else f wouldn’t be strictly monotonic. This

Jg: f(I) —R: flz)=y < gly) == (4.27)

Let yo € f(I) and € > 0. We require that zp is not a boundary point of I.
Then choose 0 < € < € such that (zg — €, xg + epsilon) € I. Choose

6 =min ¢ f(xo+€) —yo,y0 — f(xo—€) p >0 (4.28)

>0 >0

If y € f(I) with |y — yo| < 6 then
f(xo — epsilon) <xo— 0 <y <yo+06 < flzo+¢) (4.29)
From the strict monotony of g we can conclude
zo — epsilon < g(y) < zo + € (4.30)

19(y) — 9(yo)| = [9(y) —z0] <E<e (4.31)
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Thus, ¢ is continuous in yg. Since yo € f(I) was chose arbitrarily, all of g is
continuous. To prove the monotony of g, assume y < g and g(y) > g(g) for
y,y € f(I). From the monotony of f we know that

y=>y (4.32)
which is a contradiction, so g is strictly monotonic. O
Ezample 4.31. (i) Let n € N and consider

f:[0,00) — R
T — "

f is continuous and strictly monotonically increasing. Thus the inverse
function

Y- [0,00) — RT
is also continuous.
(ii) Consider exp : R — R. It’s clear that exp(R) = (0, 00), so the mapping
In:(0,00) >R
is continuous and strictly monotonically increasing.

(iii) Equal arguments can be made for the trigonometric functions.

4.2 Differential Calculus

Definition 4.32. Let I be an open interval ((a,b), a < b, a,b = oo possible).
Let f: I - Kand x € I. f is called differentiable in z if

) — g L) =)

h—0 h

Difference quotient

exists. f’(x) is called the differential quotient, or derivative of f in z. f is
called differentiable if it is differentiable in every x.

Ezample 4.33. (i) Let f(z) = ¢ with ¢ € K be a constant function

c—¢C

=0

/ T
fla) = Jim =
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(ii) For n € N consider f : R — R x> 2"

by g (R = ~ (n\, k1 k=1 _  n—1
oy EHE S B

(iii) Consider the exponential function

(x) = Jim exp(z + h) — exp(z) ~ Jim exp(x) exp(h) — 1

h—0 h h—0 h = exp(w)

Theorem 4.34. Let f : I — K be differentiable in x. Then f is also

continuous in x.

Proof. Let f be continuous in . Then

lim (f(z +h) = f(z)) =0 (4.33)

Assume f to be uncontinuous in z. This means that
Je>0Vd>03he(—0,0): |f(x+h)— f(z)>e€ (4.34)
In particular, for every n there exists an h, € (_71, %) C {0}, such that
[f (@ +hn) = f2)] = € (4.35)

h, is a null sequence and

[+ hn) — f(2)

e > T =n-e— oo (4.36)
So the above term doesn’t converge, thus

flo+ h})l LG B (4.37)
Therefore, f isn’t differentiable in x. O

Remark 4.35. The inverse is not true.

Theorem 4.36. Let I be an open interval and f,g : I — K differentiable
inx €. Then f+ g and f - g are differentiable too, and if g(x) # 0 then
f/g is also differentiable.

(f +9)(2) = f'(z) + g'(x)
(f - 9)'(x) = f'(z)g(

N
_I._
=
N
Q\
—
8
~—
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Proof. Left as an exercise for the reader. O
Theorem 4.37 (Chain rule). Let I,J be open intervals, and let
g:J —1 f:1—K

g and [ are to be differentiable in x and f(x) respectively. Then f o g is
differentiable in x and

(fog) =4g'(x) f(g(x))

Proof. Consider the following function

b —K (6= {ﬂg(w)ﬁg_ﬂgw’ SPNCE
f'(g(x)), £=0
¢ is continuous, since f is continuous and
lim ¢(€) = f'(g(x)) = ¢(0) (4.39)
V¢ € J the following holds
flg(x) + &) — flg(x)) = (&) - € (4.40)

With this we can now show that

flg(z+h)) = flg(x) _ flg(x) + (9(z + h) — g(x))) — f(9(2))
h

h
= glyla + 1) —gla))- LT 290 (14D
h—0 0 ﬂ}g/(gj)

O]

Definition 4.38. Let I be an interval and f : I — R. zg € [ is called a
global maximum if

f(x) < f(zg) Vel

zo € I is called a local maximum if
de>0: f(x) < f(xog) Vo€ (xog— €0+ €)

An extremum is either maximum or minimum.
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Example 4.39. (i) Let f:[-1,1] = R, f(z) = 22.

e 19 =0 is a local and global minimum

e 19 = %1 is a local and global maximum
(ii) Consider
f*R—R

x
:r»—>cos:n+§

f has infinitely many local extrema, but no global ones!

(iii) Consider
fR—R

1, =z rational
T — ] )
0, x irrational

e 1 rational is a global maximum

e 1 irrational is a global minimum

94
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Theorem 4.40. Let I be an open interval, and f : IRR a function with a
local extremum at xg € I. Then

f differentiable in xg = f'(x9) =0

Proof. Assume f'(z9) # 0 (w.lo.g. f'(xzg) > 0, otherwise consider —f).
Then

flzo+h)— f(z)
h

36>0: — Fl(xo)| < f'(zo) Yhe (=6,0)  (4.42)

Especially

fzo +h) = f(zo)
h

0< Vh € (—9,9) (4.43)

For h > 0 this means f(zo + h) > f(zo). And for h < 0 this means that
f(zo+ h) < f(xg). Thus zg is not an extremum. O

Remark 4.41. Let f : I — R be differentiable. To find the extrema of f,
calculate f’ and find its roots. However, the roots are to be insepcted more
closely, as f’(xg) = 0 is not a sufficient criterion (The function could have
inflection points or behave badly at the boundaries of ).

Theorem 4.42 (Mean value theorem). Let a,b € R with a < b, and let
fyg:[a,b] = R be differentiable. Then 3¢ € (a,b) such that
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Proof. Consider all

h(z) = (f(b) = f(a))g(z) — f(x)(g(b) - f(a)) (4.44)
h is differentiable, which means h is continuous on [a, b]
h(a) = f(b)g(a) — f(a)g(b) = h(b) (4.45)

We need to show that k' has a root in [a, b]. If h is constant, this is trivial.
So we assume Jz € (a,b) such that h(z) > h(a). Since h is continuous on
(a,b) there exists a global maximum z¢ € [a,b] with 9 # a and z¢ # b.
This implies that h'(z9) = 0. If h(z) < h(a) the same argument can be
made. O

Remark 4.43. This theorem is often written as

f) = fla) _ f(§)
g(b) —g(a)  g'(§)

And if g(z) =

Corollary 4.44. Let I be an open interval and f : I — R differentiable.
Then

(i) f'(I) C [0,00) <= monotonically increasing

(i) f'(I) C (0,00) = strictly monotonically increasing
(i1i) f'(I) C (—o00,0] <= monotonically decreasing

() f'(I) C (—00,0) = striuctly monotonically decreasing

Proof. We will only show the 7 = 7 direction for (i). Assume f isn’t
monotonically increasing, then Jz,y € I such that x < y but f(z) > f(y).
The mean value theorem thus states, 3¢ € (z,y) such that

y—x
All other statements are proven in the same fashion. O

Ezample 4.45. f strictly monotonically increasing does NOT imply that
f'(I) € (0,00). Consider f(z) = x3.
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Corollary 4.46 (L’Hopital’s rule). Let a,b,z9 € R, with a < xy < b and let
fyg: (a,b) = R be a differentiable function. We require f(xo) = g(zo9) = 0.
If ¢ (x) #0 Vo eI\ {xo} and if

f'(x)

T g’(qj)

exists, then

wos0 gla) e (@)

!/
lim 1) = lim f'(z)
Proof. Between two roots of g there must be at least one root of ¢’. Ie.

g(x) #0 Vx € I\ {zo}. This means, that

@) f@) - fa)  f(E)
e lamo) et Oy T @) gle) | E) e ()

Since &, € (z,z0)
T—>T
o —

o (4.48)
For the limit from the left, this implies

@) _ S

li 4.49
2 o)~ R g(a) (449)
This argument can be made for the limit from the right as well. O

Remark 4.47. (i) For the computation of the limit it is enough to consider
fand g on (xg — d, 29 + 0) with 6 > 0.

(ii) L’Hopital’s rule also works for one-sided limits

(iii) Let f,g : (a,b) \ {zo} — R be differentiable. Then it is enough to
require
lim f(z)= lim g(x) =0

T—T0 T—T0

(iv) L’Hépital’s rule doesn’t generally apply to complex valued functions.

(v) By substituring f(z) = f (1) and g(z) = g (1) we can also use

lim f(x) = lim f’(x)
z—o0 g(x) w0 §'(x)
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(vi) The inverse

/
L= tim L% — i L@ g
T—x0 g(aj) z—0 g/(l‘)
is NOT true.

