\documentclass[../../script.tex]{subfiles} % !TEX root = ../../script.tex \begin{document} \section{Convergence of Function sequences} \begin{defi}[Pointwise convergence] Let $M$ be a set, $f_n: M \rightarrow \field ~~\forall n \in \natn$ and $f: M \rightarrow \field$. The sequence $\seq{f}$ is said to be pointwise convergent to $f$ if \[ \limn f_n(x) = f(x) ~~\forall x \in M \] \end{defi} \begin{eg} Consider \begin{align*} f_n: [0, 1] &\longrightarrow \realn \\ x &\longmapsto \begin{cases} 1 - nx, & x \in [0, \frac{1}{n}] \\ 0, & \text{else} \end{cases} \end{align*} \begin{center} \begin{tikzpicture}[domain=0:1] \begin{axis}[xmin=0, ymin=0, xmax=1, ymax=1, samples=50] \addplot[black, thick] {1-x} node[above right, pos=0.6] {$f_1$}; \addplot[black, thick] {1-2*x} node[above right, pos=0.4] {$f_2$}; \addplot[black, thick] {1-3*x} node[right, pos=0.3] {$f_3$}; \addplot[black, thick] {1-4*x} node[left, pos=0.23] {$f_4$}; \end{axis} \end{tikzpicture} \end{center} The $f_n$ are continuous for all $n \in \natn$ and converge pointwise to \begin{align*} f: [0, 1] &\longrightarrow \realn \\ x &\longmapsto \begin{cases} 1, & x = 0 \\ 0, & x \ne 0 \end{cases} \end{align*} $f$ is not continuous. \end{eg} \begin{rem} Let $M$ be a set. Then \[ B(M) = \set[\exists K \in \realn: ~~|f(x)| < K ~~\forall x \in M]{f_n: M \longrightarrow \field} \] is a linear subspace of the space of all functions $M \rightarrow \field$. We can define the supremum norm \begin{align*} \supnorm{\cdot}: B(M) &\longrightarrow \realn \\ f &\longmapsto \sup_{x \in M}\set{\abs{f(x)}} \end{align*} \end{rem} \begin{proof} We will now proof that $\supnorm{\cdot}$ is a norm. It is defined, because \begin{equation} \supnorm{f} = 0 \implies \abs{f(x)} = 0 ~~\forall x \in M \end{equation} This implies \begin{equation} f(x) = 0 ~~\forall x \in M \implies f = 0 \end{equation} The triangle inequality is proven by first considering \begin{equation} \abs{f(x)} \le \supnorm{f} ~~\forall f \in B(M) ~\forall x \in M \end{equation} Let $f, g \in B(M)$, then \begin{equation} \abs{f(x) + g(x)} \le \abs{f(x)} + \abs{g(x)} \le \supnorm{f} + \supnorm{g} ~~\forall x \in M \end{equation} Which implies \begin{equation} \supnorm{f + g} = \sup_{x \in M} \abs{f(x) + g(x)} \le \supnorm{f} + \supnorm{g} \end{equation} \end{proof} \begin{defi}[Uniform convergence] A sequence of bounded functions $\seq{f}$, \[ f_n: M \longrightarrow \field \] is said to be uniformly convergent to $f: M \rightarrow \field$ if its norm converges. \[ \supnorm{f_n - f} \conv{n \rightarrow \infty} 0 \] \end{defi} \begin{rem} Formally, pointwise convergence means \[ \forall \epsilon > 0 ~\forall x \in M ~\exists N \in \natn ~\forall n \ge N: ~~\abs{f_n(x) - f(x)} < \epsilon \] and uniform convergence means \[ \forall \epsilon > 0 ~\exists N \in \natn ~\forall x \in M ~\forall n \ge N: ~~\abs{f_n(x) - f(x)} < \epsilon \] \end{rem} \begin{thm} The function space $B(M)$ is complete. \end{thm} \begin{proof} Let $\anyseqdef[f]{B(M)}$ be a Cauchy sequence in terms of $\supnorm{\cdot}$. Firstly, we have for some fixed $x \in M$ \begin{equation} \abs{f_n(x) - f_m(x)} \le \supnorm{f_n - f_m} \end{equation} Since $\seq{f}$ is a Cauchy sequence, $(f_n(x))$ is also a Cauchy sequence in $\field_0$. Because $\field$ is complete, $(f_n(x))$ converges, and we define \begin{equation} f(x) = \limn f_n(x) \end{equation} thus $\seq{f}$ converges pointwise to $f$. Let $\epsilon > 0$. Then \begin{equation} \exists N \in \natn: ~~\supnorm{f_n \cdot f_m} < \epsilon ~~\forall n, m \ge N \end{equation} Then $\forall x \in M, ~\forall n, m \ge N$ we have \begin{equation} \abs{f_n(x) - f_m(x)} \le \supnorm{f_n - f_m} < \epsilon \end{equation} We can find the limit for $m \rightarrow \infty$ \begin{equation} \abs{f(x) - f_n(x)} \le \epsilon \end{equation} and \begin{equation} \supnorm{f} = \sup_{x \in M}\abs{f} \le \sup_{x \in M} \abs{f(x) - f_n(x)} + \sup_{x \in M} \abs{f_n(x)} = \epsilon + \supnorm{f_n} \end{equation} Thus, $f$ is bounded. Furthermore \begin{equation} \supnorm{f - f_n} = \sup_{x \in M} \abs{f(x) - f_n(x)} \le \epsilon \end{equation} which in turn implies \begin{equation} \supnorm{f - f_n} \conv{n \rightarrow \infty} 0 \end{equation} \end{proof} \begin{defi} Let $\metric$ be a metric space, then $C_b(X)$ is said to be the space of all continuous bounded functions. \end{defi} \begin{rem} If $X$ is compact (e.g. a bounded, closed subset of $\realn^n$) then all continuous functions are bounded. We then write $C(X)$ for $C_b(X)$. \end{rem} \begin{thm} Let $\metric$ be a metric space. $C_b(X)$ is closed in $B(X)$. In other words, every uniformly convergent sequence of continuous functions converges to a continuous function. \end{thm} \begin{proof} Let $\anyseqdef[f]{C_b(X)}$ be a sequence that uniformly converges to $f \in B(X)$. Let $x \in X$ and $\epsilon > 0$, then \begin{equation} \exists N \in \natn: ~~\supnorm{f - f_n} y \frac{\epsilon}{3} ~~\forall n \ge N \end{equation} Choose a fixed $n \ge N$. Since $f_n$ is continuous, this means that \begin{equation} \exists \delta > 0: ~~\abs{f_n(x) - f_n(y)} < \frac{\epsilon}{3} ~~\forall y \in \oball[\delta](x) \end{equation} Then we have for all such $y$ \begin{equation} \begin{split} \abs{f(x) - f(y)} &\le \abs{f(x) - f_n(x)} + \abs{f_n(x) - f_n(y)} + \abs{f_n(y) - f(y)} \\ &\le 2 \cdot \supnorm{f - f_n} + f_n(x) - f_n(y) < \epsilon \end{split} \end{equation} This proves the continuity of $f$ in $x$. Since $x \in X$ was chosen arbitrarily, $f$ is continuous everywhere. \end{proof} \begin{defi} Let $x_0 \in \field$ and $\anyseqdef[a]{\field}$. Then \[ \series{n} a_n (x - x_0)^n \] is called a power series around $x_0$. The number \[ \rho := \sup\set[\series{n} a_n (x - x_0)^n \text{ converges}]{\abs{x - x_0}} \] is the convergence radius. \begin{center} \begin{tikzpicture} \draw[->, thick] (0, 0) -- (0, 4) node [above] {}; \draw[->, thick] (0, 0) -- (4, 0) node [right] {}; \draw[fill] (2, 2) circle [radius=1pt] node [below right] {$x_0$}; \draw[dashed] (2, 2) circle [radius=1.2cm]; \draw[<->, rotate around={45:(2, 2)}] (2, 2) -- node[above] {$\rho$} (3.2, 2); \draw[fill, rotate around={100:(2, 2)}] (3.2, 2) circle [radius=1pt] node [above] {$x$}; \end{tikzpicture} \end{center} \end{defi} \begin{rem} All results so far (including proofs) can be extended to $\realn^n$-valued functions, or functions with values in a Banach space in general. \end{rem} \begin{thm} Let $\series{n} a_n (x - x_0)^n$ be a power series with convergence radius $\rho \in [0, \infty) \cup \set{\infty}$. If $\abs{x - x_0} < \rho$ then the series converges absolutely, for $\abs{x - x_0} > \rho$ it diverges. \[ \frac{1}{\rho} = \limsupn \sqrt[n]{\abs{a_n}} \] \end{thm} \begin{proof} W.l.o.g. choose $x_0 = 0$: For $\abs{x} > \rho$ the series diverges by definition. If $\abs{x} < \rho$ then there exists $y \in \field$ such that $\abs{x} < \abs{y} \le \rho$ and $\series{n} a_n y^n$ convergent. Especially, $(a_n y^n)$ is a null sequence. This means $\exists C > 0$ such that $\abs{a_n y^n} \le C ~~\forall n \in \natn$ \begin{equation} \series{n} \abs{a_n x^n} = \series{n} \abs{a_n y^n} \abs{\frac{x}{y}}^n \le C \cdot \series{n} \abs{\frac{x}{y}}^n < \infty \end{equation} This statement only holds for $\rho > 0$. \end{proof} \begin{rem} \begin{enumerate}[(i)] \item We have \[ \rho = \sup \set[\series{n}\abs{a_n}a^n \text{ converges}]{a \in [0, \infty)} \] \item If the following limit exists, then \[ \rho = \limn \frac{\abs{a_n}}{\abs{a_{n+1}}} \] \end{enumerate} \end{rem} \begin{eg} The series \[ \series{n} x^n \] is convergent on $(-1, 1)$, so $\rho = 1$. The limit function is \[ x \longmapsto \frac{1}{1 - x} \] \end{eg} \begin{thm} Let $\series{n} a_n (x - x_0)^n$ be a power series with convergence radius $\rho > 0$. Let $0 < a < \rho$. Then this power series converges uniformly on $\cball[a](x_0)$. Especially \begin{align*} f: \oball[\rho](x_0) &\longrightarrow \realn \\ x &\longmapsto \series{n} a_n (x_n - x_0)^n \end{align*} \end{thm} \begin{proof} W.l.o.g. choose $x_0 = 0$. Let $0 < a < \rho$. We know that $\series{n} a_nx^n$ converges on $\cball[a](0)$. \begin{center} \begin{tikzpicture} \draw[->, thick] (0, -3) -- (0, 3); \draw[->, thick] (-3, 0) -- (3, 0); \draw[fill] (0, 0) circle [radius=1pt]; \draw[solid] (0, 0) circle [radius=1.8cm]; \draw[dashed] (0, 0) circle [radius= 2.4cm] node[above right=2.4cm] {$\rho$}; \node at (2, 0.2) {$a$}; \end{tikzpicture} \end{center} Define \begin{equation} \begin{split} f_n: \cball[a](0) &\longrightarrow \field \\ x &\longmapsto x^n ~~\forall n \in \natn \end{split} \end{equation} We can see that \begin{equation} \supnorm{f} = \sup_{x \in \cball[a](0)} \abs{f_n} = \sup_{x \in \cball[a](0)} = a^n \end{equation} and thus \begin{equation} \series{n} a_n f_n \implies \series{n} \supnorm{a_n f_n} = \series{n} \abs{a_n}^n < \infty \end{equation} because $a < \rho$. The series $\series{n} a_n f_n$ is absolutely convergent in $C(\cball[a](0))$. Since $C(\cball[a](0))$ is complete, $\series{n} a_n f_n$ is convergent because the partial sums $\series[N]{n} a_n f_n$ are continuous $\forall N \in \natn$. Therefore $f$ is also continuous on $\cball[a](0)$. Let $x \in \oball[\rho](0)$. Then there exists some $a > 0$ such that $\abs{x} < a < \rho$. Thus, $f$ is continuous on $\cball[a](0)$. Since $\cball[a](0)$ contains a neighbourhood of $x$, and continuity is a local property, $f$ is also continuous in $x$. Because $x \in \oball[\rho](0)$ was chosen arbitrarily, $f$ is continuous. \end{proof} \begin{rem} $\exp$, $\sin$, $\cos$ are continuous. \end{rem} \begin{eg} The statements above can be extended to Banach space-valued power series (e.g. matrix-valued functions). The norm on $\realn^{n \times n}$ is \[ \norm{A} = \sup\set[{\forall x \in \oball[1](0)}]{\norm{Ax}} \] Define \[ \exp(A) := \series{0} \frac{A^n}{n!} \] This converges $\forall A \in \realn^{n \times n}$, because \begin{align*} \series{n} \norm{\frac{A^n}{n!}} &= \series{n} \frac{1}{n!} \norm{A^n} \le \series{n} \frac{1}{n!} \norm{A}^n \\ &= \exp(\norm{A}) < \infty \end{align*} Thus, $\series{n} \frac{A^n}{n!}$ converges absolutely. Now consider the function \begin{align*} \realn &\longrightarrow \realn^{n \times n} \\ t &\longmapsto \exp(At) \end{align*} This is a matrix-valued power series \[ \exp(At) = \series{n} \frac{(At)^n}{n!} = \series{n} \frac{A^n}{n!} t^n \] with a convergence radius of $\rho = \infty$. In this case $\exp(A + B)$ doesn't necessarily have to equal $\exp(A) \cdot \exp(B)$. \end{eg} \end{document}