\documentclass[../../script.tex] {subfiles} %! TEX root = ../../script.tex \begin{document} \section{Metric and Normed spaces} \begin{defi}[Metric space] A metric space $(X, d)$ is an ordered pair consisting of a set $X$ and a mapping \[ d: X \times X \longrightarrow [0, \infty] \] called metric. This mapping must fulfil the following conditions $\forall x, y, z \in X$: \begin{itemize} \item $d(x, y) \ge 0$ \text{ (Positivity)} \item $d(x, y) = 0 \iff x = y$ \text{ (Definedness)} \item $d(x, y) = d(y, x)$ \text{ (Symmetry)} \item $d(x, y) \le d(x, z) + d(z, y)$ \text{ (Triangle inequality)} \end{itemize} \end{defi} \begin{eg} \begin{enumerate}[(i)] \item Let $M$ be a set. Then \[ d(x, y) = \begin{cases} 1, & x \ne y \\ 0, & \text{else} \end{cases} \] is called the discrete metric. \item Let $X$ be the set of edges of a graph. \begin{align*} d(x, y) := &\mbox{ Minimum amount of edges that have} \\ &\mbox{ to be passed to get from } x \mbox{ to } y \end{align*} \begin{center} \begin{tikzpicture}[scale=0.75] \node[shape=circle, draw=black, fill=black] (A) at (0, 0) {}; \node[shape=circle, draw=black] (B) at (1, -4) {}; \node[shape=circle, draw=black] (C) at (3, -2) {}; \node[shape=circle, draw=black] (D) at (5, -3.5) {}; \node[shape=circle, draw=black] (E) at (6.5, -5.5) {}; \node[shape=circle, draw=black, fill=black] (F) at (7, -1) {}; \path [-] (A) edge node[left] {$1$} (B); \path [-] (B) edge node[above left] {$2$} (C); \path [-] (B) edge (D); \path [-] (B) edge (E); \path [-] (C) edge (D); \path [-] (C) edge node[above] {$3$} (F); \path [-] (E) edge (F); \node[above=0.3cm] at (A) {$x$}; \node[above=0.3cm] at (F) {$y$}; \end{tikzpicture} \end{center} \item Let $X$ be the surface of a sphere. \[ d(x, y) := \text{"Bee line"} \] \item Let $X$ be the set of points of the European street network. \[ d(x, y) := \text{ Shortest route along this network} \] \item Let $(X, d_X)$, $(Y, d_Y)$ be metric spaces. Then \[ d_{X \times Y}((x_1, y_1), (x_2, y_2)) := d_X(x_1, x_2) + d_Y(y_1, y_2) \] defines a metric on $X \times Y$. \end{enumerate} \end{eg} \begin{defi}[Normed space] $(V, \dnorm)$ is said to be a normed space if $V$ is a vector space and \[ \dnorm: V \longrightarrow [0, \infty) \] is a mapping (called norm) with the following properties \begin{itemize} \item $\norm{x} \ge 0$ (Positivity) \item $\norm{x} = 0 \iff x = 0$ (Definedness) \item $\norm{\lambda x} = |\lambda|\norm{x}$ \item $\norm{x + y} \le \norm{x} + \norm{y}$ (Triangle inequality) \end{itemize} To every norm belongs a unique induced metric \[ d(x, y) = \norm{x - y} \] \end{defi} \begin{eg}[$\realn^n$ with Euclidian norm] \begin{align*} \dnorm: \realn^n &\longrightarrow [0, \infty) \\ (x_1, x_2, \cdots, x_n) &\longmapsto \sqrt{x_1^2 + x_2^2 + \cdots + x_n^2} \end{align*} Then $(\realn^n, \dnorm)$ is a normed space. \end{eg} \begin{eg} \begin{enumerate}[(i)] \item $(x_1, x_2, \cdots, x_n) \mapsto |x_1| + |x_2| + \cdots + |x_n|$ is also a norm on $\realn^n$. \item On \[ V = \set[f \text{ continuous}]{f: [0, 1] \longrightarrow \realn} \] we can define the supremum norm \[ \supnorm{f} = \sup \set[{x \in [0, 1]}]{|f(x)|} \] \item We can define sequence spaces as \[ \ell^p = \set[\series{n} |x_n|^p < \infty]{\anyseqdef{\cmpln^n}} \] with the norm \[ \norm{(x_n)}_p := \sqrt{\series{n} |x_n|^2} \] A special space is $\ell^2$, called Hilbert space \end{enumerate} \end{eg} \begin{rem} The Minkowski metric is not a metric in this sense. \end{rem} \begin{defi}[Balls and Boundedness] Let $\metric$ be a metric space, and $x \in X, r > 0$. We then define \begin{align*} \Oball(x) = \set[d(x, y) < r]{y \in X} && \text{Open ball} \\ \Cball(x) = \set[d(x, y) \le r]{y \in X} && \text{Closed ball} \end{align*} A subset $M \subset X$ is called bounded if \[ \exists x \in X, r > 0: ~~M \subset \Oball(x) \] \end{defi} \end{document}