Ezample 4.48. Consider

] .’E2 «“p”

lim — = —

z—01 —cosx 0
The functions here are

f(z) = 22 g(x) =1—cosx
with the derivatives
f(z) =2z g (x) =sinz
However, the limit of the derivatives is still
. 21. 64077
lim — = -
z—0 sin T 0
We can derive the functions again
f(x)=2 g"(x) =cosz
And thus
2
lim =2 — lim— =2
z—0 cOS T z—01 —cosx

Theorem 4.49 (Derivative of inverse functions). Let I be an open inverval,
and f : I — R differentiable with f'(I) C (0,00). Then f has a differentiable
inverse function f~1(z): f(I) = R and for y € f(I) we have

Proof. f is strictly monotonically increasing, thus f~' exists and is contin-
wous. Let y € f(I), = := f~!(y) and

&)= f"Hy+h) — ) (4.50)

T

Then

z+&(h)=fy+h) = fla+&h)=y+h=f@)+h (451
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Which in turn implies

Now we have

flly+h) -y _ §(h)
h f@+Eh) = f(w)
:<f(x +&(h) — f<x>>‘1
£(h)
S0y = 1
TRE) = gy >0

Ezample 4.50. (i) Let n € N and consider

f:(0,00) — R

x— "

The derivative is f'(z) = na™~!. The inverse function is
1 1

g =y  Jdy = o) () =

(ii) The natural logarithm. Let f(z)0expz and ¢g(y) = Iny. Then
1 1
ny) = ——F—=-
= iG] ~ v

(iii) Let f(x) = 3. Then

-1 — \3/@ yZO
=) {_\3@7 ) <0

f~1 is not differentiable in y = 0.

99

(4.52)

(4.53)

Definition 4.51. Let I be an open interval. f : I — R is said to be
(n+ 1)-times differentiable if the n-th derivative of f (f(™) is differentiable.
f is said to be infinitely differentiable (or smooth) if f is n times differ-

entiable for all n € N.

f is said to be n times continuously differentiable if the n-th derivative

™) is continuous.
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Definition 4.52. Let I be an open interval, and f : I — R n times differ-
entiable in # € I. Then

is called the Taylor polynomial of n-th degree at x of f.

Theorem 4.53 (Taylor’s theorem). Let I be an open interval and f : I —
R an (n + 1)-times differentiable function. Let x € I and h : I — R
differentiable. For every y € I, there exists a £ between x and y such that

(n+1)
(1) - Tutw) - 1) = Oy gy hiw) — )

Proof. Let

g:I—R
“~ f®() k (4.54)
t+—>kz: o —t
=0

Apply the mean value theorem to g and h to get

g'(&)(hy) = h(x)) = (9(y) — g(x))W'(§) = (f(y) — Tuf(y))W'(§)  (4.55)
and thus

g'(t) _ - (f(k+1)(t) (y _ t)k _ f(k)(t) k:(y _ t)k—l)

k! k!
k=0
Telescop"l;lg series (456)
B fn+1 (t) .
By inserting £ we receive the desired equation. O

Remark 4.54. (i) This is useful for when h/(£) # 0

(ii) The choice of h can yield different errors

RnJrl(yvl') = f(y) - Tnf(y)

(iii) The Langrange error bound is for h(t) = (y —t)"*!:

(€

Rpi1(y, =) = (n+1)! (y — )
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(iv) This theorem makes no statement about Taylor series.

Corollary 4.55. Let (a,b) C R and f : (a,b) — R a n-times continuously
differentuable function with

0=f'@)=f"@) == V()

and f £ 0. If n is odd, then there is no local extremum in x. If n is even
then

F™(z) >0 = z is a local mazimum

FM(z) <0 = z is a local minimum

Proof. W.lo.g. f™ > 0. We will use the Taylor series with Lagrange
error bound. According to prerequisites, f(”) is continuous, i.e. de > 0
such that f(™ (&) > 0 on (z — €,z + €). The Taylor formula tells us, that
Vy € (v —e€,x+e€) 3¢ € (r — €, + €) such that

(n)
) = Tacr () = () — fla) = L&) gy gy (4.57)

n!

For n odd, f(y) — f(z) assumes positive and negative values in every neigh-
bourhood of z. If n is even then f(y) — f(x) cannot be negative, thus x is
a local minimum. O



Chapter 5

Topology in Metric spaces

5.1 Metric and Normed spaces

Definition 5.1 (Metric space). A metric space (X, d) is an ordered pair
consisting of a set X and a mapping

d: X xX — [0, 0]
called metric. This mapping must fulfil the following conditions Vx,y, z € X:
e d( >0 (Positivity)
e d(z,y) =0 <= z =1y (Definedness)
( (y,x) (Symmetry)
(x,z) +d(z,y) (Triangle inequality)

(i) Let M be a set. Then

1, z#y
d($’y):{0 else

is called the discrete metric.
(ii) Let X be the set of edges of a graph.

d(x,y) := Minimum amount of edges that have

to be passed to get from x to y

102
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(iii) Let X be the surface of a sphere.

d(z,y) := "Bee line”

(iv) Let X be the set of points of the European street network.

d(x,y) := Shortest route along this network

(v) Let (X,dx), (Y,dy) be metric spaces. Then

dxxy ((z1,91), (v2,y2)) = dx (21, 22) + dy (y1, Y2)
defines a metricon X x Y.

Definition 5.3 (Normed space). (V,|-||) is said to be a normed space if V'
is a vector space and
-l = V' —[0,00)

is a mapping (called norm) with the following properties
e |[z|| > 0 (Positivity)
e |z]| =0 < x =0 (Definedness)
o [[Az] = [Alllz|
e 2 +yll < ll2ll + Ilyll (Triangle inequality)

To every norm belongs a unique induced metric

d(z,y) = ||z =yl
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Ezample 5.4 (R™ with Euclidian norm).

Il : R™ — [0, 00)

(x17x27"'7$n)’—> $%+$%+—|—1‘%

Then (R", ||-||) is a normed space.

Ezample 5.5. (i) (x1,22, -+ ,&n) — |z1]| + |x2| + - - + |25] is also a norm
on R".

(ii) On
V ={f:[0,1] — R| f continuous}

we can define the supremum norm

1flls = sup{|f(2)||= € [0,1]}

(iii) We can define sequence spaces as

o0
Z |z, [P < oo}

n=1

= {(:cn) ccn

with the norm

()l =

o

> leaf?
n=1

A special space is EQ, called Hilbert space

Remark 5.6. The Minkowski metric is not a metric in this sense.

Definition 5.7 (Balls and Boundedness). Let (X, d) be a metric space, and
r € X,r > 0. We then define

By (z) ={y € X |d(z,y) <7} Open ball
Ky (x)={y e X|d(z,y) <r} Closed ball

A subset M C X is called bounded if

JreX,r>0: M C B,(x)



5.2. SEQUENCES, SERIES AND LIMITS 105

5.2 Sequences, Series and Limits

Definition 5.8 (Sequences and Convergence). Let (X, d) be a metric space.
A sequence is a mapping N — X. We write (z,,),,cy OF (Zn).
The sequence (z,,) is said to be convergent to = € X if

Ve >03IN eNVn>N: d(zpx)<e

x is said to be the limit, and sequences that aren’t convergent are called
divergent.

Remark 5.9. On R the metric is the Euclidian metric |- |, therefore this new
definition of convergence is merely a generalization of the old one.

Theorem 5.10. Let (x,,) be a sequence in the metric space (X,d) and x €
X. Then the following statements are equivalent:

(i) (zn) converges to x

(ii) Ve > 0 Be(x) contains all but finitely many elements of the sequence
(almost every (a.e.) element)

(iii) (d(x,xy)) is a null sequence
Proof. (ii) is merely a reformulation of (i), and (ii) <= (ii¢) follows from
d(zp,x) = |d(xn, x) — 0 (5.1)
U
Theorem 5.11. Let (3:(”)) = (xgn),argn), e ,x&n)) c R4 and
x=(x1, - ,1q) €R?

)

(:E(”)) 1s said to converge to x if and only if xl(n converges to x; for all i in

{17... ’d}

Proof. For y = (y1,--- ,yaq) € R? we have
lyall <yl Vi e {1,---,d} (5.2)

If (x(")) converges to x, then
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If (xl(n)) converges to z; Vi € {1,---d}, then

.%'l(n) — Ty

€

Ve>0dN e NVn > N :
Vd

< Vie{l,---d} (5.4)

Thus

Hfﬂ("’ - wH — V@ =) + (@) - a2+ @) - 2g)?

€2 2 € (5.5)
<4 -
S\Vy + ] ++ 5
=€
So (x(”)) converges to . O

Theorem 5.12. Fvery convergent sequence has exactly one limit and is
bounded.

Proof. Assume that x,y are limits of (z,) with  # y. Then d(z,y) > 0.
There exists N1, No € N, such that

d(xp, ) <

d(:UQ’ Y vy > Ny (5.6a)

d(z,y)
2

d(zp,x) < Vn > N (5.6b)
From this follows that
d(z,y) < d(z,z,) + d(xn,y) < d(z,y) Vmax{Ny, No} (5.7)

which is a contradiction, thus sequences can have only one limit.
Now if (x,) converges to x, then

INeNVA>N: dan,z) <1 (5.8)

Then
d(xp,x) < max{d(x1,x),d(ze,x), - ,d(ry_1,2),1} (5.9)
O

Theorem 5.13. Let (V,||-||) be a normed space over K. Let (xy,),(yn) CV
be sequences with limits z,y € V and (\,) C K a sequence with limit A € K.
Then

Tn+Ynp — T+ Y ATy — AT
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Proof. Left as an exercise for the reader. O

Definition 5.14 (Cauchy sequences and completeness). A sequence (x,,) in
a metric space (X, d) is called Cauchy sequence if

Ve >03IN eN: d(zp,xm) <e YVmn>N

A metric space is complete if every Cauchy sequence converges. A complete
normed space is called Banach space.

Ezample 5.15.
(R,|]) and (C,||) are complete
(Q, |-|) is not complete

Theorem 5.16. FEvery convering series is a Cauchy sequence

Proof. Let (x,) — x. This means that

Ye>0eN €N d(mn,x)<% Yn > N (5.10)

Then
d(xn, Tm) < d(Tp,x) +d(x,z0) <€ Ym,n >N (5.11)
O

Theorem 5.17. R™ with the Fuclidian norm is complete.

Proof. Let (x(”)) C R™ be a Cauchy sequence. We know that
Vy e Ryl <|lyll vie{l,---n} (5.12)
We also know that (xl(")) are Cauchy sequences because
’(aﬁgn) — :c;")’ < Hx(”) — x(m)H Vie{l,...,n} (5.13)

Thus xl(") — x; and therefore (x(”)) — . ]

Definition 5.18 (Series and (absolute) convergence). Let (V,|]|) be a
normed space and (z,) C V. The series

00
Do
k=1
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is the sequence of partial sums

n
=3

k=1

If the series converges then Y ;2 z; also denotes the limit. The series is
said to absolutely convergent if

[e.9]

S flall < oo

k=1

Theorem 5.19. In Banach spaces every absolutely convergent series is con-
vergent.

Proof. Let (V. |-]]), (z) C V and require > >2 (V. |||)zrn < co. We need
to show that s, = Y ,_, xx is a Cauchy sequence. Let ¢ > 0 and ¢, =
Y p—q llzk|l. (tn) is convergent in R, and thus a Cauchy sequence. Le.

AN eN: |t,—t|<e Vm,n>N (5.14)

Forn >m > N:

n

>

k=m+1

n

< N lzwll = tn —tn = |tn — tm| <€ (5.15)
k=m+1

|80 — smll =

O]

Theorem 5.20. Let (V. |-||) be a Banach space, > ;2 | x, absolutely conver-
gent and let 0 : N — N be a bijective mapping. Then

Z T = Z Lo (k)
k=1 k=1

Proof. Analogous to Theorem 2.55 O

5.3 Open and Closed Sets

Definition 5.21 (Inner points and Boundary points). Let (X, d) be a metric
space, A C X and z € X.

(i) x is said to be an inner point of A, if

Jde>0: B(zr)CA
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(ii) x is said to be a boundary point of A if

Ve>0: Buz)NA#DAB(x)N(X\A)#£D

Be(z) contains Be(z) contains points
points from A from outside of A

(iii) The set
{z € X |z is inner point of A}

is called the interior of A, and is denoted as A.

(iv) The set
{z € X |z is boundary point ofA}

is called the boundary of A, and is denoted as JA.

(v) AUOA is said to be the closure of A, and is denoted as A.

Example 5.22. Consider X = R%. Then

A={(z,y) eR|0<y <1}
(z,y) eR*|0<y <1}
8A:{(x,y)eR2‘y:1\/y:O}
(z,y) eR*[0 <y < 1}

Remark 5.23. (i) Ac A



5.3. OPEN AND CLOSED SETS 110

(ii) Boundary points of A can be elements of A or not.
(i) ACAUDA, ANdA=o
(iv) 0A=0X\ A

Theorem 5.24. Let (X,d) be a metric space, A C X and x an interior
point or boundary point of A. Then

(xp) CA: )y ——
Proof. 1f x € A then this is trivial, so let x ¢ A. Then

VneN 3z, € (B () N A g) (5.16)

1
n

We need to show that (x,) converges to x.

1
Ve>0eN eN: N <€ (5.17)
For n > N we have
1. (5.18)
n- N € '
and thus )
d(xn,r) < — <€ (5.19)
n
O

Definition 5.25 (Open and Closed sets). Let (X,d) be a metric space.
A C X is said to be

(i) open, if every point in A is an interior point
(ii) closed, if A contains all its boundary point
(iii) neighbourhood of x € A, if x is an interiot point of A

Theorem 5.26. Let (X,d) be a metric space and A C X.

A open <= X \ A closed
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Proof.

Aopen < VzcA: zcA (5.20a)
< VexeA: ze€idA (5.20Db)
<= X\ A contains all boundary point of A (5.20c)
<= X \ A contains all boundary points of X \ A (5.20d)
<= X\ A closed (5.20e)

O

Remark 5.27. That doesn’t mean A has to be either open and closed.
Ezample 5.28. Let (X, d) be a metric space, x € X and r > 0. Then

B.(z) ={y € X |d(z,y) <r} is open
K, (z)={y € X |d(x,y) <r} is closed

Remark 5.29. Consider the special case a,b € R with a < b

(a,b) = Bo-a <a—2|—b> open

2

a+b

[a,b] = Kb_a < > closed
2

Theorem 5.30. Let (X,d) be a metric space and A C X.

A closed <= V¥ (z,,) C A convergent : ILm xy, € A

Proof. Assume A is closed. Let (z,,) C A be convergent to z. then
Ve>03dN eN: x, € B(zx) Vn >N (5.21)

This means that every e-ball around x contains at least one point from A.
Le. x is always a point (or a boundary point) of A. From A closed follows
x € A.

Now assume x € JA. Then

d(zn) CA: (zp) — (5.22)
According to the prerequisites, x € A. O

Theorem 5.31. Let (X,d) be a metric space, and T the set of all open
subsets. Then
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(i) ser, Xer

(i) The union of any number of sets from T is an open set

(iii) The intersection of finitely many sets from T is an open set

mtET

Proof. Left as an exercise for the reader. O
Remark 5.32. (i) 7 is said to be the topology induced by d

(i) e @, X are also closed
e The intersection of any number of closed sets is closed

e The union of finitely many closed sets is closed
(iii) Infinitely many intersections of open sets are not open in general.

Theorem 5.33. Let (X,d) be a metric space and A C X. Then
A open = 0A, A closed
Proof. Let A be open and x € A C A. This means
Jde>0: Be(x)CA (5.23)
We have to show that B(z) C A. Let y € B(x). Since Be(z) is open
36 >0: Bjs(y) C Be(x) C A (5.24)

This means that y € B.(z) is interior point A. Le. C (z) C A, and thus
is interior point of A.
Let B= X\ A. Then 0A = 0B

X=AUB=AUOAUBUOB=AUHAUB (5.25)
Then

A and B are disjoint = A, B disjoint (5.26a)
— A disjoint to A, B (5.26b)
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This results in

0A =X\ (AUB) = 0A closed (5.27)
——
open
and ) )
A=AUJA=AUIA = X\ B closed (5.28)
[

Theorem 5.34. Let (X,d) be a metric space and A C X

O=A and C=A
U N

O open C closed
OCA AcCC

Proof. Let A is open and AcA

= |J o4 (5.29)
OCA open

Now let O C A be open and z € O, i.e.
Je>0: B(z)COCA = z€cA (5.30)

This implies that O C A. Since this holds for all open O C A, this statement
is proven. The other statement follows from the complement. ]

Theorem 5.35. Let (X,d) be a complete space and A C X be closed. Then
(A,dya) is complete.

Proof. Left as an exercise for the reader. O

Remark 5.36. Topological terms (open, closed, continuous, compact) don’t
just depend on A, but also on X.

Definition 5.37. Let (X, d) be a metric space and x € X.
(i) « is said to be an isolated point if Je > 0 such that B.(z) = {z}.
(ii) x is said to be a limit point if it’s not an isolated point.

Definition 5.38 (Punctured neighbourhood, Punctured ball). Uc X is
said to be a punctured neighbourhood, if there is a neighbourhood U of z
with U = U \ {z}

A punctured ball is B(z) = B \ {z}.
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Definition 5.39 (Limit of mappings). Let (X,dx),(Y,dy) and x a limit
point of X. Let U be a punctured neighbourhood of x and f : U — Y.
Then f converges to y € Y in x (y is said to be the limit of f in z), if

Ve>030>0: f(z)€ Be(y) [d(f(Z),y) < €]
if & € Be(x) [d(z,z) < ]
Example 5.40. Let f,g: R*\ {0} — R.

f(x) = ||$H2 g(x) = i

gdl
Then lim,_,¢ f(z) = 0, because for € > 0 and § = /e we have
A(7,0) = 7~ 0| =7 < & = d(f(7),0) = ||7]* — 0| = |7]]* < ¢ = &?
Theorem 5.41.
Ty —>T

f convergestoy €Y inx < V(x,) C X: flz,) ——y

Proof. Let (x,) C X with x,, —— x. Let € > 0, then

36 >0: f(z)€ Be(y) if z € Bs(x) (5.31)
Furthermore
AN eN: =z, € Bs(x) Vn> N (5.32)
Then
f(zn) € Be(y) Vn> N (5.33)

To prove the other direction, assume f doesn’t converge to y in y. This
means

de > 0: 3% € Bs(x) but f(Z) ¢ B(y) Vo >0 (5.34)

Therefore
VneN: 3Fz, € Bi(z) (5.35)

We know that @,, — x since d(z,,z) < +, but f(z,) doesn’t converge to
y since d(f(zy),y) > €. O

Corollary 5.42. Let (X,d) be a metric space, x € X a limit point and U
a punctured neighbourhood of x. Let f,g: U — K with

lim f(Z) =y lim g(Z) = y2

T—T T—T
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Then
%E}c(f +9)(@) =11 +y2 %ig;:(f 9)(Z) = y1- Y2
lim <f> (i) =24
T—T g Y2
Heuristic Proof. Draw parallels back to number sequences ]

5.4 Continuity

Definition 5.43. Let (X,dx), (Y,dy) be metric spaces. f :x — y is said
to be continuous in x € X if

Ve>036>0: 7€ Bs(z) = f(T) € Be(f(x))
f is said to be continuous is it is continuous in every point.
Ezample 5.44. (i) Let (X, d) be a metric space.
d: X — X
T
is continuous (choose § = €).
(ii) The function
f:R* —R?
(@, y) — (z,~y)
is continuous. For (,%), (z,y) € R? we have
1£(Z.9) = fepI? = 1@ -2y = 9I* = @ —2)° + (y - §)°
= [I(&,9) — (z, )|
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(iii) Consider
f:R? —SR

0 -y=20
(@y)— < Y
1, z-y#0

f is non continuous in (0, 0).
Remark 5.45. (i)

f continuous in ¢ <= Ve >030 >0: f(Bs(z)) C Be(f(x))

(ii) Continuity is a local property, this means if z € X, U a neighbourhood
of z and f, g functions with f|y = g|y, then

f continuous <= ¢ continuous

Theorem 5.46. Let xy € X, g X —>Yand f:Y — Z. If g is continuous
in xo and f is continuous in g(xg), then f o g is continuous in xg.

Proof. Since f, g are continuous we know that

Ye>030>0: ye Bylglao) = f(y) € Blfg(x0))  (5.360)
V6>03p>0: z€ By(zrg) = g(x) € Bs(g(zo)) (5.36b)

Then Vz € B,(zg) we have

(f o g)(w0) = f(9(x0)) € Be(f(9(20))) (5.37)
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Definition 5.47 (Lipschitz continuity). A function f : X — Y is said to
be Lipschitz continuous if

L>0: dy(f(z), f(y)) <L-Dx(z,y)
L is called Lipschitz constant. If L = 1, f is called contraction.
Ezample 5.48. Let f,g:[0,1] — R.
fla) =a? g9(z) = Va
f is Lipschitz continuous, g is not.
Theorem 5.49. Every Lipschitz continuous function is continuous.

Proof. Let f: X — Y be Lipschitz continuous, with Lipschitz constant L.
Let € > 0, then for z € B< ()

d(f(x), f(xg)) < L-d(x,x0) <€ (5.38)

Thus, f is continuous in xg, and since we chose an arbitrary xg, f is contin-
uous everywhere. O

Ezample 5.50. (i) Consider
m K" — K
(T1,22, ,Tn) —> T
Then
[mi(x) = mi(y)| = |lws — wil < [lz =y
So m; is a contraction.
(ii) Let (X,d), (X x X,dxxx) be metric spaces. Then
d: X xX —R
(z,y) — d(z,y)
is a contraction. Let x1,22,y1,y2 € X and apply the triangle inequal-
ity
d(z1,y1) < d(z1,22) + d(z2,91) < d(21,72) + d(Y2, Y1) + d(2,Y2)
This implies
|d(z1,91) — d(22,y2)| < d(z1,22) + d(y1, y2)
= dxxx((w1,72), (Y1, Y2))

which means the metric is continuous.
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(iii) Analogously, this works for ||-||.
Theorem 5.51. Let f: X — Y.

x is an isolated point in X

[ is continuous in x € X < 7 " F(@)=f(z)

Proof. Let f be continuous in x € X. If x is an isolated point there is
nothing to show, so let x be a limit point. Then

Ve>036>0: f(i)€ Bf(z)) Vi€ Bs(x) (5.39)

Now let z be an isolated point, i.e. 3§ > 0 such that Bs(x) = {x}. Then

f(Beita()) = {f(x)} C Be(f(x)) Ve>0 (5.40)
If x is a limit point and limz_,, f(Z) = f(z), then let € > 0
36 >0: f(Bs(x)) C Be(f(x)) (5.41)
This then implies
f(Bs) € Be(f(x)) (5.42)
0

Corollary 5.52.
f:X =Y continuous inx € X < V(z,) C X: flzn) =25 f(z)
This means, for continuous f we have

n—o0

Corollary 5.53. Let f1,--- , fn : R™ = R. Then define

f:R™ — R"
x> (fi(2), fa(z), -, ful2))
f is continuous if and only if f1,--- , fn are continuous.

Corollary 5.54. Let f,g : X — R be continuous in x € X. Then

f+g f9
are continuous in x, and if g(x) # 0 then
!
g

1s also continuous in x.
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Ezample 5.55. Let n = (n1,--- ,n,) € Njj and = € K". Define
o =zt 2l
7 is called multi index. We set

ml==m+mnz+ns+-+m
Let ¢, € K Vn with [n| <N N € N. Then we call

a polynomial with n variables. Such polynomials are continuous. Example:
(21, 2) —> 27 + 23+ 2f + 27
Remark 5.56. In the context of polynomials (and power series) we define
0°=1

Reminder: If f: X — Y and U C Y then f~!(U) is said to be the preimage
of U under f. It’s the set of all points of X that get mapped to U.

fHU) ={x e X|f(z) €U}

Theorem 5.57. Let f : X — Y

(1)
. . . Ff~1(U) is a neighbourhood of
[ is continuous in v <= x  VUneighbourhood of f(x)
(i)
f is continuous <= f~1(O) is open YO C'Y open
(iii)

f is continuous <= f~1(C) is closed VC C Y closed
Proof. We will prove (i). Let U be a neighbourhood of f(x), i.e.
de>0: B(f(x)cCU (5.43)
Since f is continuous

3>0: f(Bs(x)) C Be(f(x)) (5.44)
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which in turn means

Bs(z) € f~H(Be(f(x))) € f71(U) (5.45)
so f~1(U) is a neighbourhood of f(x). Now let € > 0. Since B.(f(z)) is a
neighbourhood of f(z), f~1(Bc(f(x))) is a neighbourhood of . This means
30> 0: Bs(z) C fTH(Be(f(x))) (5.46)

Thus f(Bs(x)) C Be(f(z)) which means f is continuous in x.
(ii) and (iii) are left to the reader. O

Definition 5.58 (Subsequences and (sequential) compactness). Let (X, d)
be a metric space, and (z,) C X, (ng) C N are strictly monotonically
increasing. Then (z, ) is said to be a subsequence of (x,).

A subset A C X is said to be (sequentially) compact, if every sequence
(xn) C A has a subsequence convergent in A.

Remark 5.59. If (x,) converges to x € X, then every subsequence of (x,)
converges to . However, consider

(20) = (~1)"

This sequence doesn’t converge, but the subsequences (z2,) and (z2,+1)
converge to (different) values.

Ezample 5.60. Let X =R, then (0,1) and N are not compact. Because

(20 = =) C (0,1) (¢n=n) C N

n

have no convering subsequences.
Theorem 5.61.
A CR"™ is compact < A closed and bounded
Proof. Assume A is not closed, i.e. for z € 0A\ A
3(z,) C A with z,, —— (5.47)

Every subequence of (z,,) converges to x, but  # A. From this follows that
A is not compact. Assume A is not bounded, i.e. A\ B,(0) # @ Vn € N.
Now choose (z,,) C A such that [|(z,)] > n. (x,) cannot have a convergent
subsequence, because on the one hand for (z,,) convergent to x we have
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|zn, || = [lz]|, but on the other hand ||z, || > nr — oo. This proves the
7 = 7 direction, to prove the inverse, consider the case n = 1: Let A C R
be bounded and closed. Then

9K >0: ACl =[-K, K] (5.48)

Let (x,) C A be a sequence. We recursively define more intervals. Let
I, = [a,b) such that x,, € Ij for infinitely many n € N. Half the interval:

b— h—
Ik’-i—l = |:(1/; 9 a) or Ik+1 = |:2a/,b> (5493,)

such that x,, € Iy41 for infinitely many n € N. By doing this we are creating
a sequence of nested intervals of length K -27%%2. Now set n; = 1, and then
recursively define

Ngg1 > max {ni,---,ng} and z,, € I (5.50)

We now need to show that (x, ) is convergent. Apply the Cauchy criterion:
For | > k we know that x,, and z,, € I}, i.e.

T, — @y < K - 27KF2 E22 (5.51)

This means, z,, is a Cauchy sequence, so it converges to x € R. Since A is
closed, we have x € A. O

Theorem 5.62. Continuous mappings map compact sets to compact sets.

Proof. Let f: X — Y be continuous and A C X compact. Let (z,) C f(A).
We need to show that (x,) has a convergent subsequence. We know that

3 (yn) CA: z,= f(yn) (5.52)

Since A is compact, there must be subsequences (yy, ) with y,, LmicN y € A.

Because of the continuity of f, we have

f(yny,) — f(y) € f(4) (5.53)
N——

{L’nk

Thus, f(A) is compact. O



5.5. CONVERGENCE OF FUNCTION SEQUENCES 122

Remark 5.63. Let f : R™ — R™ be a continuous mapping. f maps closed,

bounded sets to closed, bounded sets. In general, closed sets are NOT

mapped to closed sets, and bounded sets are NOT mapped to bounded sets.
Example: f:(0,00) = R, z+» 271

f0(0,1) )= (1,00) f([L,00]) = (0,1]
~—— —— ~—— ~——
bounded unbounded closed not closed

Corollary 5.64. Let A C R™ be compact and f: A — R continuous. Then
f assumes its maximum on A. Le.

JreA: fly)<flx) Wed

Proof. f(A) is compact, so it’s closed and bounded. We want to show

that compact subsets K of R have a maximum M := sup K such that
rp, — M. Since K is closed we know that M € K, so M is a maximum.
Especially, 3z € f(A) maximum and 3z € A with f(z) = z O

Theorem 5.65. Let A C R™, B C R™ be compact subsets and f: A— B a
bijective, continuous mapping. Then f~1 is also continuous.

Proof. Define g := f~1. g is also bijective and maps B — A. Let C C A be
closed. Since A is bounded, C' is also bounded. Thus, f(C) is also compact
(i.e. bounded and closed), and we have

f(C)={f(z) e Bl|z € C}
={f(9(y)) € Blg(y) € C} (5.54)
={yeBlgly) eCr=9""(C)

So g~1(C) is bounded, and since C' was an arbitrary closed set, g is also
continuous. O

5.5 Convergence of Function sequences

Definition 5.66 (Pointwise convergence). Let M be a set, f, : M —
K Vn € Nand f : M — K. The sequence (f,) is said to be pointwise
convergent to f if
lim f,(x) = f(x) Ye e M
n—oo
Ezample 5.67. Consider
fn:[0,1] — R

1— 1
N nz, x €0, ]
0, else
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0.8 -

0.4 f :

f2
4 I3

|
0 0.2 0.4 0.6 0.8 1

The f,, are continuous for all n € N and converge pointwise to
f:[0,1] — R
1, ==
T +—

0, z#0
f is not continuous.
Remark 5.68. Let M be a set. Then

BM)={fp,: M —K|IK €R: |f(z)|]< K Vxe M}

is a linear subspace of the space of all functions M — K. We can define the
supremum norm

oo : B(M) — R
fr— sup {|f(z)}
zeM
Proof. We will now proof that ||-||, is a norm. It is defined, because
[flloe =0 = [f(2)] =0 Vo e M (5.55)

This implies
flx)=0 VxeM = f=0 (5.56)

The triangle inequality is proven by first considering

@) <N fl Vf e BM)VeeM (5.57)
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Let f,g € B(M), then
[f (@) +g(@)] < [f@)] +19(x)] < [[fll + 9]l Yz €M (5.58)
Which implies
If+ 9l = Sgﬂl}\f(ﬂf) +9@)] < flloo + llgllo (5.59)

O]

Definition 5.69 (Uniform convergence). A sequence of bounded functions

(fn)?
fn:M —K

is said to be uniformly convergent to f : M — K if its norm converges.
fn = flloe =20
Remark 5.70. Formally, pointwise convergence means
Ve>0Vre M IN eNVn>N: |folx)— f(z)] <e
and uniform convergence means
Ve>03dIN eNVzx e MVn>N: |fulx)— f(x)] <e
Theorem 5.71. The function space B(M) is complete.

Proof. Let (f,) C B(M) be a Cauchy sequence in terms of [-|| . Firstly,
we have for some fixed z € M

[fn(@) = fm(2)] < 1 fn = fnll (5.60)

Since (f,) is a Cauchy sequence, (f,(x)) is also a Cauchy sequence in K.
Because K is complete, (f,,(z)) converges, and we define

flx) = li_)m fn(x) (5.61)
thus (f,) converges pointwise to f. Let € > 0. Then
AN eN: [[fon- fullo <€ Yn,m>N (5.62)

Then Vz € M, VYn,m > N we have

[fn(@) = fm(2)] < lfn = fnlloo <€ (5.63)
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We can find the limit for m — oo

[f(z) = fa(@)| < e (5.64)

and

[flloe = sup [f| < sup [f(x) = fu(z)] + sup [fu(x)] = €+ [|fnllc  (5.65)
xeM zeM zeM

Thus, f is bounded. Furthermore

1f = fallow = sup | f(z) — fu(z)| <€ (5.66)
zeM
which in turn implies
n—oo
If = fall ——0 (5.67)
O

Definition 5.72. Let (X, d) be a metric space, then Cy(X) is said to be the
space of all continuous bounded functions.

Remark 5.73. If X is compact (e.g. a bounded, closed subset of R™) then
all continuous functions are bounded. We then write C(X) for Cp(X).

Theorem 5.74. Let (X,d) be a metric space. Cyp(X) is closed in B(X). In
other words, every uniformly convergent sequence of continuous functions
converges to a continuous function.

Proof. Let (f,) C Cp(X) be a sequence that uniformly converges to f €
B(X). Let z € X and € > 0, then

INeN: |f- anOOy% Vn >N (5.68)

Choose a fixed n > N. Since f, is continuous, this means that

36> 00 |fal@) ~ fay)l < 5 Yy € Bs(a) (5.69)

Then we have for all such y

[f(@) = fW)] < [f(2) = fal@)] + [fulz) = Fu)] + [ faly) = F()]
<2 Hf - fn”oo + fn(-r) - fn(y) <€

This proves the continuity of f in . Since x € X was chosen arbitrarily, f
is continuous everywhere. O

(5.70)
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Definition 5.75. Let 2y € K and (a,,) C K. Then

0
Z an(x — z0)"
n=1

is called a power series around zg. The number

[e.9]
Z an(x — z0)" Converges}

n=1

p = sup {Ix — 0|

is the convergence radius.

Remark 5.76. All results so far (including proofs) can be extended to R"-
valued functions, or functions with values in a Banach space in general.

Theorem 5.77. Let Y 7 | an(x — x0)" be a power series with convergence
radius p € [0,00)U{oo}. If |x — xo| < p then the series converges absolutely,
for |z — zo| > p it diverges.

1 = lim sup '{/W
P n—00

Proof. W.l.o.g. choose g = 0: For |z| > p the series diverges by definition.
If || < p then there exists y € K such that |z| < |y| < p and Y o7, apy”
convergent. Especially, (a,y") is a null sequence. This means 3C' > 0 such
that |a,y"| < C VneN

= > x "
D lana™ =D lany"||=| <C- > |5 <oo (5.71)
n=1 n=1 n=1 Y

This statement only holds for p > 0. O
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Remark 5.78. (i) We have

00
Qnp a” converges
| |

n=1

p:sup{ae [0, 00)

(i) If the following limit exists, then

Ezxample 5.79. The series ,
"
n=1
is convergent on (—1,1), so p = 1. The limit function is

1

T —
1—=x

Theorem 5.80. Let Y 7, an(x — x0)" be a power series with convergence
radius p > 0. Let 0 < a < p. Then this power series converges uniformly on
Ko(zp). Especially

Proof. W.lo.g. choose zg = 0. Let 0 < a < p. We know that Y 7, a,z"
converges on K,(0).
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Define
n: Ki(0) — K
/ (0) (5.72)
z+—— 2" VYneN
We can see that

[flloo = sup |[ful= sup =a" (5.73)

z€K,(0) zeK,(0)

and thus - - -
S anfn = lanfalle =D lan]" < o0 (5.74)

n=1 n=1 n=1

because a < p. The series Y7 | a, fy is absolutely convergent in C'(K,(0)).
Since C(K4(0)) is complete, Y 07 | a, fr is convergent because the partial
sums Z,]yzl an, fr, are continuous VN € N. Therefore f is also continuous on
K4(0). Let x € B,(0). Then there exists some a > 0 such that |z| < a < p.
Thus, f is continuous on K,(0). Since K,(0) contains a neighbourhood of
xz, and continuity is a local property, f is also continuous in x. Because
x € B,(0) was chosen arbitrarily, f is continuous. O

Remark 5.81. exp, sin, cos are continuous.

Ezample 5.82. The statements above can be extended to Banach space-
valued power series (e.g. matrix-valued functions). The norm on R™*"™ is

[A]l = sup {||Az[| | vz € B1(0)}

Define
o0 An
exp(A) := é o
This converges VA € R™"™ because
o o oo
An 1, 1.
Z ol ZHHA | < ZEHA”
n=1 n=1 n=1
= exp([|4]]) < o0

Thus, > -7, % converges absolutely. Now consider the function

R — R™*™

t — exp(At)
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This is a matrix-valued power series

o0 oo
B (At A"
n=1 n=1
with a convergence radius of p = oo. In this case exp(A + B) doesn’t nec-
essarily have to equal exp(A) - exp(B).



Chapter 6

Multivariable Calculus

6.1 Partial and Total Differentiability

Definition 6.1. Let U C R" be open, x € (21, ,2,) € U and define the
function f : U — R™. The mapping f is said to be partially differentiable
in z in terms of x; if

t— f(xlf o 7xi—17t7x’i+17” : 7:1:71)
is differentiable in z;, i.e.

. $7"'7£i—7xi+haxi y s Tp) — L1, Tn

exists. 0;f(x) is said to be the partial derivative of f in = in terms of z;.
Another notation is

of

8xi
This mapping is said to be partially differentiable in x if it is partially
differentiable in terms of x; Vi € {1,--- ,n}.

Ezample 6.2. Consider

f:R? —R

(z,y) H{

1, z=0Vvy=0

0, else

f is partially differentiable in (0, 0), but not continuous.

130
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Theorem 6.3. Let U C R be open, x € U and f: U — K.

f s differentiable in x
<~
JaeK,¢:U—-K: fly)=f(z)+aly—z)+o(y) YyeU
and
lim (@)

y=e |y —x|

Proof. We will first prove the ” <" direction. So let a, ¢ be as demanded
in the theorem. Then
fly) — f(z) (y) ly—z| yoa

:a—'—
y—x ly—z| y-—u

(6.1)

which means f is differentiable in = and f’(z) = a. Now let f be differen-
tiable, and set

dy) = f(y) — f(x) = f'(@)(y — x) (6.2)
Which is equivalent to the equation in the theorem, with a = f’(x). Then

0 _(f(y)—f(a:)_f,(x)> y-o

- : - 6.3
y—ae |y — xf y—x ly — x| (6:3)

O

Definition 6.4. Let U C R", z € U and f : U — R™. f is said to be
(totally) differentiable in x if a matrix A € R™*™ and a mapping ¢ : U — R™
exist, such that

fly) =fl@)+Aly —z) +o(x) VyeU

and

fim W) _
y=e [y — 2|

f is said to be (totally) differentiable if it is (totally) differentiable in every
point z € U.

Theorem 6.5. Let U C R™ be open, x € U and f: U — R™ with

f=0Ufm)s fioooo s fm:U—R

If f is totally differentiable in x, then it is partially differentiable as well,
and the matriz A is given by

aji = 0; fj(z)
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Proof. Let A, ¢ be as demanded above. Let ey, --- , e, be the canonical basis
for R®. We insert y = = + he; and receive

f(x + he;) = f(x) + h- Ae; + ¢(x + he;) (6.4)
By rearranging this yields

[z + hei) — ()
h

= Ae; + W : |Z| NP (6.5)

Thus, f is partially differentiable in x in terms of z; with 0;f(x) = Ae;. O

Definition 6.6. The matrix (0;f;(x))i; is called the Jacobian matrix of f
in x. We write Df(x). If f is totally differentiable, then D f(z) is said to
be the (total) derivative of f in x.

For m =1 (so f : R® — R), the Jacobian matrix has one column, and
we call it gradient

Df(z) =V f(z)
Note: I will adhere to the physical notation of the gradient, using the Nabla
operator V.

Ezample 6.7. Let A € R™*" and define

fA:Rn—>Rm

r— Az
Then we have
faly) = Ay = Ax + Ay — z) = falz) — faly —z)
Thus, f4a is differentiable (¢ = 0) and the derivative is
Dfs(x) =A Vx e R"

For another example, let

f:(0,00) x (0,27) — R?

(r,¢) — (rcos ¢, rsin )

Then f is partially differentiable.

Df(r,6) = <cos<b —rsin¢>

sing Tcoso

So f is also totally differentiable (We’ll get back to this later).
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Remark 6.8. (i) Let U C R™ be open and f : U — R™ differentiable, then
the derivative Df is a function U — R™*™

(ii) Total differentiability is also called local linear approximation. Linear-
ity is the property

Alx + \y) = Ax + Ny Vr,y e R"" A eR
(iii) For arbitrary vector spaces V,W, a mapping V' — W is said to be

linear if
A(z + \y) = Ax + Ny Vz,y e R"" A e R

So we can analogously define differentiability for mappings f: V — W
between arbitrary normed vector spaces.

(iv) f is totally differentiable in z if and only if the Jacobian matrix exists

and
i W) = f(@) = Df(@)(y — )
z—y |y — ||

(v) Let f = (fi, , ) With f1, , fru : U = R.

=0

f totally differentiable <= f; totally differentiable Vi € {1,--- ,n}

The Jacobian matrix D f;(z) is the i-th row of D f(z).
(vi) Total differentiability implies continuity.
(vii) Partial and total differentiability are local properties.
(viii) The mapping h — D f(z) - h is linear.
)

(ix) The derivative x — D f(z) is not linear in general.

Theorem 6.9 (Chain rule). Let U C R™ be open, V. C R™ open, z € U,
g: U — V differentiable in x, and f : V — RF differentiable in g(x). Then
f o g is differentiable and

D(fog)=Df(g(x))- Dg(x)

Proof. Differentiability of ¢ in x means

oy : U —R™: g(y) —g(z) = Dy(x)(y — ) + dg(y) (6.6)
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Differentiability of f in g(z) means

BV SRl o(2)]z— gfa)]| ! =0 (6.7
and
f(z) = f(g(z)) + Dr(g9(z))(z — g(x)) + d7(2) (6.8)

Now set z = g(y), then

fl9(y)) = f(g(x)) + D¢(g(z)) - Dg(x)(y — )

N—— =

(fog)(y)  (fog)(@) (6.9)
+ (Dy(9(2))g(y) + ¢£(9(y)))

And we finally need to show
Dy(g(x))og(y) + 05(9(y)) y—a

0 (6.10)
ly — |
We know that
Pq(y)
Df(g(z)) —0 (6.11)
ly — |
because
z+— Df(g(z))z linear and thus continuous (6.12)
We define a new mapping
Y:U—R
e — -1 6.13
L (6=l g@IT 2 # (@) (613)
0, z=g(x)
1 is continuous in g(z). Then Vy € U we have
¢r(9(y) _ l9(y) — g(=)|
(9(W) = — (6.14)
ly — || ly — ||
yoT L
and
llg(y) — g(=)|| H S 10)
IIy—wll IIy—l‘II Hy—:vl\
< HDg H (6.15)
IIy—xII IIy—xll
<||Dg(@)| yw

—0
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thus v is bounded.

9\y)— g
— (o) IO (6.16)
ly — ]
O
Theorem 6.10. Let U C R" and f : U — R™. IfVx € U the partial
derivatives 0; f (x) exist and are continuous Vi € {1,--- ,n}. then f is totally
differentiable.
Proof. Without proof. O

Definition 6.11. Let U C R" be open. f: U — R™ is said to be contin-
uously differentiable if all partial derivatives exist and are continuous. The

vector space of all such functions is denoted as C1(U, R™), or in the special
case m = 1 as C1(U).

Ezample 6.12. 1. Coming back to a previous example, we consider

__(cos¢ —rsing
Df(r,¢) = (singb cos ¢ >

Thus, f is continuously differentiable, and therefore totally differen-
tiable.

2. Let N € N and ¢, € K for every multiindex n € Nj with |n| < N.
Then the polynomial

P:R" —K
T — Z ey
n
[n|<N

is continuously differentiable, and therefore totally differentiable.

1 2
Oix" = 0; (x, x,- )
— . Ni—1,.Mi—1_Mi+1 n

This is another polynomial, and therefore continuous.

We introduce the following new notation, for x,y € R™:

Say ={z+tly—2)[t€(0,1)}

Szy ={x+tly—=z)|tel01]}

They denote the connecting line between = and y.
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Sm7y

Theorem 6.13 (Intermediate value theorem for R-valued functions). Let
U C R"™ be open, x,y € U and S, C U. Now let f : U — R differentiable
on Sz and continuous in x,y. Then

I € Suy: fly) = fl2) =Df(E)(y—2)
Proof. Consider

g:[0,1] — R

t— flzr+t(y—x)) (6.17)

Apply the one dimensional intermediate value theorem. Due to the chain
rule, g fulfils the prerequisites. 36 € (0, 1) such that

fly) = f(x) = 9(1) = 9(0) = () = Df(x +0(y —2))(y —2)  (6.18)
For £ = x 4 6(y — ) follows the initial statement. O

Theorem 6.14 (Intermediate value theorem). Let U C R™ be open, S, C
U and f:U — R™ differentiable on S, and continuous in x,y. Then

HeSey: If(y) —f@I <[DFE)y— )|

Proof. For a € R™, consider the (real) helper function

o f(z) = {a, f(x)) (6.19)
According to the previous theorem
3 €Be: alfly)—a' f(z) =a" Df(E)(y — ) (6.20)

In this implication the chain rule has been applied. We can rewrite this
using the scalar product

1£ () = F@)I* = [(f(y) = f(z), DF(E)(y — 2))]

(6.21)
< £ (y) = F@)IDF(E)(y — )l

O]
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Corollary 6.15. Let U C R" be open and f : U — R™ a differentiable
function.
Df=0o0onU = IV CU: f constant on V

Proof. Let x € U, choose € > 0 such that B.(z) C U. Then

Vy € Be(x) 3 € Sey 2 1f(y) = f@)| < IDFE(y —2)[ =0 (6.22)

This implies

1f(y) = @) =0 = fy) = f(x) Vye Be(x) (6.23)
O

Remark 6.16. Functions with vanishing derivatives must be constant. Con-
sider

f:(-2,-1)u(,2) —

-1, =<0
T —
1, x>0

Local constancy implies constancy on connected sets.

6.2 Higher Derivatives

Definition 6.17. Let U C R™ and let f be (the only) partial derivative of
order 0. Now define recursively

(i) f issaid to be (k+1)-times partially differentiable if all partial deriva-
tives of order k are partially differentiable.

(ii) The partial derivatives of order (k + 1) are the functions 0,9 i €
{1,--- ,n} where g is the partial derivative of order k of f.

The k-th partial derivative in terms of ¢ of f is denoted as
o f

f is said to be k-times continuously differentiable if all partial derivatives
of order k are continuous. C¥(U,R™) is the vector space of all k-times
continuously differentiable functions.
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f is said to be infinitely differentiable (or smooth) is it is k-times differ-
entiable Vk € N, and the vector space of all infinitely differentiable functions
is denoted as C>°(U,R™).

For total differentiability we have

f:R* — R™ Df :R™ — R™"
Remark 6.18. Let f : R®™ — R™ be sufficiently often differentiable. Consider

for u € R"”
s DS = i T =S

Directional derivative along u

Now consider for fixed x
D?f(z) : R® x R" — R™
(u,v) — D(Df(-)u)(z)v

D?f(x) is linear in v and u, and

D? f(x)(u1 + Aug,v) = D(Df(-)(u1 + Aug))(z)v
(Df(Yu1r + ADf(-)ug)(z)v
(Df(-)

2

Df(-)ur)(@)v + AD(D f(-)uz)(z)v
f(@)(ur,v) + AD? f () (ug, v)

D
D
D

D?f(x) is a bi-linear mapping.

Definition 6.19. Let U C R™ and f : U — R™. Define recursively for
k> 1:

(i) f is said to be (k + 1) times (totally) differentiable on U, if the term
D¥(-)(u1,--- ,ug) is differentiable on UVuy,--- ,up € R".

(ii) The (k 4 1)-th derivative of f in x € U is the multi-linear mapping
Dk+1f($) . (Rn)k+1 L R™
(ur, -+ s ug, ) = D(DPF() (- up))(z)o
Remark 6.20. Let f1, -+, fin : U = R, then the function

f:U—R™
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is k-times totally differentiable if and only if the fi,---, f, are totally dif-
ferentiable.

(D*f(x)(ur, -+, Ur))j = D* () (un, -+ up)

Remark 6.21. D* f(x) really is multi-linear (linear in every point) ¥k € N.
Other multi-linear mappings are

(i) The scalar product on R”
R" xR" — R

(ii) The determinant
R™™ — R

Remark 6.22. A matrix A € R™*" is uniquely determined by its effect on
the canonical basis eq,--- ,e,. This means if v € R, then Jaq,--- ,a, € R
that are uniquely determined such that

V=a1,€e1 + -+ Qpén

Then
Av =ajde; + -+ ayAe,

Ae; is the i-th column of A. An analogous statement for multi-linear map-
pings would be, that
A:R™F 5 R™

is uniquely determined if A(e;,, €;,, - - , €, ) known Viq,--- ,ip € {1,--- ,n}.
Theorem 6.23. Let U C R”™ be open, f: U — R™ k-times differentiable in
x and let eq, - -+ , e, be the canonical basis of R™. Then

Dkf(x)(eiu"' 7€ik-) = Blkauf(x)
Vig, -« ik € {1,-- ,n}.

Proof. For k = 1 this is already proven. So we can use proof by induction;

assume the statement holds for a k, i.e. Viy, -+ ,ip € {1,--- ,k}
Dkf(x)(eim T 7eik) = alk o 611]0(1})
Then for i1, ,ig,igr1 € {1, ,n}
Dk+1f(x)(ei1,'“ 7eik) = D(Dkf( o )(€i17 o Jelk))(‘r) : eik+1

= 8ik+1aik R 821']"(3;)

The order in which partial derivatives are applied is important! ]
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Ezample 6.24. Consider
f:R?—R
(z1,x3) —> 27 cos(zz)
Then we can calculate
D2f(a:)(u,v) U = ujel + uze2,V = vi€1 + V262
As follows
D?f(x)(u,v) = w01 D? f(z)(e1, e1) + urveD* f () (e1, €2)
+ ugv1 D2 f () (€2, ') + ugua D? f(2) (€2, €?)
= ujvy - 2 - cos(xe) — 221 sin(z2)uve

— 2y sin(wg)viug — :U% cos(xe)ugve
Theorem 6.25. Let U C R" be open, and f : U — R™ k-times continuously
differentiable. Then f is k-times totally differentiable.

Proof. This is already proveb for k = 1. So we can use induction over
k; assume the statement is correct for k¥ € N. Let u1,- - ,ur € R”, then
D¥f()(u1,--- ,uy) is a linear combination of the partial derivative of f
of order k, and is thus continuously differentiable once more. Therefore
D2f()(uq,- - ,uy) is totally differentiable, and thus f is (k+1)-times totally
differentiable. O

Theorem 6.26 (Theorem of Schwarz). Let U C R™ be open, and also
f € C*(U,R™). Then

Ve e U Yu,v € R": D?f(x)(u,v) = D*f(z) (v, u)
and
Ve e U Viy,ig € {1,--- ,n}: 0;,0;, f(x) = Oi,partial;, f(x)

Proof. Let m =1, x € U, € > 0 such that Be(z) CU. f u=0o0rv =20
then both sides of the equation vanish, so let u,v € R™\ {0} and
€

O<t<ce:= (6.25)
2 - max {{[ul], o]}

Define the helper function

g1 : [Ovt] — R

s+— f(x+tv+ su) — f(x + su) (6.26)
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And apply the one dimensional intermediate value theorem. 3¢ € (0,¢) such
that

91(t) = g1(0) = g1(§) -t = (Df(z + tv + §u)u — Df(z + Eu)u) -t (6.27)
Analogously, define and apply the intermediate value theorem to

g2:[0,t] — R

s— Df(x+ sv+&u)u (6.28)

and get n € (0,1)

92(t) = 92(0) = ga(m)t = D(Df(-)u)(x + nv + Su)uvt

= D%f(x +nv+ u)(u,v)t (6.29)

using these results, we can get £,n € (0,t) for all ¢t € (0, ¢) such that
flz+tv + tu) — f(z + tv) — f(x + tu) + f(z)
=q1(t) —91(0) = (Df(z + tv+ {u)u — Df(x + Eu)u)t (6.30)
= (g2(t) — 92(0))t = D*f (& + nv + €u) (u, v)t>

So we can write

hmf(a:—i-tv+tu) — flx +tv) — f(x + tu) + f(x)
t—0 12

= lim D*f (x + nv + &u)(u, v) (6.31)
t—0 ——
—x

= D*f()(u,v)

The left side is symmetric in terms of swapping u and v, so the right side
must be as well. O

Note, that
D*f(z)(ei,, €ip) = 03,05, f(x) = 05,01, f (x) = D* f(z) (€4, €1,)
Remark 6.27. Via induction:

(i) D*f(x)(u1,--- ,ux) is independent from the order of the w;, if D f is
continuous.

(ii) The limit of the second derivaative is useful in the numerical discussion
of differential equations.
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Theorem 6.28 (Taylor’s Theorem). Let U C R™ be open, f : U — R be
(I41)-times differentiable and h € R™ such that x+th € U Vt € [0,1]. Then
30 € [0, 1] such that

l

Fla+h) =37 DR f() (b ) +

k=1

1

0T 1)!Dl+1f(x +6h)(h,--- ,h)

Heuristic Proof. Apply the one dimensional Taylor theorem with Lagrange
error bound onto a helper function

g:10,1] — R

t — f(x +th) (6.32)

Remark 6.29. (i) Consider h =Y. | hje;. Then
D*f(x)(h,h) = Y hihyD*f(x)(ei,e5) = Y 00 f(x)hih;
i,j=1 tj=1

(ii) Analogously to one dimension, we can formulate criteria for local ex-
trema:

Df(z)=0,---, D' f(z) = 0 and D' f(x) # 0

e z is a local minimum if [ is even and D' f(z) is positive.
e 7 is a local maximum if [ is even and D!f(z) is negative.

e 7 is no local extremum of [ is odd or if D'f(z) is undefined.

Definedness is complicated to determine for [ > 2.

6.3 Function Sequences and Differentiability
Ezample 6.30. Consider (fy):
fn:R—C

1
T — —e
n
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Then
1
[folle =~ ——0
n
<~
(fn) converges uniformly to the zero function
But

fa(@) = ie™" = i(e'")"

converges (pointwise even) only for x = 2kmw, k € Z.
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Remark 6.31. Let f: X — V where V is a normed vector space. Define

[flloe = sup {lIf(@)[[ |2 € X}

the supermum norm. Also define

e B(X,V) the space of bounded functions from X — V

e Cp(X,V) the space of continuous, bounded functions from X — V/

Theorem 6.32. Let U C R”™ be open and f, : U — R™ continuously
differentiable ¥n € N. If (f,) and (D f,) converge uniformly to f : U — R™

and g : U — R™*™ then f is differentiable and Df = g.

Proof. First consider m = 1. We use the operator norm on R™*"™, First, let
D f,, be continuous Vn and thus g is continuous. Choose x € U and ¢ > 0,

then
€

36>0: [gly) —g(@)| < 3

if |ly—zl <6
Furthermore

dN eN: HDfn—g||oo<§ Vn > N

Let y € Bs(z). Then according to the intermediate value theorem,

VneN3E, € Spy={x+tly—x)|tel01]}

such that
fa(y) = fn(@) = D fu(&n)(y — @)

(6.33)

(6.34)

(6.35)

(6.36)
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We have &, € Bs(z). Then
b
v =]
1
1D fr (&n)ll=D fr () ly—2|l

SHDfn(gn) - Dfn(m)H

SHDfn(gn) - g(én)” + Hg(én) - g($)“ + Hg(x) - Dfn(x)H

<[Dfr = glloo + l9(n) — (@)1l + llg — D fall

=2[[Dfn = gl + [19(&n) — g(@)|| <€

[fn(y) = fu(@) = Dful2)(y — 2)]

For n — oo we have

)~ @) g~ )] < ¢ Vo € Bi(s)

Since € > 0 is arbitrary, we get

1

im —
el

|f(y) = f(x) —g(z)(y —2)]| =0

This means that f is differentiable in = with D f(z) = g(z).
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(6.37)

(6.38)

(6.39)

O]

Remark 6.33. On Cx(U,R™) (the space of continuous, differentiable and

bounded functions with bounded derivative) we can define a norm:

Iflley = I1flloe + 1D Fll

Then the above theorem is equivalent to the statement that CL (U, R™) with

||f”c1 is complete.

Theorem 6.34. Let f(x) = Y 7 anx™ be a power series with positive

convergence radius p. Then f is differentiable on B,(0) and

f(z) = i na,z™
n=0

Proof. We need to inspect the convergence radius R of

(o) 1 (o]

g na,z" == g na,x"
T

n=0 n=0

(6.40)
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(/n) converges to 1, so Je > 0 such that for sufficiently big n we have

(1— ) ¥/an < vy < (1+ " an (6.41)

and thus
1-— 1 1
‘= (1 —¢)-limsup {/|an| <limsup {/|na,| = = < re (6.42)
P n—00 n—00 R P
50 1 11+
e < XS (6.43)
p R p
Since this holds for every e, this implies p = R. Now for z € B,(0) set
o
g(x) = Znanx”_l (6.44)
k=1

Let « € B,(0) be fixed and choose a > 0 such that |z| < a < p. This means
that

N N
fn(z) = Z anz" and gn () == Z anz™ !
n=0 n=0

converge uniformly on B,(0) to f and g. Obviously, fy = gn, so f is
differentiable and f’ = g. Since differentiabiility is a local property, the
desired statement follows Vz € B,(0). O

Corollary 6.35. Let f(z) = > o7, anz™ be a power series with convergence
radius p > 0. Then f € C*(B,(0)), and

-1
ar = fM(0) - (k)
Furthermore, the series representation (if it exists) is unique.

Proof. The infinite Differentiability follows inductively from the previous
theorem. Also inductively we have

R (z) = i nn—1)--(n—k+ Daaz™* (6.45)

n=0

Choose z = 0 and receive

fR0O)=nn—-1)---(n—k+1)an (6.46)
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Ezample 6.36 (Derivative of the exponential function).

oy > /am\/ > gl > pn—l > pn .
@ =2 ) = = e =€
n=0 n=1 n=1 n=0

Remark 6.37 (Taylor Series). We can define the Taylor series for f : K — K

00 (n
n=0

n!

e In general, this doesn’t hold true for all z, not even for f € C'.
e The convergence radius could be 0

e There are examples of convergent Taylor series that don’t converge to
the initial function, e.g.

f is infinitely continuously differentiable in 0, but the Taylor series
would converge to 0.

Definition 6.38. Let a,, € K (Multiindex notation) be coefficients V1 € Nd.

Then
§ Y
Clnilf
neNd

is said to be a (formal) power series with d variables.
A function f : U — K with U neighbourhood around 0 is said to be
analytic in 0, if and only if

Je > 0,a, € K: f(z)= Zanx" Va € Be(0)
neNg

Remark 6.39. (i) The convergence of the series to S(z) can be defined as
follows: Ve > 0 3A C N¢ finite such that VB D A finite we have

Zanx" —S(x)| <e

neB
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(i) If the series converges in (y1,- - ,yn), then it also absolutely converges
in the open cuboid

{x eRd‘ ;| < |y Vie{1,-- ,d}}

which means

D lagl(lzal, s Jzal)? < oo

d
neNg

(iii) If the power series converges on a neighbourhood U around 0, then it
is infinitely differentiable and

_ 0"f(0)
==

n
with
o= oo -l Nl =gt ng!
(iv) The formula above is only rarely useful to calculate the Taylor se-

ries. By inverting it we can calculate the derivative of a known series
representation. E.g.

CC2k+1

f(a:)—a;eIQ—a: i(xz)k—ik—Ooo Ve € K
= = = = n
1

' k!
k=0 -

f®)(0) = 0 is k is even, and it is something else if k is odd.
(v) C¥(U) is the space of all analytic functions.
CU)>CHU)>C*(U)D---2C*U) D --- > C®(U) > C¥U)

(vi) The analytic functions are closed among sums, products and concati-
nations. A power series is analytic within its converges radius.

Ezample 6.40. Consider the power series

D olay)t =Y (@) ay
n=0 neNZ

with

an:1if771:772
ap = 0 else
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This series converges on

{(z,y) [|lzy| < 1}

1
l—xy-”

to

So the convergence area must not necessarily be a sphere. The limit
function is also defined outside of the convergence area.
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